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Abstract 

Wire electrical discharge machining (WEDM) is investigated in the perspective of zero-defect manufacturing with the scope to detect 
anomalous process conditions leading to typical defects generated during WEDM, i.e. the occurrence of lines and marks on the resulting 
workpiece surface. A multiple sensor monitoring system is employed to acquire high sampling rate sensorial data relative to signals of voltage 
and current in the gap between workpiece and wire electrode. An advanced signal processing methodology is implemented to extract and select 
the most relevant features useful to identify the undesired process conditions through a cognitive pattern recognition paradigm. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM 
XVIII). 
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1. Introduction 

Wire electrical discharge machining (WEDM) is today 
widely used in industry for the macro- and micro-machining 
of parts with complex and irregular shapes, requiring high 
profile accuracy and tight dimensional tolerances [1]. As the 
WEDM process is not affected by material hardness, 
compared to traditional machining technologies, it can be 
effectively used to machine a large variety of materials 
including cemented carbides, sintered materials as well as 
difficult-to-machine aerospace alloys such as nickel or 
titanium alloys [2, 3]. 

With particular reference to the fabrication of aerospace 
components, the aim of achieving zero-defect WEDM 
manufacturing processes is crucial, as excellent accuracy and 
surface finish without defects are required [4-6]. However, 
mainly due to the large number of variables and the stochastic 
nature of the process mechanisms involved in WEDM, this 
objective still represents a challenge, even with highly skilled 
operators and state-of-the-art CNC machines [7,8]. 

In the last years, research efforts have been spent to model 
the process through suitable mathematical techniques and 
different methodologies have been proposed in the literature 
[3-12]. However, the selection of machining parameters 
allowing to obtain the optimal WEDM process performance in 
terms of higher material removal efficiency or accuracy is still 
not fully solved. As a result, process monitoring and control 
have become a key issue and represent a major research area 
in the WEDM field [7,13-17].  

In the perspective of WEDM zero-defect manufacturing, 
the most significant part quality characteristics to be addressed 
include recast layer thickness, surface roughness and the 
occurrence of lines and marks on the machined surface, in 
particular after the finishing pass [4-6]. 

In this work, WEDM process monitoring based on 
advanced sensor signal processing is implemented with the 
aim to detect the operating conditions leading in particular to 
the occurrence of lines and marks on the resulting surface. The 
study is performed through the employment of a multiple 
sensor monitoring system able to acquire voltage, current and 
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wire position signals in the gap between the workpiece and the 
wire electrode with a very high sampling rate of 50 MHz.  

To examine in depth the WEDM process conditions, a 
detailed analysis of the voltage and current signals is carried 
out and an advanced sensor signal processing methodology is 
developed to extract the most relevant sensor signal features. 
The feature extraction procedure is based on a sensor fusion 
approach, where the features of interest are attained from the 
joint analysis of the current and voltage signal together.  

The obtained features are employed to implement a pulse 
discriminating methodology and to finally construct sensor 
fusion pattern vectors useful to identify the critical machining 
conditions for WEDM process analysis and control.  

In particular, the construction of sensor fusion pattern 
vectors which comprise features from the voltage and current 
signals together will be performed with the aim to correlate 
them to the produced quality output (the resulting surface 
finish) and realize a cognitive fault diagnosis system able to 
detect the occurrence of undesired operative conditions 
leading to surface defects such as lines and marks.  

The correlation between the sensor fusion pattern vectors 
and produced surface quality will be realized through the 
implementation of a pattern recognition paradigm based on 3-
layers feed-forward back-propagation Neural Networks (NN). 

2. Sensor monitoring of Wire EDM 

Sensor monitoring of WEDM processes was performed 
during an experimental testing campaign of WEDM surfacing 
processes carried out on steel plate workpieces with a height 
of 20 mm. The WEDM tests were performed on a GF Agie 
Charmilles FI 440 ccS CNC wire EDM machine. A brass wire 
electrode (AC Brass 900) with a diameter of 0.25 mm and a 
resistance of 900 N/mm2 was employed.  

The sensor signal acquisition was carried out only during 
the surfacing phase, i.e. the last phase of the workpiece 
machining process which in total involves three phases: 
roughing, trimming and surfacing.  

2.1. Experimental plan 

The experimental campaign was designed according to a 
two-level full factorial experimental plan. Four machining 
parameters were selected as variables within the tests: voltage, 
feedrate, pulse-off time and gap (Table 1). According to the 
number of factors (4) and levels (2), 24 = 16 experimental tests 
were carried out. Moreover, 2 additional tests using the 
reference values for voltage, feedrate and pulse-off time, but 
different gap values (1 m or 9 m) were performed.  

 

Table 1. Levels of factors in the experimental plan. 

Factor Unit Ref. 
value 

High 
level 

% 
modif 

Low 
level 

% 
modif 

Voltage  V 200 200 0 180 10 

Feedrate mm/min 11.24 12.93 15 9.56 15 

Pulse off time s 1 1.1 10 0.8 20 

Gap m 9 9 0 1 89 

Two workpieces (one for each gap value) were subdivided 
into 9 segments of 8 mm length and each segment was 
machined under different WEDM process conditions. The 
WEDM process time for each segment was about 37-50 s. 

2.2. Sensor monitoring system 

The sensor monitoring system employed for signal 
acquisition during WEDM surfacing comprised three sensors 
(Figs. 1-2): two current sensors (Pearson Current Monitor 
Model 6585) to acquire the upper and lower head current 
signals, and one voltage probe to acquire the voltage signal. 

The current sensors were chosen due to their high 
frequency (up to 200 MHz) since the considered WEDM 
surfacing process is characterised by high frequency (715 
kHz). In addition to the voltage and current signals, the 
instantaneous position of the wire during WEDM was 
acquired. The CNC machine control was adapted to trace the 
bit of the machine position and send it to a 12 bit D/A 
Converter (Texas Instruments TLV5638) to obtain an analog 
signal of the wire position. As regards the data acquisition 
system, a National Instruments board (NI PXIe-1082) with 4 
BNC inputs was employed to acquire the data with a very 
high sampling rate of 50 MHz, in order to achieve a high 
resolution in the sparks characterisation. 

The acquisition of the wire position signal together with 
the currents and voltage signals, using the same sampling rate, 
was  carried out to support the search for correlations between 
workpiece surface defects and WEDM conditions.  

 

 

Fig. 1. The sensor monitoring system mounted on the wire EDM machine 

 

Fig. 2. Detail of the current and voltage sensors. 
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While defects such as lines and marks can be clearly 
localized on the workpiece surface, their localization within 
the voltage and current signals is hard to achieve, since the 
machining speed is not perfectly constant due to the initial 
acceleration. Therefore, once the position of a defect on the 
workpiece surface is defined, it is possible to go back to the 
corresponding signals of voltage and currents by using the 
synchronised wire position signal. 

3. Surface finish investigation 

The surface finish of the workpiece segments resulting 
from the WEDM tests was investigated with particular 
reference to the occurrence of lines and marks (Fig. 3). The 
segment surfaces presenting relevant defects such as lines or 
marks were examined to characterize the width and height of 
the defects and their position within the 8 mm length of the 
workpiece segment.  

This analysis was performed on a 3D optical  micro-
coordinate system, ALICONA InfiniteFocus, with a 
magnification of 10x. The 3D images of the surface were 
post-processed so that each point of the scan was coloured 
according to its height with respect to a zero level, thus 
allowing to clearly view all the defects. 

The acquired topographies represent only a band of few 
mm around the centre of the surface (middle height of the 
workpiece): since the lines generated during the WEDM 
process cross the entire 20 mm  height of the workpiece, this 
allowed to notably reduce the duration of the time-consuming 
measures. 

4. Sensor signal data processing 

In order to examine the sensorial data of interest, the 
portions of the currents and voltage signals corresponding to a 
defect need to be identified and segmented. The physical 
position of the defect was identified with the ALICONA 
instrument; however, due to the combination of the 
ALICONA measurement errors and the wire position signal 
error, it was decided to further analyse a wider portion of the 
wire position signal to identify a signal feature well related to 
the presence of a defect.  

By aligning the ALICONA topography of the surfaces with 
defects with the observation of the position signal plot, each 
defect corresponds to a modification of the wire position 
signal (Fig. 4). By analysing the voltage signal portions 
corresponding to modifications of the position signal, it was 
noted that the voltage decreased in that portion, indicating that 
a short circuit occurred at that machining time. Thus, it was 
possible to precisely identify the portions of current and 
voltage signals of interest for surface defects analysis.  

However, the correlation between the occurrence of a short 
circuit and the presence of a defect on the final surface is not 
so straightforward: as a matter of fact, the number of short 
circuits in each test was higher than the number of defects 
measured on the final surface. This means that the sole 
presence of short circuit does not determine a defect on the 
surface. 

 

Fig. 3. The first 8 surfaces of the experimental plan. 

 

Fig. 4. (a) ALICONA surface profile and corresponding (b) coloured surface 
topography; (c) position signal; (d) two details of the position signal modified 

in coincidence with surface defects. 

5. Voltage and current signal feature extraction 

To observe the WEDM process conditions that could be 
undoubtedly related to defects such as lines and marks, a 
detailed analysis of the voltage and current signals 
corresponding to defects was carried out to extract a number 
of signal features for the robust identification of the critical 
machining conditions. 
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As some of the features of interest could only be extracted 
by taking into consideration both current and voltage data 
together, a sensor fusion approach was adopted. Sensor fusion 
combines sensory data from disparate sources so that the 
resulting information is more complete than would be 
possible when these sources are used individually [18].  

Therefore, the features extracted from the sensor signals 
can be distinguished as follows: features extracted from 
current signal only; features extracted from voltage signal 
only; sensor fusion features extracted by combining the 
information provided by voltage and current signals together. 
All these features will be employed to construct sensor fusion 
feature pattern vectors to be employed for cognitive pattern 
recognition.  

The main challenge concerning feature extraction was 
related to the machining parameters such as the high 
frequency of the sparks characterizing the considered WEDM 
process, resulting in voltage and current signal shapes 
diverging from the ideal shapes for EDM processes [14].  

Among the many features that could be extracted from the 
signals, the following ones were selected: 

 First group pulses (normal) 
 Second group pulses (arc) 
 Average discharge energy (only for second group) 
 Average current pulse duration (only for second group) 
 Third group pulses (short circuit) 
 Spark frequency 
 Open circuit ratio 

A pulse classification procedure was developed to 
discriminate the different types of pulses occurring during the 
process. Several methods have been proposed in the literature. 
To estimate machining phenomena, Dauw et al. [19] 
classified discharge pulses into several categories based on 
voltage levels. However, this classification is difficult to 
apply to all machine models and machining conditions, in 
particular in case of high speed discharge current.  

Therefore, another approach proposed by Watanabe et al. 
[20] was implemented: discharge pulses are characterized 
statistically by three discharge pulse profiles, called normal, 
arc, and short circuit pulses, respectively. These groups are 
classified based on the observation of the frequency 
distribution of spark voltage, peak current, current pulse 
length, pulse energy. 

The first group pulses, or normal pulses, are those that 
generate a spark when the voltage reaches the settled voltage 
level (Vsp), and are considered to contribute to the metal 
removal process. 

The second group pulses, or arc pulses, are very unstable in 
terms of pulse occurrence number and energy. The spark 
voltage is lower than for the first group as the pulse generates 
a spark before reaching the Vsp level. 

The third group pulses, or short circuits, are those that 
generate a spark at lower voltage level. The occurrence of a 
so-called “short circuit” represents an undesired phenomenon 
in WEDM, since it can lead to defects on the final workpiece 
surface or even to the wire breakage [21,22]. The short circuit 
ratio, i.e. the number of short circuits over the total  number of 
pulses, can be employed to monitor and evaluate the gap 

condition, and it has been successfully used as a control 
parameter for the adaptive control of WEDM process [23]. 

An important feature in WEDM is the average discharge 
energy, to be kept under control to maintain the stability of 
the process [24]. Otherwise, the deionization of the discharge 
zone would be affected, resulting in either low or uncontrolled 
material removal rate. Since the second group pulses are the 
more heterogeneous and unstable, it was chosen to extract the 
discharge energy of the second group pulses as relevant 
feature to discriminate the different process conditions.  

For the same reason, the average discharge current pulse 
duration was extracted for the second pulse group. 

The sparking frequency, i.e. the total number of sparks Nt 
divided by the machining time interval tt, was calculated on 
the basis of the current signal data as the total number of 
sparks divided by the time interval of the signal. A variation 
of the sparking frequency could help identify abnormal 
conditions such as the occurrence of events like short circuits, 
and it can be employed as a control parameter for the WEDM 
process [15].  

The open circuit ratio represents the number of open 
circuits over the total number of pulses of the signal. An open 
circuit occurs when a voltage pulse does not generate a 
current spark, since the dielectric is not broken, e.g. due to a 
large gap between the workpiece and the wire electrode. To 
identify the open circuits, a sensor fusion approach was used 
to combine information from voltage data and current data: 
the open circuits were identified as the voltage peaks not 
followed by a current peak [25]. 

6. Cognitive pattern recognition based on neural networks 

The features extracted from the voltage and current signals 
were combined into sensor fusion pattern vectors (SFPV) the 
elements of which comprise features from both signal types 
and sensor fusion features. The SFPV are used as input to 
neural network (NN) based pattern recognition aimed at 
decision making on surface finish quality in terms of lines and 
marks defect occurrence [26].  

The selected cognitive pattern recognition paradigm is 
based on supervised neural network data processing, which 
represents a valid instrument for prediction tasks through 
input-to-output vectors mapping. 

Three different SFPV training sets (named A, B, C), each 
composed of 100 vectors, were constructed by extracting the 
selected features from three different time intervals (A = 20 
ms, B = 50 ms, C = 100 ms) within the entire voltage and 
current signals during one WEDM test. Each set was used to 
train and test diverse NN architectures for cognitive pattern 
recognition [26]. 

Three-layers feed-forward back-propagation NNs were set 
up as follows: input layer with a number of input nodes equal 
to the number of features in the input SFPV; hidden layer with 
a number of nodes depending on the number of input nodes; 
output layer with one node yielding a binary code associated 
with line absence/line presence: 0 = absence; 1 = presence. 

NN learning was carried out with each training set 
according to the leave-k-out method [26]: one homogeneous 
group of k SFPV (here, k = 1), removed from the full training 
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set, was held back in turn for testing and the rest of the SFPV 
was used for training. 

During testing, the NN output was considered correct if 
error E = (Oa – Od), where Oa = actual output and Od = 
desired output, is -0.5  E  +0.5; otherwise, a 
misclassification case occurs. The ratio of correct 
classifications over the total training cases yields the NN 
success rate (SR). 

7. Results and discussion 

By employing all the extracted features to construct 7-
features SFPV for NN learning, three different architectures 
were set up by varying the number of hidden nodes: 7-7-1, 7-
14-1 and 7-21-1, respectively. The NN SR values obtained by 
testing each NN architecture with each training set are 
reported in Table 2. 

The table shows that the NN SR values in the identification 
of the line and marks surface defect occurrence are in a high 
range: 81% - 97%. The best results were obtained for the 50 
ms and 100 ms time intervals, where the SR was always  
96%. This suggests that 20 ms may not be always sufficient to 
determine whether the corresponding signal portion, though 
characterised by critical features (high number of third group 
pulses, low number of first group pulses, high sparking 
frequency, etc.) will lead to a defect or not. The recurrence of 
these critical features plays an important role: only when they 
take place for a sufficient duration, a defect is generated on 
the workpiece surface. 

In order to verify the criticality of the diverse extracted 
features for NN defect identification, the 7 original features 
were removed one by one, in turn, from the SFPV of training 
sets A, B and C: 21 new training sets containing 6-features 
SFPV were thus set up. These new training sets were used for 
learning of the following NN architectures varying the 
number of hidden nodes: 6-6-1, 6-12-1 and 6-18-1. 

The best NN performance was achieved for the 6-features 
SFPV training sets A’, B’ and C’, built by removing the open 
circuit ratio feature from the original features (Table 3). In 
particular, a maximum NN SR value = 100% was obtained for 
the 6-6-1 NN configuration, with the 6-features SFPV training 
set B’ built by extracting features using a 50 ms time interval.  

The NN performance for training set C’ using a 100 ms 
time interval was also very high, whereas for training set A’ 
using a 20 ms time interval the NN performance was 
significantly lower, as already verified in the 7-features SFPV 
training set cases. 

The above results indicate that the open circuit ratio does 
not positively contribute to lines and marks surface defect 
identification and, accordingly, could be simply neglected. 
Moreover, the 20 ms time interval used for feature extraction 
is confirmed to be the least effective for surface defect 
recognition. By comparing the 50 ms and 100 ms time 
intervals, the former is able to provide a full 100% NN 
performance. Thus, the 20 ms time interval seems to be too 
short for effective defect recognition and the 50 ms time 
interval performs best. This conveys the idea that the critical 
duration of the key features recurrence that leads to surface 
defects is higher than 20 ms and very near 50 ms. 

Table 2. NN success rate for 7-features SFPV training sets. 

Training set A 
(20 ms) 

Training set B 
(50 ms) 

Training set C 
(100 ms) 

NN architecture NN SR NN SR NN SR 

7-7-1 88% 97% 96% 

Table 3. NN success rate for 6-features SFPV training sets where the open 
circuit ratio feature was removed. 

 Training set A’ 
(20 ms) 

Training set B’ 
(50 ms) 

Training set C’ 
(100 ms) 

NN architecture NN SR NN SR NN SR 

 
Finally, the lower performance of the 100 ms time interval 

in comparison with the 50 ms can be attributed to the different 
training set composition. As a matter of fact, for the same 
signal portions related to surface defects, a significantly 
higher number of SFPV mapped to defects were obtained 
using the 50 ms time interval, yielding a more balanced 
proportion of line absence/line presence cases for training set 
B’ than for training set C’. 

8. Conclusions 

WEDM process monitoring was implemented in order to 
identify the operating conditions responsible for the 
generation of defects such as lines and marks on the final 
workpiece surface. An experimental campaign consisting of 
18 WEDM surfacing tests on steel plates was carried out. 
Process monitoring was performed using voltage, current and 
wire position multiple sensors detecting signals from the gap 
between workpiece and wire electrode. The position signal 
was used to correlate the location of surface defects to the 
corresponding portion of voltage and current signals. 

 An advanced signal processing methodology based on 
sensor fusion approach was applied to the voltage and current 
signals to implement a pulse discriminating methodology and 
extract a number of sensor signal features with the aim to 
realize WEDM process analysis and control through the 
identification of the critical machining conditions responsible 
for surface defects.  

The extracted features were used to construct sensor fusion 
pattern vectors to be fed in input to supervised Neural 
Network (NN) paradigms in order to find correlations 
between signal features and workpiece surface quality. The 
NN data processing results showed that a strong correlation 
exists, as the NN success rate was always  81% and reached 
up to a full 100% in the case where the training set was 
obtained by extracting the key features from 50 ms time 
intervals and the least effective feature (open circuit ratio) was 
removed from the NN training set. 
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