
Research Article
Semilinear Evolution Problems with Ventcel-Type Conditions on
Fractal Boundaries

Maria Rosaria Lancia1 and Paola Vernole2

1 Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Università degli Studi di Roma “La Sapienza”,
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A semilinear parabolic transmission problem with Ventcel’s boundary conditions on a fractal interface 𝑆 or the corresponding
prefractal interface 𝑆ℎ is studied. Regularity results for the solution in both cases are proved. The asymptotic behaviour of the
solutions of the approximating problems to the solution of limit fractal problem is analyzed.

1. Introduction

In this paper we study the parabolic semilinear second-order
transmission problem which we formally state as

(𝑃)

{{{{{{{{{{

{{{{{{{{{{

{

𝑢𝑡 (𝑡, 𝑃) − Δ𝑢 (𝑡, 𝑃) = 𝐽 (𝑢 (𝑡, 𝑃)) in [0, 𝑇] × 𝑄
𝑖
,

−𝑐0Δ 𝐿𝑢 (𝑡, 𝑃) = [
𝜕𝑢 (𝑡, 𝑃)

𝜕𝑛
] on [0, 𝑇] × 𝐿,

𝑢 (𝑡, 𝑃) = 0 on [0, 𝑇] × 𝜕𝑄,

𝑢
1
(𝑡, 𝑃) = 𝑢

2
(𝑡, 𝑃) on [0, 𝑇] × 𝐿,

𝑢 (𝑡, 𝑃) = 0 on [0, 𝑇] × 𝜕𝐿

𝑢 (0, 𝑃) = 𝜙 on 𝑄,

(1)

where 𝑄 is the bounded open set (−1, 1)2 × (0, 1), and 𝐿 is a
“cylindrical” layer dividing the set 𝑄 into two subsets 𝑄1 and
𝑄

2 (see Figure 2). When 𝐿 is the Koch-type surface 𝑆 = 𝐾×𝐼,
where 𝐾 is the snowflake and 𝐼 = [0, 1] (see Section 2),
𝐸𝐿 is the energy functional 𝐸𝑆 introduced in (12); when 𝐿

is the prefractal surface 𝑆ℎ, 𝐸𝐿 is the energy functional 𝐸𝑆ℎ

introduced in (24). 𝐽 is a nonlinear function from a subset
of 𝐿2(𝑄) into 𝐿

2
(𝑄). 𝑢𝑖 denotes the restriction of 𝑢 to 𝑄

𝑖,
[𝑢] = 𝑢

1
− 𝑢

2 denotes the jump of 𝑢 across 𝐿, Δ 𝐿 denotes the
Laplace operator defined on the layer 𝐿 (see (12) in Section 3),

and [𝜕𝑢/𝜕𝑛] = 𝜕𝑢
1
/𝜕𝑛1 + 𝜕𝑢

2
/𝜕𝑛2 denotes the jump of the

normal derivatives across 𝐿, to be intended in a suitable sense.
More precisely, we assume that 𝐽(𝑢) is a nonlinear

mapping from 𝐿
2𝑝
(𝑄) to 𝐿2(𝑄) for any fixed 𝑝 > 1, locally

Lipschitz; that is, Lipschitz on bounded sets in 𝐿2𝑝(𝑄) with
Lipschitz constant 𝑙(𝑟) when restricted to 𝐵(0, 𝑟) ⊂ 𝐿

2𝑝
(𝑄),

satisfying suitable growth conditions (see conditions (i) and
(ii) in Section 4). Examples of this type of nonlinearity
include, for example, 𝐽(𝑢) = 𝑢|𝑢|

𝑝−1
, 𝑝 > 1 which occur in

combustion theory (see [1]) and in the Navier-Stokes system
(see [2]).

In the recent years there has been an increasing interest
in the study of linear transmission problems across irregular
layers of fractal type and the corresponding prefractal layers
[3–7]. Problems of this type are also known in the literature as
problems with Ventcel’s boundary conditions [8] or second-
order transmission conditions. Fractal layers can provide new
interesting settings in those model problems, in which the
surface absorption of tension, electric conduction, or flow is
the relevant effect. The literature on semilinear equations on
smooth domains is extensive (see e.g., [9–13] and the recent
review in [14]); the fractal case is more awkward (see e.g., [15–
19]).

In our case one has to take into account that the diffusion
phenomenon takes place both across the smooth domain
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𝑄 and the cylindrical layer 𝐿; this fact has a counterpart
in the structure of the energy functional 𝐸[𝑢] and hence
on problem (𝑃). In [18] the authors proved local existence
and uniqueness results of the “mild” solution of an abstract
evolution transmission problem across a prefractal or fractal
interface (see (36) and (37)).

In this paperwe give a strong interpretation of the abstract
problem studied in [18],;namely, we prove that the solution of
the abstract problem solves problem (𝑃) in a suitable sense
(see Theorems 22 and 20).

The results on the strong interpretation in the prefrac-
tal case are deduced by proving regularity results for the
solutions of elliptic problems in polyhedral domains. It
turns out that the restriction 𝑢

𝑖

ℎ
of the solution 𝑢ℎ to 𝑄

𝑖

ℎ

belongs to suitable weighted Sobolev spaces (see the proof of
Theorem 22). This regularity result is important not only in
itself but also in the numerical approximation procedure; to
this regard, see [20]. Following this point of view, it is also
important to study the asymptotic behaviour of the solutions
of the prefractal problems.

The proof of the convergence of the solution of the pre-
fractal problems to the one of the (limit) fractal problem relies
on the convergence, in theMosco’s sense, of the energy forms
which, in turn, implies the convergence of semigroups in the
strong operator topology of 𝐿2(𝑄) (seeTheorem 16).The plan
of the paper is as follows. In Section 2 we describe the geom-
etry of the problem; in Section 3 we introduce the Dirichlet
energy forms and the associated semigroups andwe recall the
results on the convergence of the approximating energy forms
(see [21] for details). In Section 4 we recall existence and
uniqueness results for the local mild solution as well as global
existence and regularity results. In Section 5 we prove that the
solution of the abstract Cauchy problems (𝑃) and (𝑃ℎ) solves
problem (𝑃) in the fractal and prefractal cases, respectively,
(see Theorems 22 and 20). In Section 6 we prove the
convergence of the solutions of the approximating problems
to the solution of the limit fractal problem in a suitable
functional space. In Appendices A and B, for the reader
convenience, we introduce the functional spaces and traces
involved.

2. Geometry of the Fractal Layers 𝑆 and 𝑆ℎ

In the paper by |𝑃 − 𝑃0| we denote the Euclidean distance in
R𝐷 and the Euclidean balls by 𝐵(𝑃0, 𝑟) = {𝑃 ∈ R𝐷

: |𝑃−𝑃0| <

𝑟}, 𝑃0 ∈ R𝐷, 𝑟 > 0. By the Koch snowflake 𝐹, we will denote
the union of three coplanarKoch curves (see [22])𝐾1,𝐾2, and
𝐾3 as shown in Figure 1. We assume that the junction points
𝐴1,𝐴3, and𝐴5 are the vertices of a regular triangle with unit
side length; that is, |𝐴1 − 𝐴3| = |𝐴1 − 𝐴5| = |𝐴3 − 𝐴5| = 1.
In this section we briefly recall the essential notions on the
geometry; for details see [18].

The Hausdorff dimension of the Koch snowflake is given
by 𝑑𝑓 = log 4/ log 3. This fractal is no longer self-similar (and
hence not nested).

K1

K2

K3

A1

A3A5

Figure 1: Decomposition of the snowflake.

One can define, in a natural way, a finite Borel measure
𝜇𝐹 supported on 𝐹 by

𝜇𝐹 := 𝜇1 + 𝜇2 + 𝜇3, (2)

where 𝜇𝑖 denotes the normalized 𝑑𝑓-dimensional Hausdorff
measure, restricted to 𝐾𝑖, 𝑖 = 1, 2, 3.

The measure 𝜇𝐹 has the property that there exist two
positive constants 𝑐1 and 𝑐2:

𝑐1𝑟
𝑑
≤ 𝜇𝐹 (𝐵 (𝑃, 𝑟) ∩ 𝐹) ≤ 𝑐2𝑟

𝑑
, ∀𝑃 ∈ 𝐹, (3)

where𝑑 = 𝑑𝑓 = log 4/ log 3 and𝐵(𝑃, 𝑟) denotes the Euclidean
ball in R2. As 𝜇𝐹 is supported on 𝐹, it is not ambiguous to
write in (3) 𝜇𝐹(𝐵(𝑃, 𝑟)) in place of 𝜇𝐹(𝐵(𝑃, 𝑟) ∩ 𝐹). In the
terminology of Appendices A and B, we say that 𝐹 is a 𝑑-set
with 𝑑 = 𝑑𝑓.

Remark 1. The Koch snowflake can be also regarded as a
fractal manifold (see [23] Section 2.2).

Let 𝑄 denote a bounded open set in R3; in our basic
model,𝑄 denotes the parallelepiped𝑄 = (−1, 1)

2
× (0, 1) and

𝑆 denotes a “cylindrical” layer in𝑄 of the type 𝑆 = 𝐹×𝐼, where
𝐼 = [0, 1] and 𝐹 is the Koch snowflake. We assume that 𝑆 is
located in a median position inside 𝑄 and divides 𝑄 in two
subsets 𝑄1 and 𝑄2 (see Figure 2).

We give a point 𝑃 ∈ 𝑆 the Cartesian coordinates
𝑃 = (𝑥, 𝑦), where 𝑥 = (𝑥1, 𝑥2) are the coordinates of the
orthogonal projection of 𝑃 on the plane containing 𝐹 and 𝑦 is
the coordinate of the orthogonal projection of𝑃 on the 𝑦-line
containing the interval 𝐼: 𝑃 = (𝑥, 𝑦) ∈ 𝑆, 𝑥 = (𝑥1, 𝑥2) ∈ 𝐹,
𝑦 ∈ 𝐼.

One can define, in a natural way, a finite Borel measure𝑚
supported on 𝑆 as the product measure

𝑑𝑚 = 𝑑𝜇𝐹𝑑𝑦, (4)

where 𝑑𝑦 denotes the one-dimensional Lebesgue measure on
𝐼.Themeasure𝑚has the property that there exist twopositive
constants 𝑐1 and 𝑐2:

𝑐1𝑟
𝑑
≤ 𝑚 (𝐵 (𝑃, 𝑟) ∩ 𝑆) ≤ 𝑐2𝑟

𝑑
, ∀𝑃 ∈ 𝑆, (5)

where 𝑑 = 𝑑𝑓 + 1 = log 12/ log 3 and 𝐵(𝑃, 𝑟) denotes
the Euclidean ball in R3. As 𝑚 is supported on 𝑆, it is not
ambiguous towrite in (5)𝑚(𝐵(𝑃, 𝑟)) in place of𝑚(𝐵(𝑃, 𝑟)∩𝑆).
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Figure 2: Two different viewpoints of the domain 𝑄 and the layer 𝑆.

Thus 𝑆 turns out to be a 𝑑-set with 𝑑 = 𝑑𝑓+1 (see Appendices
A and B).

By 𝑆ℎ, we denote the prefractal layer of the type 𝑆ℎ =

𝐹ℎ × 𝐼, ℎ = 1, 2, . . . , 𝐹ℎ is the piecewise linear prefractal
approximation of 𝐹 at the step ℎ. 𝑆ℎ is a surface of polyhedral
type. 𝑆ℎ divides 𝑄 in two subsets 𝑄𝑖

ℎ
, 𝑖 = 1, 2.

We give a point 𝑃 ∈ 𝑆ℎ the Cartesian coordinates
𝑃 = (𝑥, 𝑦), where 𝑥 = (𝑥1, 𝑥2) are the coordinates of the
orthogonal projection of 𝑃 on the plane containing 𝐹ℎ and 𝑦
is the coordinate of the orthogonal projection 𝑃 on the 𝑦-line
containing the interval 𝐼.

3. Energy Forms and Semigroups Associated

3.1. The Energy Form 𝐸. In this section we introduce the
energy functional on 𝑆. We first define the energy functional
on the cross section 𝐹 by integrating its Lagrangian on
𝐹. For the concept of Lagrangian on fractals, that is, the
notion of a measure-valued local energy, we refer to [24, 25].
Here for the sake of simplicity we only mention that the
Lagrangian on 𝐾, L𝐾, is a measure-valued map on D(𝐹) ×

D(𝐹) which is bilinear symmetric and positive (L𝐾[𝑢] is a
positive measure.) The measure-valued Lagrangian takes on
the fractal𝐾 the role of the Euclidean Lagrangian 𝑑L(𝑢, V) =
∇𝑢 ⋅ ∇V𝑑𝑥. Note that in the case of the Koch curve, the
Lagrangian is absolutely continuous with respect to the
measure 𝜇; on the contrary, this is not true on most fractals
(see [24]). In [23] the Lagrangian L𝐹 on the snowflake 𝐹
has been defined by using its representation as a fractal
manifold. Here we do not give details on the construction and
definition ofL𝐹 and we refer to Section 4 in [23] for details;
in particular in Definition 4.5 a Lagrangian measure L𝐹 on
𝐹 and the corresponding energy form E𝐹 as

E𝐹 (𝑢, V) = ∫
𝐹

𝑑L𝐹 (𝑢, V) (6)

with domainD(𝐹) have been introduced.The domainD(𝐹),
which is a Hilbert space with norm

(‖𝑢‖
2

𝐿2(𝐹,𝜇𝐹)
+E𝐹 (𝑢, 𝑢))

1/2

, (7)

has been characterized in terms of the domains of the energy
forms on𝐾𝑖 (see [23] Theorem 4.6).

In the following, we will omit the subscript 𝐹, the
Lagrangian measure will be simply denoted by L(𝑢, V), and
we will set L[𝑢] = L(𝑢, 𝑢); an analogous notation will be
adopted for the energies.

We define the energy forms 𝐸𝑆 on the fractal layer 𝑆 =

𝐹 × 𝐼 by setting

𝐸𝑆 [𝑢] = 𝜎
1
∫
𝐼

∫
𝐹

L𝑥 [𝑢] (𝑑𝑥) 𝑑𝑦

+ 𝜎
2
∫
𝐹

∫
𝐼


𝐷𝑦𝑢



2

𝑑𝑦𝜇𝐹 (𝑑𝑥) ,

(8)

where 𝜎1 and 𝜎
2 are positive constants. Here L𝑥(⋅, ⋅)(𝑑𝑥)

denotes the measure-valued Lagrangian (of the energy form
E𝐹 of𝐹with domainD(𝐹)) now acting on 𝑢(𝑥, 𝑦) and V(𝑥, 𝑦)
as function of 𝑥 ∈ 𝐹 for a.e. 𝑦 ∈ 𝐼; 𝜇𝐹(𝑑𝑥) is the 𝑑𝑓-
Hausdorffmeasure acting on each section 𝐹 of 𝑆 for a.e. 𝑦 ∈ 𝐼
with 𝑑𝑓 = log 4/ log 3; 𝐷𝑦(⋅) denotes the derivative in the 𝑦
direction.

The form 𝐸𝑆 is defined for 𝑢 ∈ D(𝑆), where D(𝑆) is the
closure in the intrinsic norm

‖𝑢‖D(𝑆) = (𝐸𝑆 [𝑢] + ‖𝑢‖
2

𝐿2(𝑆,𝑚)
)
1/2 (9)

of the set

𝐶0 (𝑆) ∩ 𝐿
2
((0, 1) ;D (𝐹)) ∩ 𝐻

1

0
((0, 1) ; 𝐿

2
(𝐹)) , (10)

where 𝐿2(𝐹) = 𝐿2(𝐹, 𝜇𝐹(𝑑𝑥)).
In the following, we will also use the form 𝐸𝑆(𝑢, V) which

is obtained from 𝐸𝑆[𝑢] by the polarization identity:

𝐸𝑆 (𝑢, V) =
1

2
{𝐸𝑆 [𝑢 + V] − 𝐸𝑆 [𝑢] − 𝐸𝑆 [V]} ,

𝑢, V ∈ D (𝑆) .

(11)

Proposition 2. In the previous notations and assumptions,
the form 𝐸𝑆 with domain D(𝑆) is a regular Dirichlet form
in 𝐿2(𝑆, 𝑚) and the space D(𝑆) is a Hilbert space under the
intrinsic norm (9).
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The proof can be carried on as in Proposition 3.1 of [26].
For the definition and properties of regular Dirichlet forms,
we refer to [25]. We now define the Laplace operator on 𝑆.
As (𝐸𝑆,D(𝑆)) is a closed, bilinear form on 𝐿

2
(𝑆, 𝑚), there

exists (see Chapter 6, Theorem 2.1 in [27]) a unique self-
adjoint, nonpositive operator Δ 𝑆 on 𝐿

2
(𝑆, 𝑚)—with domain

D(Δ 𝑆) ⊆ D(𝑆) dense in 𝐿2(𝑆, 𝑚)—such that

𝐸𝑆 (𝑢, V) = −∫
𝑆

(Δ 𝑆𝑢) V𝑑𝑚,

𝑢 ∈ D (Δ 𝑆) , V ∈ D (𝑆) .

(12)

Let (D(𝑆))
 denote the dual of the space D(𝑆). We now

introduce the Laplace operator on the fractal 𝑆 as a variational
operator fromD(𝑆) → (D(𝑆))

 by

𝐸𝑆 (𝑧, 𝑤) = −⟨Δ 𝑆𝑧, 𝑤⟩(D(𝑆))

,D(𝑆)

(13)

for 𝑧 ∈ D(𝑆) and for all 𝑤 ∈ D(𝑆), where ⟨⋅, ⋅⟩
(D(𝑆))


,D(𝑆)

is
the duality pairing between (D(𝑆))

 and D(𝑆). We use the
same symbol Δ 𝑆 to define the Laplace operator both as a self-
adjoint operator in (12) and as a variational operator in (13).
It will be clear from the context to which case we refer.

In the next, we will also use the spectral dimension ] of
𝑆. We find that if 𝑟(𝜆) is the number of eigenvalues associated
with 𝐸𝑆 smaller than 𝜆, then 𝑟(𝜆) ∼ 𝜆]/2. It can be shown that
in our case ] = 2 (see [28, 29]). We stress the fact that in the
fractal case ] < 𝑑 < 𝐷, while in the Euclidean setting ] = 𝑑.

Consider now the space of functions 𝑢 : 𝑄 → R as

𝑉 (𝑄, 𝑆) = {𝑢 ∈ 𝐻
1

0
(𝑄) : 𝑢|𝑆 ∈ D (𝑆)} . (14)

Here we denote by the symbol 𝑓|
𝑆
the trace 𝛾0𝑓 of 𝑓 to 𝑆 (see

Appendices A and B).
The space𝑉(𝑄, 𝑆) is nontrivial; see Proposition 3.3 of [4].

We now introduce the energy form

𝐸 [𝑢] = ∫
𝑄

|𝐷𝑢|
2
𝑑𝑄 + 𝑐0𝐸𝑆 [𝑢|𝑆] (15)

defined on the domain 𝑉(𝑄, 𝑆). Here and in the following,
𝑑𝑄denotes the 3-dimensional Lesbesguemeasure and𝐸(𝑢, V)
denotes the corresponding bilinear form

𝐸 (𝑢, V) = ∫
𝑄

𝐷𝑢𝐷V𝑑𝑄 + 𝑐𝑜𝐸𝑆 (𝑢|𝑆, V|𝑆) (16)

defined on 𝑉(𝑄, 𝑆) × 𝑉(𝑄, 𝑆).
As in Theorem 3.2 of [26], the following result can be

proved.

Proposition 3. The form𝐸 defined in (15) is a regularDirichlet
form in 𝐿2(𝑄) and the space𝑉(𝑄, 𝑆) is aHilbert space equipped
with the scalar product

(𝑢, V)𝑉(𝑄,𝑆) = 𝐸 (𝑢, V) . (17)

We denote by ‖𝑢‖𝑉(𝑄,𝑆) the norm in 𝑉(𝑄, 𝑆), associated
with (17), that is

‖𝑢‖𝑉(𝑄,𝑆) = (𝑐0𝐸𝑆 [𝑢|𝑆] + ∫
𝑄

|𝐷𝑢|
2
𝑑𝑄)

1/2

. (18)

As in Propositions (3.6) and (3.1) in [4], the following result
can be proved.

Proposition 4. The space D(𝑆) is embedded in 𝐵
2,2

𝛽,0
, 𝛽 =

𝑑𝑓/2.

Proposition 5. The spaceD(𝑆) is embedded in 𝐵2,2

𝛼
, 𝛼 < 1.

As (𝐸, 𝑉(𝑄, 𝑆)) is a closed bilinear form on 𝐿
2
(𝑄) with

domain 𝑉(𝑄, 𝑆) dense in 𝐿
2
(𝑄), there exists (see Chapter

6 Theorem 2.1 in [27]) a unique self-adjoint nonpositive
operator 𝐴 on 𝐿2(𝑄) with domain D(𝐴) ⊆ 𝑉(𝑄, 𝑆) dense in
𝐿
2
(𝑄) such that

𝐸 (𝑢, V) = −∫
𝑄

𝐴𝑢 V 𝑑𝑄, 𝑢 ∈ D (𝐴) , V ∈ 𝑉 (𝑄, 𝑆) . (19)

Moreover in Theorem 13.1 of [25] it is proved that to each
closed symmetric form𝐸 a family of linear operators {𝐺𝛼, 𝛼 >

0} can be associated with the property

𝐸 (𝐺𝛼𝑢, V) + 𝛼 (𝐺𝛼𝑢, V) = (𝑢, V) ,

𝑢 ∈ 𝐿
2
(𝑄) , V ∈ 𝑉 (𝑄, 𝑆) ,

(20)

and this family is a strongly continuous resolvent with
generator 𝐴, which also generates a strongly continuous
semigroup {𝑇(𝑡)}𝑡≥0.

For the reader’s convenience, we recall here the main
properties of the semigroup {𝑇(𝑡)}𝑡≥0; the reader is referred
to Proposition 3.5 in [21] for the proof.

Proposition 6. Let {𝑇(𝑡)}𝑡≥0 be the semigroup generated by
the operator A associated with the energy form in (19).
Then {𝑇(𝑡)}𝑡≥0 is an analytic contraction positive preserving
semigroup in 𝐿2(𝑄).

Remark 7. It is well known that the symmetric and contrac-
tion analytic semigroup 𝑇(𝑡) uniquely determines analytic
semigroups on the space 𝐿𝑝, 1 ≤ 𝑝 < ∞ (see Theorem 1.4.1

[30]) which we still denote by𝑇(𝑡) and by𝐴𝑝 its infinitesimal
generator.

FromTheorem 2.11 in [31], the following estimate on the
decay of the heat semigroup holds.

Proposition 8. There exists a positive constant𝑀 such that

‖𝑇 (𝑡)‖L(𝐿1→𝐿∞) ≤ {
𝑀𝑡

−𝑛/2
, for every 𝑡 ∈ (0, 1]

𝑀𝑡
−]/2

, for every 𝑡 ∈ [1,∞) .
(21)

One will consider the case 𝑛 = 3 and ] = 2; here ] is the spectral
dimension of 𝑆.

From interpolation theory results, it can be proved (see
Section 3.1 in [18]) that
‖𝑇 (𝑡)‖𝐿2→𝐿2𝑝

≤ {
𝑀

(1/2)−(1/2𝑝)
𝑡
−(𝑛/4)(1−1/𝑝)

, for every 𝑡 ∈ (0, 1]

𝑀
(1/2)−(1/2𝑝)

𝑡
−(]/4)(1−1/𝑝)

, for every 𝑡 ∈ [1,∞) .

(22)
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3.2.The Energy Forms𝐸𝑆ℎ
. By𝑄we denote the parallelepiped

as defined in Section 3 and by 𝑆ℎ we denote the prefractal
layer of the type 𝑆ℎ = 𝐹ℎ × 𝐼, ℎ = 1, 2, . . ., 𝐹ℎ is the prefractal
approximation of 𝐹 at the step ℎ (see Section 2). 𝑆ℎ divides 𝑄
in two subsets 𝑄𝑖

ℎ
, 𝑖 = 1, 2.

We first construct the energy forms 𝐸𝑆ℎ
on the prefractal

layers 𝑆ℎ = 𝐹ℎ × 𝐼, ℎ ∈ N. By ℓ we denote the natural arc-
length coordinate on each edge of 𝐹ℎ and we introduce the
coordinates 𝑥1 = 𝑥1(ℓ), 𝑥2 = 𝑥2(ℓ), and 𝑦 = 𝑦 on every
affine “face” 𝑆(𝑗)

ℎ
of 𝑆ℎ. By 𝑑ℓ we denote the one-dimensional

measure given by the arc-length ℓ and by 𝑑𝜎 are denote the
surface measure on each face 𝑆(𝑗)

ℎ
of 𝑆ℎ; that is, 𝑑𝜎 = 𝑑ℓ𝑑𝑦.

We define 𝐸𝑆ℎ
[𝑢] by setting

𝐸𝑆ℎ
[𝑢] = ∑

𝑗

(∫
𝑆
(𝑗)

ℎ

(𝜎
1

ℎ

𝐷ℓ𝑢


2
+ 𝜎

2

ℎ


𝐷𝑦𝑢



2

) 𝑑𝜎) , (23)

where 𝜎1
ℎ
and 𝜎2

ℎ
are positive constants and 𝑢 ∈ 𝐻

1
(𝑆ℎ), the

Sobolev space of functions on the piecewise affine set 𝑆ℎ (see
Appendices A and B). By Fubini theorem, we can write this
functional in the form

𝐸𝑆ℎ
[𝑢] = 𝜎

1

ℎ
∫
𝐼

(∫
𝐹ℎ

𝐷ℓ𝑢


2
𝑑ℓ)𝑑𝑦

+ 𝜎
2

ℎ
∫
𝐹ℎ

(∫
𝐼


𝐷𝑦𝑢



2

𝑑𝑦) 𝑑ℓ.

(24)

We denote the corresponding bilinear form by 𝐸𝑆ℎ
(𝑢, V). In

the sequel we denote by the symbol 𝑓|
𝑆ℎ
the trace 𝛾0𝑓 to 𝑆ℎ.

Consider now the space of functions 𝑢 : 𝑄 → R as

𝑉 (𝑄, 𝑆ℎ) = {𝑢 ∈ 𝐻
1

0
(𝑄) : 𝑢|𝑆ℎ

∈ 𝐻
1

0
(𝑆ℎ)} ; (25)

it is not trivial as it containsD(𝑄).
Consider now the energy form

𝐸
(ℎ)
[𝑢] = ∫

𝑄

|𝐷𝑢|
2
𝑑𝑄 + 𝐸𝑆ℎ

[𝑢|𝑆ℎ
] , (26)

defined on the domain 𝑉(𝑄, 𝑆ℎ).
By 𝐸(ℎ)

(𝑢, V) we will denote the corresponding bilinear
form

𝐸
(ℎ)
(𝑢, V) = ∫𝐷𝑢𝐷V𝑑𝑄 + 𝐸𝑆ℎ

(𝑢|𝑆ℎ
, V|𝑆ℎ) (27)

defined on 𝑉(𝑄, 𝑆ℎ) × 𝑉(𝑄, 𝑆ℎ).

Theorem 9. The form 𝐸
(ℎ), defined in (26), with domain

𝑉(𝑄, 𝑆ℎ) is a regular Dirichlet form in 𝐿
2
(𝑄) and the space

𝑉(𝑄, 𝑆ℎ) is a Hilbert space equipped with the scalar product

(𝑢, V)𝑉(𝑄,𝑆ℎ) = 𝐸
(ℎ)
(𝑢, V) . (28)

For the proof, see Theorem 4.1 in [4].
We denote by ‖𝑢‖𝑉(𝑄,𝑆ℎ) the corresponding energy norm

in 𝑉(𝑄, 𝑆ℎ); that is,

‖𝑢‖𝑉(𝑄,𝑆ℎ)
= (∫

𝑄

|𝐷𝑢|
2
𝑑𝑄 + 𝐸𝑆ℎ

[𝑢|𝑆ℎ
])

1/2

. (29)

Proceeding as in Section 3.1 we denote by {𝐺ℎ

𝛼
, 𝛼 > 0},𝐴ℎ, and

{𝑇ℎ(𝑡)}𝑡≥0 the resolvents, the generators, and the semigroups
associated to 𝐸(ℎ), for every ℎ ∈ N, respectively.

As in Proposition 6, the following result can be proved.

Proposition 10. Let {𝑇ℎ(𝑡)}𝑡≥0 be the semigroup generated
by the operator 𝐴ℎ associated with the energy form in (27).
Then {𝑇ℎ(𝑡)}𝑡≥0 is an analytic contraction positive preserving
semigroup in 𝐿2(𝑄).

By proceeding as in Remark 7, one can show that for every
ℎ ∈ N the symmetric and contraction analytic semigroup
𝑇ℎ(𝑡) uniquely determines analytic semigroups on the space
𝐿
𝑝
, 1 < 𝑝 < ∞ (seeTheorem 1.4.1 [30]) whichwe still denote

by 𝑇ℎ(𝑡) and by 𝐴ℎ

𝑝
its infinitesimal generator.

The following estimate on the decay of the heat semigroup
holds (see e.g., [32]).

Proposition 11. There exists a positive constant𝑀 such that

𝑇ℎ (𝑡)
𝐿1→𝐿∞

≤ {
𝑀𝑡

−𝑛/2
, for every 𝑡 ∈ (0, 1]

𝑀𝑡
−]/2

, for every 𝑡 ∈ [1,∞) ,
(30)

where𝑀 does not depend on h. One considers the cases 𝑛 = 3
and ] = 2; here ] is the Euclidean dimension of 𝑆.

As before by interpolation results it can be proved that
𝑇ℎ (𝑡)

𝐿2→𝐿2𝑝

≤ {
𝑀

(1/2)−(1/2𝑝)

𝑡
−(𝑛/4)(1−1/𝑝)

, for every 𝑡 ∈ (0, 1]
𝑀

(1/2)−(1/2𝑝)

𝑡
−(]/4)(1−1/𝑝)

, for every 𝑡 ∈ [1,∞) .

(31)

3.3. The Convergence of Forms and Semigroups. We now
recall the results proved in [21] on the convergence of the
approximating energy forms 𝐸(ℎ) to the fractal energy 𝐸.
In this asymptotic behaviour, the factors 𝜎1

ℎ
and 𝜎2

ℎ
have a

key role and can be regarded as a sort of renormalization
factors of the approximating energies. These factors take into
account the nonrectifiability of the curve 𝐹 and hence the
irregularity of the surface 𝑆 and in particular the effect of
the 𝐷-dimensional length intrinsic to the curve; for details,
see [6]. The convergence of functional is here intended in the
sense of the𝑀-convergence which we define below.

3.3.1. The 𝑀-Convergence of Forms. We recall, for the sake
of completeness, the definition of 𝑀-convergence of forms
introduced by Mosco in [33].

We extend the form 𝐸 defined in (15) and 𝐸(ℎ) defined in
(26) on the whole space 𝐿2(𝑄) by defining

𝐸 [𝑢] = +∞ for every 𝑢 ∈ 𝐿
2
(𝑄)

𝑉 (𝑄, 𝑆)
,

𝐸
(ℎ)
[𝑢] = +∞ for every 𝑢 ∈ 𝐿

2
(𝑄)

𝑉 (𝑄, 𝑆ℎ)
.

(32)
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Definition 12. A sequence of form {𝐸
(ℎ)
}𝑀-converges to a

form 𝐸 in 𝐿2(𝑄) if

(a) for every {Vℎ} converging weakly to 𝑢 in 𝐿
2
(𝑄)

lim inf
ℎ→∞

𝐸
(ℎ)
[Vℎ] ≥ 𝐸 [𝑢] ; (33)

(b) for every 𝑢 ∈ 𝐿
2
(𝑄) there exists {𝑤ℎ} converging

strongly to 𝑢 in 𝐿2(𝑄) such that

lim sup
ℎ→∞

𝐸
(ℎ)
[𝑤ℎ] ≤ 𝐸 [𝑢] . (34)

Definition 13. The sequence of forms {𝐸(ℎ)
} is asymptotically

compact in 𝐿2(𝑄) if every sequence {𝑢ℎ} with

lim inf
ℎ→∞

𝐸
(ℎ)
[𝑢ℎ] + ∫

𝑄

𝑢ℎ


2
𝑑𝑄 < ∞ (35)

has a subsequence strongly convergent in 𝐿2(𝑄).

Proposition 14. The sequence of forms (26) is asymptotically
compact in 𝐿2(𝑄).

Remark 15. We point out that, as the sequence of forms
(26) is asymptotically compact in 𝐿2(𝑄), 𝑀-convergence is
equivalent to the Γ-convergence (see Lemma 2.3.2 in [34])
and thus we can take in (a) Vℎ strongly converging to 𝑢 in
𝐿
2
(𝑄).

Theorem 16. Let 𝜎1
ℎ
= 𝜎1𝑐0(3

𝑑𝑓−1)
ℎ and 𝜎2

ℎ
= 𝜎2𝑐0(3

1−𝑑𝑓)
ℎ;

then the sequence of forms {𝐸(ℎ)
} defined in (26)𝑀-converges

in the space 𝐿2(𝑄) to the form 𝐸 defined in (15). The sequence
of semigroups {𝑇ℎ(𝑡)} associated with the form 𝐸

(ℎ) converges
to the semigroup 𝑇(𝑡) associated with the form 𝐸 in the strong
operator topology of 𝐿2(𝑄) uniformly on every interval [0, 𝑡1].

4. Evolution Problems: Existence and
Convergence of the Solutions

In this Section we recall the results on existence and unique-
ness of the solution of the abstract problems (𝑃) and (𝑃ℎ) (see
below) and the asymptotic behaviour of the solutions of the
abstract problems. In Section 5wewill show that the solutions
of the abstract problems solve (𝑃) in both cases. We refer the
reader to [18].

We consider the abstract Cauchy problems as

(𝑃)
{

{

{

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝐴𝑢 (𝑡) + 𝐽 (𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇

𝑢 (0) = 𝜙

(36)

and for every ℎ ∈ N

(𝑃ℎ)
{

{

{

𝑑𝑢ℎ (𝑡)

𝑑𝑡
= 𝐴ℎ𝑢ℎ (𝑡) + 𝐽 (𝑢ℎ (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇

𝑢ℎ (0) = 𝜙ℎ,

(37)

where 𝐴 : D(𝐴) ⊂ 𝐿
2
(𝑄) → 𝐿

2
(𝑄) and 𝐴ℎ : D(𝐴ℎ) ⊂

𝐿
2
(𝑄) → 𝐿

2
(𝑄) are the generators associated, respectively,

to the energy form 𝐸 and the energy forms 𝐸(ℎ) introduced in
(15) and (26), 𝑇 is a fixed positive real number, and 𝜙 and 𝜙ℎ
are given functions in 𝐿2(𝑄). We assume that 𝐽 is a mapping
from 𝐿

2𝑝
(𝑄) → 𝐿

2
(𝑄), 𝑝 > 1 locally Lipschitz, that is,

Lipschitz on bounded sets in 𝐿2𝑝(𝑄); we let 𝑙(𝑟) denote the
Lipschitz constant of 𝐽:

‖𝐽 (𝑢) − 𝐽 (V)‖𝐿2(𝑄) ≤ 𝑙 (𝑟) ‖𝑢 − V‖𝐿2𝑝(𝑄), (38)

where ‖𝑢‖𝐿2𝑝(𝑄) ≤ 𝑟, ‖V‖𝐿2𝑝(𝑄) ≤ 𝑟. We also assume that 𝐽(0) =
0. This assumption is not necessary in all that follows, but
it simplifies the calculations (see [11]). In order to prove the
local existence theorem, we make the following assumptions
on the growth of 𝑙(𝑟) when 𝑟 → ∞.

We set for brevity 𝑎 := (𝑛/4)(1 − (1/𝑝)); we note that 0 <
𝑎 < 1, for 𝑛 ≤ 4, and 𝑝 > 1.

(i) There exists 0 < 𝑏 < 𝑎 such that 𝑙(𝑟) =

O(𝑟(1−𝑎)/𝑏), 𝑟 → ∞.
(ii) Consider

∫

+∞

𝜏

𝑙 (𝑟) 𝑟
−1/𝑎

𝑑𝑟 < ∞ (39)

for every 𝜏 > 0.

We note that (ii) implies (i) for all 0 < 𝑏 < 𝑎 since 𝑙(𝑟) is
nondecreasing and

∫

2𝑟

𝑟

𝑙 (𝑠) 𝑠
−1/𝑎

𝑑𝑠 ≥ 𝑟𝑙 (𝑟) (2𝑟)
−1/𝑎

. (40)

Thus 𝑙(𝑟)𝑟1−(1/𝑎) is bounded as 𝑟 → ∞ which implies (i) for
0 < 𝑏 < 𝑎.

In Theorem 5.1 of [18], the following local existence
theorem has been proved.

Theorem 17. Let condition (i) hold. Let 𝐾 > 0 be sufficiently
small if 𝜙 ∈ 𝐿2(𝑄) and

lim sup
𝑡→0


𝑡
𝑏
𝑇(𝑡)𝜙

𝐿2𝑝
< 𝐾. (41)

There is a 𝑇 > 0 and a

𝑢 ∈ 𝐶 ([0, 𝑇] ; 𝐿
2
(𝑄)) (42)

with 𝑢(0) = 𝜙 satisfying

(1) 𝑢 ∈ 𝐶((0, 𝑇]; 𝐿2𝑝(𝑄)), and ‖𝑡𝑏𝑢(𝑡)‖𝐿2𝑝 < 2𝐾;
(2) for every 𝑡 ∈ [0, 𝑇],

𝑢 (𝑡) = 𝑇 (𝑡) 𝜙 + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐽 (𝑢 (𝑠)) 𝑑𝑠 (43)

with the integral being both an 𝐿
2-valued and 𝐿

2𝑝-
valued Bochner integral;
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(3) if V : (0, 𝑇1] → 𝐿
2𝑝 is strongly measurable with 𝑇1 ≤

𝑇, ‖𝑡
𝑏V(𝑡)‖𝐿2𝑝 ≤ 2𝐾 and also satisfies (43), then 𝑢(𝑡) =

V(𝑡), for every 𝑡 ∈ (0, 𝑇1].
Let condition (ii) hold; there exist a 𝑇 > 0 and a unique

𝑢(𝑡) ∈ 𝐶([0, 𝑇]; 𝐿
2
(𝑄)) with 𝑢(0) = 𝜙 satisfying

(1) 𝑢 ∈ 𝐶((0, 𝑇]; 𝐿2𝑝(𝑄))

lim sup
𝑡→0

𝑡
𝑎
𝑢 (𝑡)

𝐿2𝑝 < ∞; (44)

(2) for every 𝑡 ∈ [0, 𝑇], 𝑢(𝑡) satisfies (43) with the integral
being both an 𝐿

2-valued and 𝐿
2𝑝-valued Bochner

integral;
(3) if V : (0, 𝑇1] → 𝐿

2𝑝 is strongly measurable with
𝑇1 ≤ 𝑇, ‖ 𝑡

𝑎V(𝑡)‖𝐿2𝑝 bounded and also satisfies (43),
then 𝑢(𝑡) = V(𝑡), for every 𝑡 ∈ (0, 𝑇1].

Theclaim of theTheorem is proved by a contractionmap-
ping argument on suitable spaces of continuous functions
with values in Banach space.

By exploiting the analyticity of the semigroup 𝑇(𝑡) both
on 𝐿2(𝑄) and 𝐿2𝑝(𝑄), the following regularity result for the
maximal solution holds (see Theorem 5.3 [18]).

Theorem 18. Under the assumptions of Theorem 17, one has
that the solution 𝑢(𝑡) can be continuously extended to a maxi-
mal interval (0, 𝑇𝜙) as a solution of (43), until ‖𝑢(𝑡)‖𝐿2𝑝(𝑄) →
∞ as 𝑡 → 𝑇𝜙, and it is a classical solution; that is,

𝑢 ∈ 𝐶
1
((0, 𝑇𝜙) ; 𝐿

2
(𝑄)) ∩ 𝐶 ((0, 𝑇𝜙) ;D (𝐴)) (45)

and satisfies

d𝑢 (𝑡)
d𝑡

= 𝐴𝑢 (𝑡) + 𝐽 (𝑢) , for every 𝑡 ∈ (0, 𝑇𝜙) . (46)

For every fixed ℎ ∈ N, the claims of Theorems 17 and 18
hold for problem (𝑃ℎ) with the obvious changes.

We now recall the convergence results of the sequence of
the approximating solutions {𝑢ℎ} when h goes to infinity (see
Theorem 6.2 in [18]).

Theorem 19. Let 𝑢 and 𝑢ℎ be the mild solutions of problems
(𝑃) and (𝑃ℎ); let 𝜎1ℎ and 𝜎

2

ℎ
be as inTheorem 16. In the notations

and assumptions of Theorem 17, one has the following;
(a) let assumption (i) hold; let 𝜙ℎ and 𝜙 belong to 𝐿𝑞(𝑄)

with 𝑞 = 2𝑝𝑛/(𝑛 + 4𝑝𝑏) and 𝜙ℎ → 𝜙 in L 𝑞
(𝑄); then

𝑢ℎ → 𝑢 in 𝐶 ([0, 𝑇] ; 𝐿2 (𝑄)) ,

sup
𝑡∈[0,𝑇]


𝑡
𝑏
[𝑢 (𝑡) − 𝑢ℎ (𝑡)]

𝐿2𝑝(𝑄)
→ 0;

(47)

(b) if assumption (ii) holds and 𝜙ℎ → 𝜙 in 𝐿2(𝑄), then

𝑢ℎ → 𝑢 in 𝐶 ([0, 𝑇] ; 𝐿2 (𝑄))

sup
𝑡∈[0,𝑇]

𝑡
𝑎
[𝑢 (𝑡) − 𝑢ℎ (𝑡)]

𝐿2𝑝(𝑄) → 0
(48)

with 𝑎 = 𝑛/4(1 − 1/𝑝).

5. Strong Formulation of
the Transmission Problems

5.1. The Fractal Layer

Theorem 20. Let 𝑢 be the solution of problem (𝑃). Then one
has, for every fixed 𝑡 ∈ (0, 𝑇],

𝑢𝑡 (𝑡, 𝑃) − Δ𝑢 (𝑡, 𝑃) = 𝐽 (𝑢 (𝑡, 𝑃))

for 𝑎.𝑒. 𝑃 ∈ 𝑄𝑖 𝑖 = 1, 2,

𝜕𝑢
𝑖

𝜕𝑛𝑖

∈ (𝐵
2,2

𝛽,0
(𝑆))



, 𝛽 =
𝑑𝑓

2
, 𝑖 = 1, 2,

− 𝑐0⟨Δ 𝑆 𝑢|𝑆, 𝑧⟩(D(𝑆))

D(𝑆)

= ⟨[
𝜕𝑢

𝜕𝑛
] , 𝑧⟩

(D(𝑆))

D(𝑆)

, 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑧 ∈ D (𝑆) ,

𝑢 (𝑡, 𝑃) = 0 𝑓𝑜𝑟 𝑃 ∈ 𝜕𝑄,

𝑢
1
= 𝑢

2
𝑖𝑛 𝐵

2,2

𝑑𝑓/2
(𝑆) ,

𝑢 (0, 𝑃) = 𝜙 (𝑃) 𝑖𝑛 𝐿
2
(𝑄) ,

(49)

where 𝑢𝑖 is the restriction of 𝑢 to 𝑄𝑖, 𝜕𝑢𝑖/𝜕𝑛𝑖, 𝑖 = 1, 2 is the
inward “normal derivative,” to be defined in a suitable sense,
[𝜕𝑢/𝜕𝑛] = (𝜕𝑢

1
/𝜕𝑛1) + (𝜕𝑢

2
/𝜕𝑛2) is the jump of the normal

derivative, andΔ 𝑆 is the fractal Laplacian.Moreover 𝜕𝑢𝑖/𝜕𝑛𝑖 ∈
𝐶((0, 𝑇]; (𝐵

2,2

𝛽,0
(𝑆))



).

Proof. Let 𝜑(𝑃) be an arbitrary function in 𝑉(𝑄, 𝑆) such that
𝜑(𝑃)|

𝑄𝑖
∈ D(𝑄𝑖); by multiplying for 𝜑 (36) in (𝑃) and

integrating over 𝑄 we have

∫
𝑄

𝑢𝑡 (𝑡, 𝑃) 𝜑 (𝑃) 𝑑𝑄 = ∫
𝑄

𝐴𝑢 (𝑡, 𝑃) 𝜑 (𝑃) 𝑑𝑄

+ ∫
𝑄

𝐽 (𝑢 (𝑡, 𝑃)) 𝜑 (𝑃) 𝑑𝑄.

(50)

From (19) and taking into account that 𝜑 ∈ D(𝑄𝑖), we have

∫
𝑄𝑖

𝑢𝑡 (𝑡, 𝑃) 𝜑 (𝑃) 𝑑𝑄 = − ∫
𝑄𝑖

𝐷𝑢 (𝑡, 𝑃)𝐷𝜑 (𝑃) 𝑑𝑄

+ ∫
𝑄𝑖

𝐽 (𝑢 (𝑡, 𝑃)) 𝜑 (𝑃) 𝑑𝑄

= ∫
𝑄𝑖

Δ𝑢 (𝑡, 𝑃) 𝜑 (𝑃) 𝑑𝑄

+ ∫
𝑄𝑖

𝐽 (𝑢 (𝑡, 𝑃)) 𝜑 (𝑃) 𝑑𝑄.

(51)

From the arbitrariness of 𝜑, we have that, for fixed 𝑡 ∈ (0, 𝑇],

𝑢𝑡 (𝑡, 𝑃) = Δ𝑢 (𝑡, 𝑃) + 𝐽 (𝑢 (𝑡, 𝑃)) holds in D

(𝑄𝑖) . (52)

From the density of D(𝑄𝑖) in 𝐿
2
(𝑄𝑖) and since 𝐽(𝑢(𝑡, ⋅)) ∈

𝐿
2
(𝑄), we obtain the first assertion in (49). From this equality,
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we obtain Δ𝑢(𝑡, 𝑃) = 𝑢𝑡(𝑡, 𝑃) − 𝐽(𝑢(𝑡, 𝑃)) and since the
right-hand side belongs to 𝐶((0, 𝑇]; 𝐿2(𝑄𝑖)) we deduce that
Δ𝑢(𝑡, 𝑃) ∈ 𝐶((0, 𝑇]; 𝐿

2
(𝑄𝑖)); hence 𝑢(𝑡, ⋅) ∈ 𝐶((0, 𝑇]; 𝑉(𝑄𝑖)),

where

𝑉 (𝑄𝑖) = {𝑢 ∈ 𝐻
1

0
(𝑄) ; Δ𝑢

𝑖
∈ 𝐿

2
(𝑄𝑖)} ; (53)

here the Laplacian is intended in the distributional sense. By
proceeding as in (3.26) of [4], we prove that, for every fixed 𝑡,
the normal derivative 𝜕𝑢𝑖/𝜕𝑛𝑖 is in the dual (𝐵2,2

𝛽,0
(𝑆))

 of the
space (𝐵2,2

𝛽,0
(𝑆)), where 𝛽 = 𝑑𝑓/2 and

⟨
𝜕𝑢

𝑖

𝜕𝑛𝑖

, V|𝑆⟩
((𝐵
2,2

𝛽,0
(𝑆))


),((𝐵
2,2

𝛽,0
(𝑆)))

= ∫
𝑄𝑖

𝐷𝑢 (𝑡, 𝑃)𝐷V (𝑃) 𝑑𝑄

+ ∫
𝑄𝑖

V (𝑃) Δ𝑢𝑖 (𝑡, 𝑃) 𝑑𝑄

(54)

for every 𝑡 ∈ (0, 𝑇] and every V ∈ 𝐻
1

0
(𝑄). By proceeding

as in Section 6.1 of [21], we can prove that 𝜕𝑢𝑖/𝜕𝑛𝑖 ∈

𝐶((0, 𝑇]; (𝐵
2,2

𝛽,0
(𝑆))



).
From Proposition 4 and proceeding as in Section 6 of [3],

it can be proved that the transmission condition

−𝑐0Δ 𝑆 𝑢|𝑆 = [
𝜕𝑢

𝜕𝑛
] holds in (D (𝑆))


. (55)

That is, for every 𝑡 ∈ (0, 𝑇],

−𝑐0⟨Δ 𝑆 𝑢|𝑆, 𝑧⟩(D(𝑆))

D(𝑆)

= ⟨[
𝜕𝑢

𝜕𝑛
] , 𝑧⟩

(D(𝑆))

D(𝑆)

. (56)

As a consequence of Theorem 20, the solution of problem
(𝑃) is the solution of the following transmission problem. For
every 𝑡 ∈ (0, 𝑇],

(j)

𝑢
𝑖

𝑡
− Δ𝑢

𝑖
= 𝐽 (𝑢

𝑖
) in 𝐿2 (𝑄𝑖) , 𝑖 = 1, 2, (57)

(jj)

−𝑐0Δ 𝑆𝑢 = [
𝜕𝑢

𝜕𝑛
] in (D (𝑆))


, (58)

(jjj)

𝑢 = 0 in𝐻1/2
(𝜕𝑄) , (59)

(jv)

𝑢
1
= 𝑢

2 in 𝐵2,2

𝑑𝑓/2
(𝑆) , (60)

(v)

𝑢 = 0 in𝐵2,2

(𝑑𝑓−1)/2
(𝜕𝑆) . (61)

Remark 21. Actually from Proposition 6, one deduces that
equalities (jv) and (v), respectively, hold in 𝐵

2,2

𝛼
(𝑆) and in

𝐵
2,2

𝛼−(1/2)
(𝜕𝑆) with 𝛼 < 1.

5.2. The Prefractal Layer

Theorem 22. Let 𝑢ℎ be the solution of problem (𝑃ℎ). Then one
has, for every fixed 𝑡 ∈ (0, 𝑇],

(𝑢ℎ)𝑡 (𝑡, 𝑃) − Δ𝑢ℎ (𝑡, 𝑃)

= 𝐽 (𝑢ℎ (𝑡, 𝑃)) 𝑓𝑜𝑟 𝑃 ∈ 𝑄
𝑖

ℎ
, 𝑎.𝑒. 𝑖 = 1, 2,

𝜕𝑢
𝑖

ℎ

𝜕𝑛𝑖

∈ 𝐿
2
(𝑆ℎ) , 𝑖 = 1, 2,

−Δ 𝑆ℎ
𝑢|𝑆ℎ

= [
𝜕𝑢ℎ

𝜕𝑛
] , 𝑖𝑛 𝐿

2
(𝑆ℎ) ,

𝑢 (𝑡, 𝑃) = 0 𝑓𝑜𝑟 𝑃 ∈ 𝜕𝑄,

𝑢
1

ℎ
= 𝑢

2

ℎ
𝑖𝑛𝐻

1

0
(𝑆ℎ) ,

𝑢ℎ (0, 𝑃) = 𝜙 (𝑃) 𝑖𝑛 𝐿
2
(𝑄) ,

(62)

where 𝑢𝑖
ℎ
is the restriction of 𝑢ℎ to𝑄𝑖

ℎ
, [𝜕𝑢ℎ/𝜕𝑛] = (𝜕𝑢1ℎ/𝜕𝑛1) +

(𝜕𝑢
2

ℎ
/𝜕𝑛2) is the jump of the normal derivatives across 𝑆ℎ, 𝑛𝑖,

𝑖 = 1, 2, is the inward normal vector, and Δ 𝑆ℎ
= 𝜎

1

ℎ
𝐷

2

ℓ
+ 𝜎

2

ℎ
𝐷

2

𝑦

is the piecewise tangential Laplacian associated to the Dirichlet
form 𝐸𝑆ℎ

. Moreover 𝜕𝑢𝑖
ℎ
/𝜕𝑛𝑖 ∈ 𝐶((0, 𝑇]; 𝐿

2
(𝑆ℎ)).

Proof. Thefirst equality in (62) easily follows by proceeding as
inTheorem 20. From this, it follows that, for every 𝑡 ∈ [0, 𝑇],

𝑢ℎ (𝑡, ⋅) ∈ 𝑉 (𝑄
𝑖

ℎ
) = {𝑢 ∈ 𝐻

1

0
(𝑄) ; Δ𝑢

𝑖

ℎ
∈ 𝐿

2
(𝑄

𝑖

ℎ
)} . (63)

For every fixed 𝑡 ∈ (0, 𝑇], let 𝑢𝑖
ℎ
denote the restriction

of the solution 𝑢ℎ to 𝑄
𝑖

ℎ
. By usual duality arguments (see

Appendix 4 in [35]), the normal derivatives 𝜕𝑢𝑖
ℎ
/𝜕𝑛𝑖, 𝑖 = 1, 2

belong to the dual space of 𝐻1/2

0,0
(𝑆ℎ). By proceeding as in

Section 6.2 of [21], it is possible to prove that 𝜕𝑢𝑖
ℎ
/𝜕𝑛𝑖 ∈

𝐶((0, 𝑇]; (𝐻
1/2

0,0
(𝑆ℎ))



) .
Then, by the Green formula for Lipschitz domains, one

can prove that

⟨−Δ 𝑆ℎ
𝑢|𝑆ℎ

, 𝑧⟩
(𝐻
1/2

0,0
(𝑆ℎ))


𝐻
1/2

0,0
(𝑆ℎ)

= ⟨[
𝜕𝑢ℎ

𝜕𝑛
] , 𝑧⟩

(𝐻
1/2

0,0
(𝑆ℎ))


𝐻
1/2

0,0
(𝑆ℎ)

.

(64)

That is, the transmission condition

−Δ 𝑆ℎ
𝑢|𝑆ℎ

= [
𝜕𝑢ℎ

𝜕𝑛
] (65)

holds in the dual of 𝐻1/2

0,0
(𝑆ℎ) (see Proposition 2.2 in [5]

for details). In order to prove that 𝜕𝑢𝑖
ℎ
/𝜕𝑛𝑖 ∈ 𝐿

2
(𝑆ℎ), we

proceed as in Section 4.2 of [4]. Let us consider, for each fixed
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𝑡 ∈ (0, 𝑇], the weak solutions 𝑤𝑖

ℎ
and 𝑤𝑖

ℎ
in 𝐻1

(𝑄
𝑖

ℎ
) of the

following auxiliary problems:

Δ𝑤
𝑖

ℎ
= 0 in𝑄𝑖

ℎ
,

𝑤
𝑖

ℎ
= 𝑢ℎ on 𝜕𝑄𝑖

ℎ
,

(66)

−Δ𝑤
𝑖

ℎ
= −(𝑢

𝑖

ℎ
)
𝑡
+ 𝐽 (𝑢

𝑖

ℎ
) in 𝑄𝑖

ℎ
,

𝑤
𝑖

ℎ
= 0 on 𝜕𝑄𝑖

ℎ
,

(67)

The regularity of 𝑢𝑖
ℎ
follows from the regularity of 𝑤𝑖

ℎ
and 𝑤𝑖

ℎ

since

𝑢
𝑖

ℎ
= 𝑤

𝑖

ℎ
+ 𝑤

𝑖

ℎ
. (68)

From a regularity result of Jerison and Kenig (see Theorems
2 and 3 of [36]), we deduce that

𝜕𝑤
𝑖

ℎ

𝜕𝑛𝑖

∈ 𝐿
2
(𝑆ℎ) (69)

and ‖ 𝜕𝑤𝑖

ℎ
/𝜕𝑛𝑖 ‖≤ 𝐶(ℎ)‖𝑢ℎ‖𝑉(𝑄;𝑆ℎ)

≤ 𝐶(ℎ)‖𝑢ℎ‖𝐷(𝐴ℎ)
.

As to the solution𝑤𝑖

ℎ
of (67), we preliminary observe that

the right-hand side in the first equation of (67) belongs to
𝐿
2
(𝑄

𝑖

ℎ
). From Proposition 4.5 in [4], it follows that

𝑤
𝑖

ℎ
∈ 𝐻

𝑠𝑖 (𝑄
𝑖

ℎ
) , 𝑖 = 1, 2, (70)

where 1 < 𝑠1 < 8/5 and 1 < 𝑠2 < 7/4; hence

𝐷
𝛼
𝑤

1

ℎ
∈ 𝐻

(3/5)−𝜖
(𝑄

1

ℎ
) , 𝐷

𝛼
𝑤

2

ℎ
∈ 𝐻

(3/4)−𝜖
(𝑄

2

ℎ
) ,

|𝛼| = 1

(71)

for every 𝜖 > 0; then by trace results (see Proposition A.1), we
obtain, for 𝑖 = 1, 2,

𝜕𝑤
𝑖

ℎ

𝜕𝑛𝑖

∈ 𝐿
2
(𝑆ℎ) (72)

and ‖𝜕𝑤𝑖

ℎ
/𝜕𝑛𝑖‖𝐿2(𝑆ℎ)

≤ 𝑐(ℎ)‖ − (𝑢
𝑖

ℎ
)𝑡 + 𝐽(𝑢

𝑖

ℎ
)‖

𝐿2(𝑄)
. It follows

from (67), (68), and (69) that 𝜕𝑢𝑖
ℎ
/𝜕𝑛𝑖 ∈ 𝐿

2
(𝑆ℎ), 𝑖 = 1, 2; hence

the jump belongs to 𝐿2(𝑆ℎ). As 𝐻
1/2

0,0
(𝑆ℎ) is dense in 𝐿2(𝑆ℎ)

(see e.g., [37]), we deduce that the transmission condition
(64) actually holds in the 𝐿2-sense and in particular Δ 𝑆ℎ

𝑢ℎ ∈

𝐿
2
(𝑆ℎ). The proof that 𝜕𝑢𝑖

ℎ
/𝜕𝑛𝑖 ∈ 𝐶((0, 𝑇]; 𝐿

2
(𝑆ℎ)) easily

follows from (69), (72), and the fact that 𝑢ℎ, 𝐴ℎ𝑢ℎ, 𝐽(𝑢ℎ), and
(𝑢

𝑖

ℎ
)
𝑡
belong to 𝐶((0, 𝑇]; 𝐿2(𝑄)).

FromTheorem 22, it follows that the solution of problem
(𝑃ℎ) is the solution of the following transmission problem. For
every 𝑡 ∈ (0, 𝑇],

(j)

𝑢
𝑖

𝑡
= Δ𝑢

𝑖
+ 𝐽 (𝑢

𝑖
) in 𝐿2 (𝑄𝑖

ℎ
) , 𝑖 = 1, 2, (73)

(jj)

−Δ 𝑆ℎ
𝑢 = [

𝜕𝑢

𝜕𝑛
] in 𝐿2 (𝑆ℎ) , (74)

(jjj)

𝑢 = 0 in𝐻1/2
(𝜕𝑄) , (75)

(jv)

𝑢
1
= 𝑢

2 in𝐻1
(𝑆ℎ) , (76)

(v)

𝑢 = 0 in𝐻1/2
(𝜕𝑆ℎ) . (77)

6. Convergence Results

Now we are interested in the behavior of the sequence {𝑢ℎ}
when ℎ goes to∞.

Theorem 23. Let 𝑢 and 𝑢ℎ be the solutions of problems (𝑃)
and (𝑃ℎ) according to Theorem 19. Let 𝜎1

ℎ
and 𝜎

2

ℎ
be as in

Theorem 16. For every fixed positive 𝜖, one has

(i) 𝐽(𝑢ℎ) converges to 𝐽(𝑢) in 𝐿2([𝜖, 𝑇] × 𝑄);

(ii) {𝑑𝑢ℎ/𝑑𝑡} weakly converges to 𝑑𝑢/𝑑𝑡 in 𝐿2([𝜖, 𝑇] × 𝑄);

(iii) {𝐴ℎ𝑢ℎ} weakly converges to 𝐴𝑢 in 𝐿2([𝜖, 𝑇] × 𝑄);

(iv) {𝑢ℎ} converges to 𝑢 in 𝐿2([𝜖, 𝑇];𝐻1

0
(𝑄)).

Proof. We prove condition (i), that is,

𝑗 (𝑢 (𝑡, 𝑃)) − 𝐽 (𝑢ℎ (𝑡, 𝑃))
𝐿2((𝜖,𝑇]×𝑄) → 0. (78)

From (38), we have

∫

𝑇

𝜖

𝐽 (𝑢 (𝑡, 𝑃)) − 𝐽 (𝑢ℎ (𝑡, 𝑃))


2

𝐿2(𝑄)
𝑑𝑡

≤ ∫

𝑇

𝜖

𝑙
2
(𝑅)

𝑢 (𝑡) − 𝑢ℎ (𝑡)


2

𝐿2𝑝(𝑄)
𝑑𝑡

≤ (𝑇 − 𝜖) sup
𝑡∈[𝜖,𝑇]

𝑙
2
(𝑅)

𝑢 (𝑡) − 𝑢ℎ (𝑡)


2

𝐿2𝑝(𝑄)
.

(79)

FromTheorem 19 (a), we have

sup
𝑡∈[0,𝑇]


𝑡
𝑏
[𝑢 (𝑡) − 𝑢ℎ (𝑡)]

𝐿2𝑝(𝑄)
→ 0. (80)

And hence, for every fixed 𝜖 > 0,

sup
𝑡∈[𝜖,𝑇]

[𝑢 (𝑡) − 𝑢ℎ (𝑡)]
𝐿2𝑝(𝑄) → 0. (81)

This concludes the proof of condition (i).
We now prove condition (ii). From the local Lipschitz

continuity of 𝐽(𝑢) and the Hölder continuity of 𝑢ℎ(𝑡) in (𝜖, 𝑇)
into 𝐿2𝑝, one can prove that ‖𝐽(𝑢ℎ)‖𝐶𝜃([𝜖,𝑇];𝐿2(𝑄)) is bounded by
a constant which does not depend on ℎ; actually the constants
depend only on the constants of the semigroupswhich in turn
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do not depend on ℎ. From this, together withTheorem 18, we
have that there exists a constant 𝑐 independent of ℎ such that

𝑢ℎ
𝐶1([𝜖,𝑇);𝐿2(𝑄)) +

𝑢ℎ
𝐶0([𝜖,𝑇];𝐷(𝐴))

≤ 𝑐
𝐽 (𝑢ℎ)

𝐶𝜃([𝜖,𝑇];𝐿2(𝑄))

≤ 𝑐𝑙 (𝑟)
𝑢ℎ

𝐶𝜃([𝜖,𝑇];𝐿2𝑝(𝑄)).

(82)

Thus in particular it holds sup
𝑡∈[𝜖,𝑇]

‖(𝑢ℎ)𝑡‖𝐿2(𝑄) ≤ 𝑐; thus,
for every fixed 𝑡 ∈ [𝜖, 𝑇], ‖(𝑢ℎ)𝑡‖𝐿2(𝑄) ≤ 𝑐.

From (82), it follows that for each ℎ, 𝑑𝑢ℎ/𝑑𝑡 belongs to
𝐿
2
([𝜖, 𝑇] × 𝑄) and ‖𝑑𝑢ℎ/𝑑𝑡‖

2

𝐿2([𝜖,𝑇]×𝑄)
≤ 𝑐.

From the boundedness of the sequence {𝑑𝑢ℎ/𝑑𝑡} in
𝐿
2
([𝜖, 𝑇]×𝑄), it follows that there exists a subsequence, which

we denote with {𝑑𝑢ℎ/𝑑𝑡} and a function V ∈ 𝐿
2
([𝜖, 𝑇] × 𝑄)

such that {𝑑𝑢ℎ/𝑑𝑡} weakly converges to V in 𝐿
2
([𝜖, 𝑇] × 𝑄) as

ℎ goes to∞.
In order to prove (ii), it is enough to prove that V = 𝑑𝑢/𝑑𝑡.
Since 𝐶1

([𝜖, 𝑇] × 𝑄) is dense in 𝐿2([𝜖, 𝑇] × 𝑄), for every
𝜑 ∈ 𝐶

1
([𝜖, 𝑇] × 𝑄), we have

lim
𝑛→∞

∫
𝑄

∫

𝑇

𝜖

𝑑𝑢𝑛

𝑑𝑡
(𝑡, 𝑃) 𝜑 (𝑡, 𝑃) 𝑑𝑡 𝑑𝑄

= ∫
𝑄

∫

𝑇

𝜖

V (𝑡, 𝑃) 𝜑 (𝑡, 𝑃) 𝑑𝑡 𝑑𝑄.

(83)

Integrating by parts the left-hand side, we get

∫
𝑄

∫

𝑇

𝜖

𝑑𝑢𝑛

𝑑𝑡
(𝑡, 𝑃) 𝜑 (𝑡, 𝑃) 𝑑𝑡 𝑑𝑄

= ∫
𝑄

[𝑢𝑛 (𝑇, 𝑃) 𝜑 (𝑇, 𝑃) − 𝑢𝑛 (0, 𝑃) 𝜑 (0, 𝑃)] 𝑑𝑄

−∫
𝑄

∫

𝑇

𝜖

𝑢𝑛 (𝑡, 𝑃)
𝑑𝜑

𝑑𝑡
(𝑡, 𝑃) 𝑑𝑡 𝑑𝑄.

(84)

From (47) or (48), we have

lim
𝑛→∞

∫
𝑄

∫

𝑇

𝜖

𝑑𝑢𝑛

𝑑𝑡
(𝑡, 𝑃) 𝜑 (𝑡, 𝑃) 𝑑𝑡 𝑑𝑄

= ∫
𝑄

[𝑢 (𝑇, 𝑃) 𝜑 (𝑇, 𝑃) − 𝑢 (0, 𝑃) 𝜑 (0, 𝑃)] 𝑑𝑄

− ∫
𝑄

∫

𝑇

𝜖

𝑢 (𝑡, 𝑃)
𝑑𝜑

𝑑𝑡
(𝑡, 𝑃) 𝑑𝑡 𝑑𝑄

= ∫
𝑄

∫

𝑇

𝜖

𝑑𝑢

𝑑𝑡
(𝑡, 𝑃) 𝜑 (𝑡, 𝑃) 𝑑𝑡 𝑑𝑄.

(85)

From the uniqueness of weak limit, we get V = 𝑑𝑢/𝑑𝑡 a.e..
From the convergence of the sequence {𝑢ℎ} to 𝑢 in 𝐿

2
([𝜖, 𝑇] ×

𝑄) and the weak convergence of the subsequence {𝑑𝑢𝑛/𝑑𝑡} to
𝑑𝑢/𝑑𝑡 in 𝐿2([𝜖, 𝑇] × 𝑄), we deduce that the whole sequence
{𝑑𝑢ℎ/𝑑𝑡} weakly converges to 𝑑𝑢/𝑑𝑡 in 𝐿

2
([𝜖, 𝑇] × 𝑄).

We now prove condition (iii). It is an easy consequence of
(i) and (ii). In fact 𝐴ℎ𝑢ℎ = (𝑑𝑢ℎ/𝑑𝑡) − 𝐽(𝑢ℎ); taking the weak
limit in 𝐿2([𝜖, 𝑇] × 𝑄), we get the thesis.

We now prove condition (iv). From (i), (iii), and the
property of the scalar product in 𝐿2([𝜖, 𝑇] × 𝑄), we get that

lim
ℎ→∞

(𝐴ℎ𝑢ℎ, 𝑢ℎ)𝐿2([𝜖,𝑇]× 𝑄)
= (𝐴𝑢, 𝑢)𝐿2([𝜖,𝑇]× 𝑄). (86)

That is,

lim
ℎ→∞

∫

𝑇

𝜖

𝑑𝑡∫
𝑄

𝐴ℎ𝑢ℎ (𝑡, 𝑃) 𝑢ℎ (𝑡, 𝑃) 𝑑𝑄

= ∫

𝑇

𝜖

𝑑𝑡∫
𝑄

𝐴𝑢 (𝑡, 𝑃) 𝑢 (𝑡, 𝑃) 𝑑𝑄.

(87)

From the relation between aDirichlet formand the associated
generator, it follows that

lim
ℎ→∞

∫

𝑇

𝜖

𝐸
(ℎ)
[𝑢ℎ] 𝑑𝑡 = ∫

𝑇

𝜖

𝐸 [𝑢] 𝑑𝑡. (88)

There exists a constant 𝑐 such that

∫

𝑇

𝜖

∫
𝑄

𝐷𝑢ℎ (𝑡, 𝑃)


2
𝑑𝑄𝑑𝑡 + ∫

𝑇

𝜖

𝐸𝑆ℎ
[𝑢ℎ] 𝑑𝑡 ≤ 𝑐,

for every ℎ ∈ N.

(89)

Hence
𝐷𝑢ℎ

𝐿2([𝜖,𝑇]×𝑄) ≤ 𝑐. (90)

There exists a subsequence 𝐷𝑢𝑛 weakly converging to 𝑤 in
𝐿
2
([𝜖, 𝑇] × 𝑄)

3. We now prove that

∫

𝑇

𝜖

∫
𝑄

𝐷𝑢ℎ (𝑡, 𝑃)𝐷𝑢 𝑑𝑄𝑑𝑡

→ ∫

𝑇

𝜖

∫
𝑄

|𝐷𝑢 (𝑡, 𝑃)|
2
𝑑𝑄𝑑𝑡.

(91)

From Theorem 19, it follows in particular that 𝑢𝑛 converges
to 𝑢 in 𝐿

2
([𝜖, 𝑇] × 𝑄); hence 𝑤 = 𝐷𝑢 and 𝑢ℎ ⇀ 𝑢

in 𝐿2([𝜖, 𝑇];𝐻1

0
(𝑄); in particular (91) holds. We now prove

assertion (iv) as

0 ≤ ∫

𝑇

𝜖

𝑢ℎ (𝑡) − 𝑢 (𝑡)


2

𝐻1
0
(𝑄)
𝑑𝑡

= ∫

𝑇

𝜖

𝑑𝑡∫
𝑄

𝐷𝑢ℎ (𝑡, 𝑃) − 𝐷𝑢 (𝑡, 𝑃)


2
𝑑𝑄

= ∫

𝑇

𝜖

𝑑𝑡∫
𝑄

(
𝐷𝑢ℎ (𝑡, 𝑃)



2
+ |𝐷𝑢 (𝑡, 𝑃)|

2

−2 𝐷𝑢ℎ (𝑡, 𝑃)𝐷𝑢 (𝑡, 𝑃)) 𝑑𝑄

= ∫

𝑇

𝜖

(𝐸
(ℎ)
[𝑢ℎ] − 𝐸𝑆ℎ

[𝑢ℎ]) 𝑑𝑡

+ ∫

𝑇

𝜖

𝑑𝑡∫
𝑄

(|𝐷𝑢 (𝑡, 𝑃)|
2
− 2𝐷𝑢ℎ (𝑡, 𝑃)𝐷𝑢 (𝑡, 𝑃)) 𝑑𝑄.

(92)
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Taking the upper limit as ℎ → ∞, we have

0 ≤ lim sup𝑢ℎ (𝑡) − 𝑢 (𝑡)


2

𝐿2([𝜖,𝑇];𝐻10 (𝑄))

≤ ∫

𝑇

𝜖

𝐸 [𝑢] 𝑑𝑡

(93)

− lim inf
ℎ→∞

∫

𝑇

𝜖

𝐸𝑆ℎ
[𝑢ℎ] 𝑑𝑡

+ ∫

𝑇

𝜖

𝑑𝑡∫
𝑄

|𝐷𝑢 (𝑡, 𝑃)|
2
𝑑𝑄

− 2∫

𝑇

𝜖

𝑑𝑡∫
𝑄

|𝐷𝑢 (𝑡, 𝑃)|
2
𝑑𝑄

(94)

≤ 𝑐0 ∫

𝑇

𝜖

𝐸𝑆 [𝑢] 𝑑𝑡 − lim inf
ℎ→∞

∫

𝑇

𝜖

𝐸𝑆ℎ
[𝑢ℎ] 𝑑𝑡

≤ 0,

(95)

where the last inequality follows from (4.9) in [21]. Hence
the sequence {𝑢ℎ} converges to 𝑢 in 𝐿

2
([𝜖, 𝑇]; 𝐻

1

0
(𝑄)) and

therefore {𝐷𝑢ℎ} converges to𝐷𝑢 in 𝐿
2
([𝜖, 𝑇]; (𝐿

2
(𝑄))

3
).

Proposition 24. Let 𝑢 and 𝑢ℎ be the solutions of problems (𝑃)
and (𝑃ℎ), respectively. Then 𝑢 and 𝑢ℎ ∈ 𝐻1

([𝜖, 𝑇] × 𝑄).

Proof. We prove the thesis for 𝑢. FromTheorem 18, it follows
that 𝑢 ∈ 𝐶([𝜖, 𝑇];D(𝐴)) and (𝑑𝑢/𝑑𝑡) ∈ 𝐶([𝜖, 𝑇]; 𝐿

2
(𝑄)).

Since D(𝐴) ⊂ 𝑉(𝑄, 𝑆) ⊂ 𝐻
1

0
(𝑄), we obtain 𝑢 ∈

𝐶([𝜖, 𝑇];𝐻
1

0
(𝑄)); hence 𝐷𝑢 ∈ 𝐶([𝜖, 𝑇]; (𝐿2(𝑄))3). The thesis

follows as 𝐶([𝜖, 𝑇]; 𝐿2(𝑄)) ⊂ 𝐿2([𝜖, 𝑇] × 𝑄). The result for 𝑢ℎ
can be proved analogously.

Appendices

Here we recall some definitions of functional spaces and trace
results.

A. Sobolev Spaces

Let 𝑄 be a polyhedral domain; just to fix the ideas, the
parallelepiped is as in Section 2. For every integer ℎ ≥ 1,
let 𝑆ℎ be the prefractal surface approximating the Koch-type
surface 𝑆 and let us denote every affine “face” of 𝑆ℎ by 𝑆

(𝑗)

ℎ
; 𝑆ℎ

divides 𝑄 into two subsets 𝑄1

ℎ
and 𝑄2

ℎ
.

By 𝐿𝑝(⋅), 𝑝 > 1we denote the Lebesgue space with respect
to the Lebesguemeasure on subsets ofR3, whichwill be left to
the context whenever that does not create ambiguity. LetT be
a closed set ofR3; by𝐶(T)we denote the space of continuous
functions onT; by𝐶0(T)we denote the space of continuous
functions vanishing on 𝜕T. Let G be an open set of R3; by
𝐻

1
(G) we denote the usual Sobolev spaces (see Necas [38]);

𝐻
1

0
(G) is the closure of D(G) (the smooth functions with

compact support on G), with respect to the ‖ ⋅ ‖𝐻1-norm. In

the following, we will make use of trace spaces on boundaries
of polyhedral domains of R3.

By𝐻1

0
(𝑆ℎ) we denote the closure in𝐻

1
(𝑆ℎ) of the set

{V|𝜕𝑄2
ℎ

: V ∈ 𝐶∞
(𝑄

2

ℎ
) ;

V vanishes in a neighborhood of 𝑆ℎ} .
(A.1)

By 𝐻𝑟
(𝑆ℎ), 0 < 𝑟 ≤ 1 we denote the Sobolev space on 𝑆ℎ,

defined by local Lipschitz charts as in Necas [38].
It is to be pointed out that the Sobolev space 𝐻𝑟

(𝑆ℎ)

(defined in [38]) coincides, with equivalent norms, with the
trace space defined in Buffa and Ciarlet in [37] (see also [39]
for the case of polygonal boundaries).

When 𝑟 > 1, the trace spaces on nonsmooth boundaries
can be defined in different ways; we now recall two trace
theorems, specialized to our case, referring to [40] and [41]
for a more general discussion.

For 𝑓 in𝐻1
(G), we put

𝛾0𝑓 (𝑃) = lim
𝑟→0

1

|𝐵 (𝑃, 𝑟) ∩G|
∫
𝐵(𝑃,𝑟)∩G

𝑓 (𝑄) 𝑑𝑄 (A.2)

at every point 𝑃 ∈ G, where the limit exists. It is known that
the limit (A.2) exists at quasi every 𝑃 ∈ G with respect to the
(1, 2)-capacity [42].

We now recall the results of Theorem 3.1 in [36] spe-
cialized to our case, referring to [41] for a more general
discussion.

Proposition A.1. Let G denote, respectively, 𝑄, 𝑄1

ℎ
, and𝑄2

ℎ

and let Γ denote 𝑆ℎ, 𝜕𝑄1

ℎ
, 𝜕𝑄2

ℎ
, and 𝜕𝑄. Then 𝐻1/2

(Γ) is the
trace space to Γ of𝐻1

(G) in the following sense:

(i) 𝛾0 is a continuous and linear operator from 𝐻
1
(G) to

𝐻
1/2
(Γ);

(ii) there is a continuous linear operator Ext from𝐻
1/2
(Γ)

to𝐻1
(G), such that 𝛾0 ∘ Ext is the identity operator in

𝐻
1/2
(Γ).

B. Besov Spaces

Definition B.1. Let T ⊂ R𝐷 be a closed nonempty subset. It
is a 𝑑-set (0 < 𝑑 ≤ 𝐷) if there exists a Borel measure 𝜇 with
supp 𝜇 = T such that, for some constants 𝑐1 = 𝑐1(T) > 0

and 𝑐2 = 𝑐2(T) > 0,

𝑐1𝑟
𝑑
≤ 𝜇 (𝐵 (𝑃, 𝑟)) ≤ 𝑐2𝑟

𝑑
(𝑃 ∈ T, 0 < 𝑟 ≤ 1) . (B.1)

Such a 𝜇 is called a 𝑑-measure onT.

PropositionB.2. Theset𝐹 is a𝑑-set with𝑑 = 𝑑𝑓.Themeasure
𝜇𝐹 is a 𝑑-measure. The layer 𝑆 is a 𝑑-set with 𝑑 = 𝑑𝑓 + 1. The
measure𝑚 is a 𝑑-measure.

See [23, 26].
We now come to the definition of the Besov spaces.

Actually there aremany equivalent definitions of these spaces;
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see, for instance, [43, 44]. We recall here the one which best
fits our aims and we will restrict ourselves to the case 𝛼
positive and noninteger, 𝑝 = 𝑞 = 2; the general setting is
being much more involved; see [44].

LetT be a 𝑑-set in R𝐷.
Let 𝛼 > 0 be noninteger, 𝑘 = [𝛼] the integer part of 𝛼, and

𝑗 a𝐷-dimensional multi-index of length |𝑗| ≤ 𝑘.
If 𝑓 and {𝑓(𝑗)

} are functions defined 𝜇-a.e. onT, we set

𝑅𝑗 (𝑃, 𝑃

) = 𝑓

(𝑗)
(𝑃) − ∑

|𝑗+𝑙|≤𝑘

𝑓
(𝑗+𝑙)

(𝑃

)

𝑙!
(𝑃 − 𝑃


)
𝑙

, (B.2)

where 𝑓(0)
= 𝑓 and 𝑙 denotes a 𝐷-dimensional multi-index.

We now define the Besov space as 𝐵2,2

𝛼
(T) ≡ 𝐵

2,2

𝛼
(T, 𝜇).

Definition B.3. One says that 𝑓 ∈ 𝐵
2,2

𝛼
(T) if there exists a

family {𝑓(𝑗)
} with |𝑗| ≤ 𝑘, as above, such that 𝑓(𝑗)

∈ 𝐿
2
(T, 𝜇)

and ‖{𝑎𝑛}‖𝑙2 < ∞, where 𝑎𝑛 is the smallest number such that

(3
𝑛𝑑
∫∫

|𝑃−𝑃|<3−𝑛


𝑅𝑗 (𝑃, 𝑃


)


2

𝑑𝜇 (𝑃) 𝑑𝜇 (𝑃

))

1/2

≤ 3
−𝑛(𝛼−|𝑗|)

𝑎𝑛.

(B.3)

The norm of 𝑓 in 𝐵2,2

𝛼
(T) is

𝑓
𝐵2,2𝛼 (T)

=
𝑓
2,𝜇 +

{𝑎𝑛}
𝑙2
. (B.4)

The family {𝑓
(𝑗)
} in the previous definition is uniquely

determined by 𝑓, as shown in [44], for 𝑑-sets with 𝑑 > 𝐷−1.

Let us note that for 0 < 𝛼 < 1 the norm ‖𝑓‖
𝐵
2,2
𝛼 (T)

can be
written as

𝑓
2,𝜇 + (

∞

∑

𝑛=0

3
𝑛(𝑑+2𝛼)

× ∫∫

|𝑃−𝑃|<3−𝑛


𝑓 (𝑃) − 𝑓 (𝑃


)


2

𝑑𝜇

× (𝑃) 𝑑𝜇 (𝑃

) )

1/2

.

(B.5)

Proposition B.4. Let T be a 𝑑-set, T ⊂ 𝑄. Let 𝑠 > (3 −

𝑑)/2, (𝑠 − (3 − 𝑑)/2) ∉ N); then 𝐵2,2

𝑠−(3−𝑑)/2
(T) is the trace space

toT of𝐻𝑠
(𝑄) in the following sense:

(i) 𝛾0 is a continuous linear operator from 𝐻
𝑠
(𝑄) to

𝐵
2,2

𝑠−(3−𝑑)/2
(T);

(ii) there is a continuous linear operator Ext from
𝐵
2,2

𝑠−(3−𝑑)/2
(T) to𝐻𝑠

(𝑄) such that 𝛾0 ∘Ext is the identity
operator in 𝐵2,2

𝑠−(3−𝑑)/2
(T).

For the proof, we refer to Theorem 1 of Chapter VII in
[44]; see also [43].

From Proposition B.4, it follows that when T = 𝑆 and
𝑠 = 1 the trace space of𝐻1

(𝑄) is 𝐵2,2

𝑑𝑓/2
(𝑆).

Let 𝛽 = 𝑑𝑓/2. The space 𝐵2,2

𝛽,0
(𝑆) is a subspace of 𝐵2,2

𝛽
(𝑆);

more precisely

𝐵
2,2

𝛽,0
(𝑆) = {𝑢 ∈ 𝐿

2
(𝑆, 𝑚) | there exists V ∈ 𝐻1

0
(𝑄)

such that 𝛾0V = 𝑢 on 𝑆}

(B.6)

equipped with the norm

‖𝑢‖
𝐵
2,2

𝛽,0
(𝑆)
= inf {‖V‖𝐻1(𝑄) : V ∈ 𝐻

1

0
(𝑄) ,

𝛾0V = 𝑢, on 𝑆} .

(B.7)
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