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Abstract
Purpose This paper aims to demonstrate how LCA can be improved by the use of linear programming (LP) (i) to determine the
optimal choice between new technologies, (ii) to identify the optimal region for supplying the feedstock, and (iii) to deal with
multifunctional processes without specifying a certain main product. Furthermore, the contribution of LP in the context of
consequential LCA and LCC is illustrated.
Methods We create a mixed integer linear program (MILP) for the environmental and economic assessment of new technologies.
The model is applied in order to analyze two residual beech wood-based biorefinery concepts in Germany. In terms of the optimal
consequences for the system under study, the principle of the program is to find a scaling vector that minimizes the life cycle
impact indicator results of the system. We further transform the original linear program to extend the assessment by life cycle
costing (LCC). Thereby, twomulti-objective programming methods are used, weighted goal programming and epsilon constraint
method.
Results and discussion The consequential case studies demonstrate the possibility to determine optimal locations of newly
developed technologies. A high number of potential system modifications can be studied simultaneously without matrix inver-
sion. The criteria for optimal choices are represented by the objective functions and the additional constraints such as the available
feedstock in a region. By combining LCA and LCC targets within a multi-objective programming approach, it is possible to
address environmental and economic trade-offs in consequential decision-making.
Conclusions This article shows that linear programming can be used to extend standard LCA in the field of technological choices.
Additional consequential research questions can be addressed such as the determination of the optimal number of new production
plants and the optimal regions for supplying the resources. The modifications of the program by additional profit requirements
(LCC) into a goal program and Pareto optimization problem have been identified as promising steps toward a comprehensive
multi-objective LCSA.
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1 Introduction

Life cycle assessment (LCA), and in particular consequential
LCA, is regarded as an appropriate tool for the assessment of
environmental impacts of new bio-based technologies (e.g.,
Pawelzik et al. 2013). Despite the publication of various con-
sequential modeling approaches, consequential LCA is still
far from a proper systematization (Zamagni et al. 2012).
Although the use of consequential and attributional LCA for
decision-making is still being discussed (Ekvall et al. 2016;
Hertwich 2014; Plevin et al. 2014), all approaches are based
on the definition of consequential LCA that “is designed to
generate information on the consequences of decisions”
(Ekvall and Weidema 2004). Consequential LCA attempts to
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determine how environmental flows will change due to the
consequences of a decision (Curran et al. 2005). In contrast,
attributional LCA focuses on describing the life cycle of a
product by attributing the environmental flows to the product
under study.

The choice for either determining consequences or attribu-
tional impacts also affects the way of modeling in terms of the
multifunctional problem. This problem arises when a process
provides more than one product that is not used within the
system under study (Heijungs and Frischknecht 1998;
Heijungs and Guinée 2007). In this case, the environmental
burdens associated with the multifunctional process need to be
allocated to different products. Several procedures have been
developed to solve the multifunctional problem (Heijungs and
Suh 2002). Consequential LCA approaches prefer to use sub-
stitution method to deal with the problem, whereas attribution-
al LCA is a synonym for using the partitioning method
(Ekvall and Weidema 2004; Thomassen et al. 2008; Schmidt
2010). The ISO standard suggests the expansion of the system
as one method to deal with multifunctional unit processes
(ISO 2006). Also, partitioning method is recommended,
where dividing unit processes and expanding the product sys-
tem cannot be avoided. Several authors have identified that
system expansion is conceptually equivalent to substitution
(Heijungs and Guinée 2007; Tillman et al. 1994). Thereby,
the expansion of additional functions related to the co-
products can either be carried out by subtracting the functions
from the according process (substitution aka avoided burden
method) or including the functions into the final demand vec-
tor (system expansion by expanding the functional unit). In
any way, dealing with multifunctional processes by using
partitioning and/or substitution method depends on a model
choice (Majeau-Bettez et al. 2015). The choice of a certain
model to deal with multifunctional processes is usually argued
by the invertibility of the technologymatrix (avoid rectangular
matrix) and the argumentation that the model represents real
world more closely than others would do (Suh et al. 2010).
However, to solve systems with more products than processes
(rectangular technology matrix), linear programming is a suit-
able way (Heijungs and Suh 2002).

A major issue for standard life cycle assessment, which
addresses one state of a particular product system, might be
the fact that no optimal production mixes can be determined.
Usually, in LCA, this point is addressed by creating a small
number of scenarios analyzing different product system alter-
natives iteratively (e.g., Budzinski and Nitzsche 2016; Renouf
et al. 2018). However, such procedure can be very time-con-
suming. Particularly in consequential LCA, this could be an
issue. In many cases, not only the consequences of a potential
decision need to be described, but rather the optimal decision
itself shall be identified. To overcome limitations in LCA,
among other methods such as fuzzy programming (Tan et al.
2008) or graph methods (Vance et al. 2015), the combined use

of LCAwith linear programming (LP) has a longer tradition.
Azapagic and Clift (1995, 1998) introduced LP in the field of
process engineering. Thereby, LP is used to allocate environ-
mental burdens to multiple co-products by means of the mar-
ginal values at the solution of the LP model. Recent studies
exist in the field of biomass utilization. Vadenbo et al. (2017)
used a multi-objective optimization model to determine the
optimal activity levels of a set of biomass process options.
Kostin et al. (2012) carried out an assessment with a mixed-
integer linear programming approach for ethanol production
chains. Based on a rectangular choice-of-technology model
(Duchin and Levine 2011), Kätelhön et al. (2016) built a tech-
nology choice model (TCM) for consequential LCA of rice
production. Despite the attempts to incorporate LCA into a
consistent multi-objective framework combining linear pro-
gramming and life cycle sustainability assessment (LCSA)
(e.g., Gong and You 2017; Steubing et al. 2011; Liu et al.
2010), a conceptual discussion on how consequential LCA
and LCC can be extended by LP is still scarce.

The aim of this paper is, hence, to demonstrate how LCA
can be extended by the use of linear programming (i) to de-
termine the optimal choice between new technologies, (ii) to
identify the optimal region for supplying the feedstock, and
(iii) to deal with multifunctional processes without specifying
a certain main product. In doing so, we use the matrix-based
notation of Heijungs and Suh (2002) and create a rectangular
mixed integer linear program and carry out a case study to
illustrate its applicability. Thereby, two wood-based
biorefinery concepts are analyzed in terms of the optimal con-
sequences for the total system under study. Furthermore, we
modify the original linear program into a weighted goal pro-
gramming problem and a Pareto optimization model those
extend the environmental focus on sustainability by adding
the economic perspective through a life cycle costing (LCC)
approach.

2 Computational structure of LCA and LCC

The computational structure of LCA is comprehensively de-
scribed by Heijungs and Suh (2002). Mathematically, the first
step of life cycle inventory (LCI) analysis is the determination
of the scaling vector s. The components of this vector scale
processes of a system up or down such that the output of unit
processes exactly matches the final demand. The final demand
vector f includes the reference flows r, which are defined
within the goal and scope of a LCA study. The scaling vector
can be determined by the multiplication of the inverse of tech-
nology matrix Awith the final demand vector.

s ¼ A−1 f ;with f i ¼ > 0 if i∈r
0otherwise

�
ð1Þ
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The next step of the LCI analysis is to specify the inventory
vector g according to the reference flows. This is done by
multiplying the intervention matrix B with the scaling vector.

g ¼ Bs ð2Þ

Life cycle impact assessment (LCIA) transforms the inter-
ventions into more understandable impact indicator results.
The impact vector h can be calculated by multiplying the
matrix of characterization factorsQ with the inventory vector.

h ¼ Qg ð3Þ

The so-called multifunctional problem arises if a process
generates more than one product and if and only if the deliv-
ered functions are not used in the same proportion in the sys-
tem (Heijungs and Frischknecht 1998). The most common
approaches to solve the multifunction problem can be classi-
fied into partitioning method and substitution method
(Heijungs and Guinée 2007). By applying these procedures,
the technology matrix A becomes square, since an equal
amount of rows and columns exists. The partitioning method
divides the multifunctional process into processes that are
mono-functional by the use of allocation factors. Several ways
to gain these factors are possible, e.g., due to physical or
monetary characteristics of the products. The substitution
method requires the definition of a mono-functional process,
which provides the avoided product to the multi-functional
process. Adding this process to the technology matrix A
makes its inversion possible.

An interesting but not often recognized characteristic of
LCA is the existence of a price model beside the quantity
model (As = f), which is similar to input-output models. This
becomes obvious when a price vector α is introduced (cf.
Heijungs et al. 2013). Using this price vector, it is possible
to compute the value added v per process.

v ¼ A0α ð4Þ

To determine the value added in terms of a reference flow,
the elements of the scaling vector s can be multiplied by the
value added of the corresponding processes, where 1 is the
summation operator (vector of ones).

v0scaled ¼ 1 diag v
0

� �
s

� �
ð5Þ

This value added vector can then be used to determine life
cycle costs (LCC). Heijungs et al. (2013) define life cycle cost
of a composite final demand as l ¼ ∑ j−vscaledj , where j runs
over all case such that technical coefficient aij > 0, where ref-
erence flows i is such that fi ≠ 0. In other words, the life cycle
costs of reference flows, which are specified in the final de-
mand vector, are the negative sum of the corresponding entries
in the scaled value added vector.

3 Exemplary case study

In the following sections, we demonstrate how the previously
mentioned equations can be modified to create a rectangular
choice-of-technology model in regard to the goal and scope of
the study (Sect. 3.1). Therefore, we define a mixed integer
linear program (Sect. 3.2) and determine the results of an
exemplary case study (Sect. 3.3). To include LCC aspects,
we transform the original problem into a weighted goal pro-
gramming problem and a Pareto optimization model in Sects.
3.4 and 3.5, respectively.

3.1 Goal and scope

The study concerns two exemplary biorefinery concepts. The
concepts and data are based on Budzinski and Nitzsche
(2016). The first biorefinery concept produces ethylene,
organosolv lignin, and biomethane. The second configuration
produces the same products as the first one except for ethylene
that is replaced by ethanol. The annually produced amounts of
the multifunctional biorefinery processes are illustrated in
Table 1. The goal of the exemplary case study is threefold.
Firstly, we want to determine the biorefinery that is more
appropriate to reduce environmental impacts in regard to the
current production system. Secondly, we want to determine at
which site the biorefineries should be located (Fig. 1). And
finally, to identify districts for supplying woody biomass
feedstocks.

Table 1 Annual input and output of biorefinery processes

Biorefinery 1 Biorefinery 2

Biomethane (m3) 5.05·107 5.05·107

Ethylene (kg) 4.14·107 0

Hydrolysis lignin (MJ) 1.96·109 1.96·109

Ethanol (MJ) 0 1.87·109

Organosolv lignin (kg) 6.22·107 6.22·107

Sodium hydroxide (kg) − 5.04·105 − 5.04·105

Magnesium sulfate (kg) − 3.57·105 − 3.57·105

Phosphorus (kg) − 3.57·105 − 3.57·105

Sulfur (kg) − 3.57·105 − 3.57·105

Sulfuric acid (kg) − 3.76·106 − 3.76·106

Fodder yeast (kg) − 2.32·106 − 2.32·106

Lime, packed (kg) − 3.84·104 − 3.84·104

Refrigerant (kg) − 4.94·104 0

Heat, natural gas (MJ) − 5.86·107 0

Electricity, natural gas (kWh) − 1.08·109 − 1.35·109

Chemical factory (unit) − 1.05·108 − 9.52·107

Treated wastewater (m3) − 3.33·10−2 − 3.33·10−2

Water (kg) − 2.84·106 − 3.16·106

Beech wood (kg dm) − 4.00·108 − 4.00·108
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For simplicity reasons, we focus on four chemical parks of
the Central European Chemical Network1 as potential plant
locations, which would in principal allow the building of the
two biorefinery concepts: Leuna, Böhlen, Zeitz, and

Schwarzheide. We assume that all chemical parks can provide
the required infrastructure and utilities in the same manner.
Furthermore, we suppose that either one or none of the
biorefinery concepts can be built at a location. Data on resid-
ual beech wood are estimated at the level of 37 administrative
districts in Germany according to Polley and Kroiher (2006).1 http://www.cechemnet.de/Netzwerk/cechemnet_en

Fig. 1 Potential location for the two biorefinery types and annual availability of residual beech wood from forests within German districts (scenario
100%)
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This residual wood is currently not used and remains in forests
after chopping, which might be possibly used as feedstock for
biorefineries without inducing feedstock rivalry (Michels
2009). Since the 100% use of available beech wood residuals
is quite optimistic, we introduce a second scenario in which
the availability in each region is reduced by 50% (cf. Michels
2009). The transport distances from the districts to the four
potential plant locations can be covered by train and/or truck.
In this study, we assume that up to 200 km, the wood is
transported only by truck. For distances greater than
200 km, the wood is additionally transported by train.
Thereby, we further assume that a minimal distance (between
10 and 30 km depending on the availability of train network)
is covered by truck. Varying transport distances for other pre-
products of the biorefineries are neglected.

We assume that the new biorefinery products compete with
existing products of the current system. Hence, we define
substitutable reference products for each biorefinery product:
biomethane vs. natural gas, bio-based ethylene vs. fossil eth-
ylene, hydrolysis lignin vs. lignite briquettes, ethanol vs. pet-
rol, and organosolv lignin vs. polyol. The definition of these
avoided products is a long-discussed issue in LCA. Since the
general societal aim is to move towards a bio-based economy,
we use fossil-based references that provide the same
functions.

The amounts of reference flows are specified in regard to
the German demand of these products within the current sys-
tem. Thereby, the reference flows need to be specified in the
manner that the products of current processes must provide the
same functions as of the biorefinery products. In the example,
we assume that this is guaranteed, e.g., by referring to MJ in
the case of ethanol and gasoline.

For LCIA, we chose the category climate change taking
into account the three substances CO2, CH4, and N2O.

3.2 The linear programming model

According to Heijungs and Suh (2002), the principle of ex-
tending LCA by LP is to relax the balance equations into
inequations. Hence, we can replace the equation

As ¼ f ð6Þ
by the inequation

As≥ f : ð7Þ

By using this formulation, the solution of such program
would allow flows that are greater than those specified in the
final demand vector. Regarding the special case in which pro-
cesses are defined to be strictly mono-functional, the formu-
lation as As = f would also work for solving the LP. The for-
mulation in Eq. (7) also provides solutions for cases in which

multi-output processes are considered in the upstream system
and, hence, is more general.

The overall program can be summarized by the formulas 8
to 11 considering that the scaling factors of biorefinery pro-
cesses s1, s2, s3, s4, s5, s6, s7, and s8 are integers. Thereby, Eq. 8
represents the objective function of minimizing environmental
impacts. Equation 9 illustrates the system under study includ-
ing all potential biorefineries, feedstock regions, and transpor-
tation alternatives. Equation 10 includes the capacity con-
straints for feedstock availability in the regions. Equation 11
considers the fact that only one of the two biorefinery options
can be built at a potential location. By using the linear pro-
gramming model, we are interested in the reduction of the
total environmental impacts of the current system. Hence,
the objective function results from Eqs. 2 and 3, and the target
is to find a vector s that minimizes the total impacts h of the
system, which is expressed by matrixA. Avisualization of the
modeling principle including the sub-matrices ofA is given in
Fig. 2. The fundamental principle of the model is to check
whether environmental impacts can be reduced by biorefinery
1 or 2 considering 4 potential locations (ABRS) and 37 regions
of wood supply (AS). If not, the model would only choose
current processes (ARef) to provide the components of the final
demand.

Minimize h ¼ QBs ð8Þ
subject to

As
≥ f i > 0
¼ f i ¼ 0
≥ f i ¼ 0

8<
:

if i∈r
if i∈T; S
otherwise

ð9Þ

0≤s≤c ð10Þ
s1 þ s2≤1
s3 þ s4≤1
s5 þ s6≤1
s7 þ s8≤1

ð11Þ

with s1, s2, s3, s4, s5, s6, s7, s8 ∈ℕ
The rectangular technology matrixAwith the dimension of

products-by-processes consists of several sub-matrices.

A ¼
ABRS 0 0 0 ARef

−A*
up Aup −A**

up −A***
up 0

0 0 AS −A*
S 0

−A*
T 0 0 AT 0

2
664

3
775 ð12Þ

These sub-matrices have the following dimensions:

ABRS ir × jBRS (5 × 8)
ARef ir × jRef (5 × 5)
Aup iup × jup (17 ×

17)

Int J Life Cycle Assess (2019) 24:2191–2205 2195



−A*
up iup × jBRS (17 ×

8)
−A**

up iup × jS (17 × 37)
−A***

up iup × jT (17 ×
296)

−A*
T iT × jBRS (8 × 8)

AT iT × jT. (8 × 296)
−A*

S iS × jT. (37 × 296)
AS iS × jS.(37 × 37).

with,

ir biorefinery/reference product
iup product of upstream process
iT transported wood
iS supplied wood in a district
jBRS biorefinery process
jRef substitutable reference process
jup upstream process
jS region for supplying wood
jT transport option

The columns of matrix ABRS represent the biorefinery op-
tions jBRS of each type at each potential location. The rows of
this matrix represent the products ir which can also be pro-
duced by current reference processes jRef. Matrix ARef

includes current available processes jRef that produce the same
functions ir as the biorefinery processes.

To address the choice for a certain district, which deliver
the residual beech wood, the model is extended by the matri-

ces AT, −A*
T, AS and −A*

S. Matrix AS is an identity matrix to
consider the different alternatives of beech wood supply from

the 37 districts. Matrices −A*
S andATare needed to include the

alternatives of beech wood transport from each district to each
one of the 8 biorefinery alternatives. The linkage of the these
alternatives to the biorefinery options is represented by matrix

−A*
T.
Upstream processes in matrix Aup, which are needed to

provide the pre-products of the biorefineries, the cultivation,
and transportation of wood and the reference products, com-
plete the rectangular A matrix.

The program is designed as an LCA for a final demand fr
on reference flows r, which are characterized by the products
of the biorefinery system and the corresponding reference
products (biomethane/natural gas, bio-based ethylene/fossil
ethylene, hydrolysis lignin/lignite briquettes, ethanol/petrol,
organosolv lignin/polyol). The amounts for the multiple com-
ponents of the functional unit are taken from statistical sources
(e.g., VCI 2018; SDK 2017) and represent those of a current
German demand. Other components of the final demand

Fig. 2 Simplified flowchart
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vector f are set to zero. The design of an LCA for a demand on
the functional unit does not take into account the linkage of
downstream processing with the modeled upstream process-
ing so that economy-wide impacts are cut off (Suh 2004).
However, the modeling in regard to the functional unit is a
general principle of LCA (Peters and Hertwich 2006). To en-
sure the balance between supply and demand of transported

beech wood, the constraint 0 0 AS −A*
S 0

−A*
T 0 0 AT 0

� �
s ¼

f S;T ¼ 0 is introduced.

We further define the first eight scaling factors for the
biorefinery processes to be integers. This choice is neces-
sary, since the data collection for the biorefineries is based
on process simulation for a specific capacity. The inter-
mediate flows and environmental interventions associated
with this capacity are not up- or downscalable in a linear
manner. The program is completed by introducing lower
bounds (set to 0) and a vector of upper bounds c. In
regard to the availability of residual beech wood in each
district, the data of Fig. 1 is considered as upper bounds
for s jS. The upper bounds c for the scaling factors of
biorefinery processes (s jBRS ) were set to 1, since we as-
sume that only one biorefinery can be built at a chemical
park.

The LCI data for upstream biorefienry processes and
for the substitutable reference system is taken from the
ecoinvent 3.2 database (cut-off model). The whole prob-
lem and the corresponding data can be studied in more
detail in the Electronic Supplementary Material
(MILP_LCA.xlsx).

3.3 Results

To solve the mixed integer linear program, the intlinprog
solver in Matlab was used. An additional scenario is an-
alyzed in which the available amount of beech wood is
reduced by 50%. The results for 100% scenario (1.14 Mt
dm beech wood in Germany) indicate that two
biorefineries with a capacity of 0.4 Mt dm are built at
the considered chemical parks. Since the scaling factors
for biorefineries are defined as integers, not the total
available amount of beech wood is exhausted. The opti-
mal locations to build the biorefineries are Zeitz and
Schwarzheide. It is visible that for both scenarios, the
ethylene-producing biorefinery 1 is more preferable to
reduce greenhouse gas emissions than the ethanol-
producing biorefinery 2 (Table 2). When reducing the
available residual wood for all districts by 50%, another
location becomes more preferable than those of the 100%
scenario. This is an interesting result, since one might
assume that one of the locations identified in the 50%

would be chosen. The total reduction of the impacts on
climate change compared to the impacts of the current
system (hRef = QRef ∙ BRef ∙ ARef

−1 ∙ fr) is 4.76 Mt/a CO2

eq. in the 100% scenario and 2.38 Mt/a CO2 eq. in the
50% scenario.

The contribution analysis for the 100% scenario shows
that current substitutable processes still provide the ma-
jor part of the overall GHG emissions (lignite production
88.48%, natural gas production 8.24%, petrol production
1.95%, ethylene production 1.05%, polyol production
0.25%) whereas the biorefinery system plays a minor
part (biorefineries 0.12%, wood production − 0.20%, oth-
er upstream processes including transport 0.12%). Due to
the feedstock availability of German beech wood resid-
uals, only a small ratio of current GHG emissions could
be reduced. Detailed information on contribution analy-
ses is provided in the Electronic Supplementary Material
(MILP_LCA.xlsx).

To study the origin of wood supply it is possible to analyze
the corresponding scaling factors of the transport processes jT.
These factors represent the contribution to the overall wood
demand of the biorefineries. Figure 3a illustrates the solutions
for the 100% scenario. Thereby, the biorefinery in Zeitz is
delivered from regions in the middle west of Germany and
from regions in the middle south. In contrast, the biorefinery
in Schwarzheide is delivered by regions in the northeastern
part of Germany.

Due to the reduced wood availability in the 50% scenario,
regions supplying the feedstock to biorefinery 1 in Leuna are
distributed throughout Germany (Fig. 3b). Hence, a large
catchment area is required to fulfill the demand of the
biorefinery in the scenario with reduced residual beech wood
availability.

3.4 Inclusion of LCC by multi-objective optimization

Since we have not considered transportation and other costs so
far in this case study, we adopt the model by introducing an
additional objective for life cycle costing. In doing so, we
introduce for the specific biorefineries an additional input fac-
tor matrix F with subcategories k (expressed in monetary
units): personal costs, taxes, insurance, and administration.
As Heijungs et al. (2013) showed, the consideration of costs
for the inputs and outputs of the processes of the technology
matrix A can be carried out by using a price vector α. Since
we focus on the investor’s perspective, price information is
only required for products that are relevant for the profitability
of the biorefineries. The additional objective function, which
includes costs for processed and produced commodities of the
biorefinery processes as well as the costs for transported beech
wood, can be derived as
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Maximize z ¼ ∑
jBRS¼1

JBRS

∑
iBRS¼1

IBRS

ABRS
iBRS ; jBRS

� αiBRS

 !
− ∑

iup¼1

Iup

A*
iup; jBRS

� αiup

 !
− ∑

iT¼1

IT

A*
iT ; jBRS

� αiT

 !
− ∑

K

k¼1
Fk jBRS

 !

� s jBRS− ∑
jT¼1

JT

∑
iup¼1

Iup

A***
iup; jT

� αiup

 !
� s jT ð13Þ

Fig. 3 Optimal regions to supply beech wood to the biorefineries

Table 2 Results of the mixed integer linear program, per annum

100% scenario 50% scenario

Biorefinery 1, Leuna (pc.) 0 1

Biorefinery 2, Leuna (pc.) 0 0

Biorefinery 1, Zeitz (pc.) 1 0

Biorefinery 2, Zeitz (pc.) 0 0

Biorefinery 1, Böhlen (pc.) 0 0

Biorefinery 2, Böhlen (pc.) 0 0

Biorefinery 1, Schwarzheide (pc.) 1 0

Biorefinery 2, Schwarzheide (pc.) 0 0

Natural gas (m3) 9.580053·1010 9.585027·1010

Fossil ethylene (kg) 5.017197·109 5.058598e·109

Lignite (MJ) 3.214008·1013 3.214204·1013

Petrol (MJ) 7.340000·1011 7.340000·1011

Polyol (kg) 4.342704·108 4.964352·108

h (kg CO2-eq.) 7.152422·1011 7.156019·1011

Potential savings h − hRef (kg CO2-eq.) − 7.193181·108 − 3.596181·108
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Equation 13 consists of two major terms. The first term
considers the cash-flows related directly to the biorefinery
processes jBRS including revenues for biorefinery products

( ∑
iBRS¼1

IBRS

ABRS
iBRS ; jBRS

� αiBRS ) , p aymen t s fo r p r e -p roduc t s

( ∑
iup¼1

Iup

A*
iup; jBRS

� αiup ), payments for wood ( ∑
iT¼1

IT

A*
iT ; jBRS

� αiT ),

and other payments such as for personal and insurance

( ∑
K

k¼1
Fk jBRS ). The second term represents the payments related

to the transportation options jT of wood. This expression can
be simplified in matrix notation as

Maximize z ¼ pËCs; ð14Þ
where the components of vector p specify the profit of pro-
cesses j.

This LCC approach is congruent to the proposed one by
Heijungs et al. (2013), but differs in the way that only those
costs are taken into account, which are relevant for the invest-
ment decision for the biorefinery options. This choice is con-
cerned with taking the view of potential investors maximizing
the profit of a biorefinery. Thereby, only the costs are consid-
ered that are relevant for the decision on the profitability of the
biorefinery (including costs for transportation and additional
inputs). Besides to this simple LCC approach, however, there
are further possibilities to consider cost information by the
model. For example, it might also reasonable to explicitly take
into account the profit for reference processes competing with
biorefineries, or to use discounted cash flow analysis taking
into account the time value of money (e.g., net present value).
However, additional data must be collected. For simplicity
reasons, we chose the standard approach of LCC in this study.

To deal with multiple objectives in linear programming,
basically, three groups can be distinguished: a priori, interac-
tive, and a posteriori methods (Hwang and Masud 1979). The
first class requires the definition of preferences between goals
at the beginning of the solution process. The latter class re-
quires the prioritization at the end after the presentation of all
Pareto optimal solutions. To illustrate the pros and cons of the
broad range of applications, we modify the linear program in
the next sections choosing weighted goal programming for an
a priori approach and epsilon-constraint method for an a
posteriori approach.

3.4.1 Goal programming

In weighted goal programming, the objectives are taken ex-
plicitly into account as constraints (Miller and Blair 2009).
The principle of goal programming (GP) is to use slack vari-
ables dh and dz that measure the deviation from the desired
environmental and economic target values h and z,

respectively. The target function of the goal program mini-
mizes the deviations in terms of the desired values. For h,
we chose 0, since the aim of a sustainable economy can be
regarded to be carbon neutral. For the profit target z, we
choose an arbitrarily large value (1.00E + 15 €) which is
equivalent to maximize the objective function. The weighting
factors w result in a normalization and prioritization of the
target deviations. For greenhouse gas emissions, we use the
weighting factor wh = 0.025 which is the value of expected
damage costs in terms of €/kg CO2-eq (De Bruyn et al.
2010). The choice of this factor is concerned by uncertainty,
comparable to those related to the monetization of environ-
mental impacts. Due to the illustrative character of this study,
we do not assess this in detail. However, robust optimization
may take uncertainty of parameters explicitly into consider-
ation (Wang andWork 2014). The weighting factorwz is set to
1, since the unit of the profit target is €.

Minimize whdþh þ wzd−z ð15Þ

subject to

As
≥ f i > 0
¼ f i ¼ 0
≥ f i ¼ 0

8<
:

if i∈r
if i∈t
otherwise

ð16Þ

QBsþ d−−dþ ¼ h ð17Þ

psþ d−−dþ ¼ z ð18Þ

0≤s≤c ð19Þ

s1 þ s2≤1
s3 þ s4≤1
s5 þ s6≤1
s7 þ s8≤1

ð20Þ

with s1, s2, s3, s4, s5, s6, s7, s8 ∈ℤ
Table 3 shows the result of the GP model for both scenar-

ios. Contrary to the LP model, the optimal solution is the
ethanol concept (biorefinery 2) for both scenarios. The opti-
mal chemical parks of the chosen biorefineries are identical to
those of the LP model. The regions that deliver the wood
feedstock to the plants are also identical. Therefore we omit
to illustrate them again in the map. The reason for choosing
biorefinery 2 is the higher priority to minimize the negative
distance to the economic target value (d−z ) compared to the
priority of minimizing the positive distance to the environ-
mental target value (dþh ). Thus, the total annual amount of
environmental savings is reduced from 0.72Mt/a and 0.36Mt/
a CO2-eq to 0.37 Mt/a and 0.18 Mt/a CO2-eq in the 100%
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scenario and the 50% scenario, respectively. The annual
profits are 92 Mio € and 45 Mio € in the 100% scenario and
the 50% scenario, respectively. When introducing economic
aspects, this result is similar to the one of Budzinski and
Nitzsche (2016) who also concluded that the ethanol-
producing concept has a better economic performance than
the ethylene-producing concept. However, in Budzinski and
Nitzsche (2016), only the ethanol biorefinery is profitable,
which is contrary to the results of this study. The reason for
that is the authors’ use of a dynamic cost calculation approach
that takes the time value of money into account. Thereby, the
internal rate of return on the investment must be at least equal
the minimum rate of return a decision-maker is willing to
accept. The time value of money usually is not considered in

process-based LCC. However, a possible way is to implement
an additional constraint in the LP model that ensures the ex-
ceeding of a minimal positive profit value.

3.4.2 Epsilon-constraint method

A disadvantage of goal programming might be the require-
ment of defining of preferences at the beginning of the solu-
tion process. Alternatively, a posteriori methods are available
to prioritize between goals after the generation of all Pareto
efficient solution. In doing so, epsilon-constraint method has
been already used in the field of LCA (e.g., Azapagic and Clift
1999). Here, in this study, we apply the epsilon-constraint
method in GAMS (Mavrotas 2009a, b). Thereby, the target

Fig. 4 Pareto front (100%
scenario). h: environmental
impacts; z: profit

Table 3 Results of the goal program, per annum

100% scenario 50% scenario

Biorefinery 1, Leuna (pc.) 0 0

Biorefinery 2, Leuna (pc.) 0 1

Biorefinery 1, Zeitz (pc.) 0 0

Biorefinery 2, Zeitz (pc.) 1 0

Biorefinery 1, Böhlen (pc.) 0 0

Biorefinery 2, Böhlen (pc.) 0 0

Biorefinery 1, Schwarzheide (pc.) 0 0

Biorefinery 2, Schwarzheide (pc.) 1 0

dþh (kg CO2-eq.) 7.155941·1011 7.157785·1011

d−z (€) 9.999991·1013 9.999995·1013

Profit z−d−z (€) 9.174736·107 4.509840·107

Potential savings hRefS−dþh (kg CO2-eq.) − 3.674181·108 − 1.830181·108
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function of profit (Eq. 14) is additionally involved in the op-
timization problem as

Minimize h sð Þ;−z sð Þð Þ: ð21Þ

Pareto optimal solutions are solutions that cannot be im-
proved in any of the two objectives without degrading the
other objective. The Pareto optimal solutions of the 100%
scenario are illustrated in Fig. 4. In this example, three
Pareto optimal solutions are identified. The dominated solu-
tions, which are not Pareto optimal, are below the blue line.
However, more comprehensive problems can result in various
non-dominated solutions. Solution P1 suggests biorefinery 1
(ethylene) in Zeitz and in Schwarzheide. In contrast to this
environmentally most preferable solution, P3 contains the
most preferable solution in terms of profit (Table 4).
Thereby, biorefinery 2 (ethanol) is located in Zeitz and
Schwarzheide. The solution P2 can be interpreted as a com-
promise between these extreme solutions of maximal profit
and minimal impacts on climate change. Furthermore, the
solution may become worthwhile due to the fact that both
biorefinery concepts (ethylene and ethanol) would be built
in Zeitz and Schwarzheide. This mixture of technologies
might be also interesting for decision-making. In contrast to
goal programming in which only one solution is determined in
accordance with the a priori defined priority order, Pareto
optimization allows the decision-maker to deal with trade-
offs after investigating the non-dominated solutions.

The non-dominated solutions of the 50% scenario are illus-
trated in Fig. 5. The most beneficial solution P1 in terms of
impacts on climate change is given by the biorefinery 1 locat-
ed in Leuna. Biorefinery 2 in Leuna is the most profitable
solution P3. Contrary to the 100% scenario, the compromise
solution P2 is near to P3 suggesting biorefinery 2 in Böhlen.
An interesting fact is that P3 (in both scenarios) is the solution
of the goal programming approach (Sect. 3.4.1). However, the
identification of all non-dominated solutions, even if the

solution is nearly located to another such as P2 in the 50%
scenario, clearly is an advantage of a posteriori approaches
over a priori methods.

A special look requires the influence of transportation dis-
tances on the overall result (profit and environmental im-
pacts). In this study the transportation of feedstock only has
a limited influence on the overall profit of the biorefinery. For
instance, the difference between biorefinery type 2 in Leuna
compared to the location in Böhlen is 177,280 € per year
(Table 5). In regard to the potential reduction of GHG emis-
sions, the difference is even less significant. Here, the
biorefinery 2 in Leuna has a reduction potential at 2000 kg
CO2 eq. per year higher than in Böhlen (Pareto point 2 and 3
of 50% scenario, Table 5). Comparing this difference with the
overall GHG emissions of the system, one might assume that
the results are not reliable in terms of data inaccuracies. To
address this point, we have a look at the reference flows of the
final demand vector. The chosen amounts represent an esti-
mated total demand for Germany and, hence, are quite high.
However, lower values would not lead to different results and
would not reduce uncertainty. In fact, the choice of values for
the considered reference flows is arbitrary. The determination
of optimal locations for biorefineries is, hence, not affected by
this choice. Since we here assume identical conditions at the
potential chemical parks, the identification of optimal loca-
tions is only determined by the transport distances and the
corresponding impacts and costs. On the contrary, the choice
for the type of biorefinery in terms of environmental impacts
is mainly dominated by its emissions and those of the refer-
ence processes. In terms of profit, the optimal solution is
mainly dominated by the corresponding costs for biorefinery
(pre)-products. In conclusion, the results for the optimal
choices of locations for biorefineries may be considered being
robust in the face of data uncertainties in other parts of the
model. A problem that might result is numerical issues when
solving a problem with large discrepancies in order of

Table 4 Results of the epsilon-constraint method (100% scenario), per annum

P1 P2 P3

h (kg CO2-eq.) 7.154561·1011 7.155251·1011 7.155941·1011

z (€) 5.183191·107 7.178963·107 9.174736·107

a) b)

Biorefinery 1, Leuna (pc.) 0 0 0 0

Biorefinery 2, Leuna (pc.) 0 0 0 0

Biorefinery 1, Zeitz (pc.) 1 0 1 0

Biorefinery 2, Zeitz (pc.) 0 1 0 1

Biorefinery 1, Böhlen (pc.) 0 0 0 0

Biorefinery 2, Böhlen (pc.) 0 0 0 0

Biorefinery 1, Schwarzheide (pc.) 1 1 0 0

Biorefinery 2, Schwarzheide (pc.) 0 0 1 1
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magnitude. Back substituting the solution vectors s into Eqs. 9
and 16, however, identified the results´ reliability in terms of
accuracy.

4 Discussion

LCA has been developed for the assessment of environmental
impacts of a product. To broaden the scope of LCA, Udo de
Haes et al. (2004) propose three general strategies: the use of
LCA in a toolbox, hybrid analysis, and the extension of LCA.
Using LCA in a toolbox, the limitations shall be overcome by
additional separate models that are used without a data link.
The extension of LCA is considered with one consistent linear
model. Thereby, LCA and the other tool are fully compatible.
Hybrid modeling as a mixture of both approaches that com-
bines LCAwith other models and linking these by data flows.
The extension with linear programming (LP) leads to a con-
sistent linear model that determines the optimal choice among
others for the total system under study. Interdependent choices
in different regions can be studied simultaneously without
matrix inversion, since with LP even rectangular systems
can be solved. The criteria for choices are represented by the
objective function (minimizing impacts on climate change)
and the additional constraints (e.g., available feedstock in a
region). It is shown that the modification of the program by
additional profit requirements (LCC) into a goal program and
a Pareto optimization approach also enables to incorporate
multiple objectives within the decision-making process.
Thereby, regional biomass availability and transport logistic
options can be taken into consideration. The benefit of this

extension of LCA is to provide a broader and systematic as-
sessment of consequences. The implicit environmental com-
parison of new bio-based technologies with fossil reference
technologies can be regarded as a feature that has not been
provided by other optimization models within the field of
LCA. The LCC formulation used four our purpose is congru-
ent to the suggestion of (Heijungs et al. 2013), since we only
focus on the processes that provide the reference flows.
However, it differs in the way that we only need to collect
data for costs which are relevant for the decision-maker as a
biorefinery investor and neglecting the costs for current tech-
nologies. This and the consideration of environmental targets
can be interpreted as an eco-efficiency approach. However,
instead of simply creating the fraction between an economic
value and an environmental value (ISO 2012), the approach in
this study allow to assess a specific target achievement, i.e.
being less pollutant than current available technologies.

Dealing with multiple objectives, GP needs an a priori
weighting of the different goals. In contrast, epsilon constraint
method uses the concept of Pareto efficiency in which the
solution is optimal in which an increase of a target would
result in a decrease of another target. The advantage of GP is
that one optimal solution can be determined whereas in the a
posteriori method, the decision-maker is encouraged to decide
for a compromise. Besides these two methods for multiple
objective decision making, there exist further methods, which
cannot be discussed here. A general overview including the
pros and cons is given by Hwang and Masud (1979).

Rectangular LP models for choosing technologies have
been used in input-output economics. Duchin and Levine
(2011, 2012) introduced a rectangular model to study the

Fig. 5 Pareto front (50%
scenario). h: environmental
impacts; z: profit
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optimal choice of technologies. Before that, Carter (1970)
applied a square choice-of-technology model using linear pro-
gramming in a similar manner. Our model works in principle
the same way. But instead of sectors as in input-output
models, the columns of the technology matrix in LCA repre-
sent processes, which are usually modeled in more detail.
Furthermore, these processes can be multi-functional (e.g.,
Kätelhön et al. 2016), which is contrary to input-output
modeling in which the assumption of homogenous sector out-
puts is implied by creating the technical coefficient matrix
(Miller and Blair 2009). In our example, only the biorefinery
processes are multi-functional. Solving the multifunctional
problem for these technologies can be interpreted as a system
expansion approach. Furthermore, this approach is equivalent
to substitutionmethod, since the implicit aim of the introduced
models is the substitution of current processes by less pollut-
ant processes. To compare the biorefineries, the systems are
expanded by current substitutable processes which produce
the same type of products. Due to that a programming prob-
lem results, in which we seek to find the optimal substitution
of current processes by a set of biorefinery alternatives. Other
processes in the example are mono-functional. However, if
other multioutput processes would be considered within the
upstream processes of the biorefinery or the reference system,
the multi-functionality can be solved by the program
interpreting it as a kind of surplus method (Heijungs and
Suh 2002). When minimizing the total environmental impacts
of the system under study, larger amounts of supplied products
would be allowed compared with those in the final demand. It
is crucial to take this into consideration, since more products
and hence more functions are possible in the final supply
vector of the optimized system. On the other hand, if products
of current technologies are not provided by the new technol-
ogies, the program would ensure that at least the amounts of
the current system are generated. In this case a study would
only be meaningful, if processes are modeled in a sufficient
detailed manner. In other words, it must be decided which

process, e.g., a certain ethylene plant, is substitutable by the
new process. Even in LCA, which uses more disaggregated
processes than input-output analysis does, this is usually not
the case. For instance, in our example only one process for
ethylene generation represents a bundle of ethylene plants.
Furthermore, the ethylene production is mono-functional,
which does not represent real-life complexity, since ethylene
usually is produced with other co-products (e.g., propylene).
Including those co-products, however, can lead to binding
constraints that are not achievable by the new technologies.
In our example this becomes obvious if the bundled process of
fossil ethylene production would additionally provide propyl-
ene. Since it seems not realistic to achieve a model that repre-
sents all production processes at a plant level, the only viable
way is to make a model choice. The question is thus, what
implicit assumption is appropriate in terms of the goal of the
study (Zamagni et al. 2012). A general discussion is beyond
the scope of this article. However, in terms of the predominant
goal of the exemplary case studies, to identity the best alter-
native from a set of new biorefinery options, we argue that
using aggregated mono-functional processes with average da-
ta seems to be sufficient. To increase the reliability of future
case studies, however, the assessments should be enhanced by
sensitivity analyses using different approaches for allocating
the environmental impacts to the substitutable reference prod-
ucts (e.g., partitioning by physical and monetary factors).

Compared to common consequential LCA approaches
which use substitution method to solve the multifunctional
problem, the definition of determining products wherein all
other co-products are summarized into one avoided product
group (e.g., Weidema 2001; Suh et al. 2010) is not necessary.
Here, in contrast, all products of the new technologies are
considered as determining products without distinguishing
between the multiple products. For each biorefinery product,
substitutable reference products are determined. In our opin-
ion, these choices for all products of the biorefineries seem
closer to reality than whether clustering several co-products

Table 5 Results of the epsilon-constraint method (50% scenario), per annum

P1 P2 P3

h (kg CO2-eq.) 7.15709438·1011 7.15778471·1011 7.15778469·1011

z (€) 2.514068·107 4.492112·107 4.509840·107

Biorefinery 1, Leuna (pc.) 1 0 0

Biorefinery 2, Leuna (pc.) 0 0 1

Biorefinery 1, Zeitz (pc.) 0 0 0

Biorefinery 2, Zeitz (pc.) 0 0 0

Biorefinery 1, Böhlen (pc.) 0 0 0

Biorefinery 2, Böhlen (pc.) 0 1 0

Biorefinery 1, Schwarzheide (pc.) 0 0 0

Biorefinery 2, Schwarzheide (pc.) 0 0 0
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into one avoided product group or declaring the multi-
functional processes to be mono-functional by using
partitioning method.

Towards a comprehensive LCSA framework, some
potential directions for further research shall be
broached. The characterization matrix Q can be easily
modified by corresponding characterization factors to
take into account additional environmental impact cate-
gories (e.g., midpoint or endpoint categories). Targets for
various impact categories can be considered separately
within a multi-objective framework. On the other hand,
normalization and weighting could be introduced within
a single environmental target function. Thus the optimi-
zation could be carried out in terms of a single environ-
mental score which takes into account various normal-
ized and weighted impact indicator results. In the same
manner various social categories could be dealt with. By
imposing a single score for each of the three pillars of
sustainability (LCA, LCC, social LCA), the assessment
of technological alternatives would be extended toward a
comprehensive LCSA within a multi-objective frame-
work. By identifying environmental, social, and econom-
ic benefits of new technologies (especially the compari-
son with existing technologies those produce equivalent
products), this framework would be also suitable to sup-
port methods for estimating the maturity of technologies
such as the technology readiness level (Hicks et al.
2009).

5 Conclusions

This article showed how (mixed integer) linear program-
ming can be used to extend standard LCA towards com-
prehensive decision-making. Additional consequential re-
search questions can be addressed such as the determi-
nation of the optimal number of new production plants
and the optimal region for supplying feedstocks while
also taking into consideration transport logistic options.
The implicit environmental comparison of new bio-based
technologies with fossil reference technologies can be
regarded as a feature that has not been provided by other
optimization models within the field of LCA. The exten-
sion of LCA by linear programming remains a consistent
linear model, which is able to broaden the scope for
consequential assessments. The benefit of this extension
of LCA is to provide a broader and systematic assess-
ment of consequences. The modifications of the program
by additional profit requirements (LCC) into a goal pro-
gram and Pareto optimization problem have been identi-
fied as promising ways toward a comprehensive multi-
objective LCSA.
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