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Muceli S, Boye AT, d’Avella A, Farina D. Identifying represen-
tative synergy matrices for describing muscular activation patterns
during multidirectional reaching in the horizontal plane. J Neuro-
physiol 103: 1532-1542, 2010. First published January 13, 2010;
doi:10.1152/jn.00559.2009. Muscle synergies have been proposed
as a simplifying principle of generation of movements based on a
low-dimensional control by the CNS. This principle may be useful
for movement restoration by, e.g., functional electrical stimulation
(FES), if a limited set of synergies can describe several functional
tasks. This study investigates the possibility of describing a multijoint
reaching task of the upper limb by a linear combination of one set of
muscle synergies common to multiple directions. Surface electromyo-
graphic (EMG) signals were recorded from 12 muscles of the domi-
nant upper limb of eight healthy men during single-joint movements
and a multijoint reaching task in 12 directions in the horizontal plane.
The movement kinematics was recorded by a motion analysis system.
Muscle synergies were extracted with nonnegative matrix factoriza-
tion of the EMG envelopes. Synergies were computed either from the
single-joint movements to describe the two degrees of freedom
independently or from the multijoint movements. On average, the
multijoint reaching task could be accurately described in all the
directions (coefficient of determination >0.85) by a linear combina-
tion of either four synergies extracted from the individual degrees of
freedom or three synergies extracted from multijoint movements in at
least three reaching directions. These results indicate that a large set
of multijoint movements can be generated by a synergy matrix of
limited dimensionality and common to all directions if the synergies
are extracted from a representative number of directions. The linear
combination of synergies may thus be used in strategies for restoring
functions, such as FES.

INTRODUCTION

The planning and execution of movements involve the
control of several nonlinear actuators (muscles) operating in an
ever changing environment. It would be computationally very
complex for the CNS to control each muscle individually to
generate a movement (Bernstein 1967). Thus the control of
movement by the CNS may be based on an internal low-
dimensional task-level representation of the external environ-
ment. According to this concept, movements are executed by
translating the task-level commands into muscle activation
patterns (Kandel et al. 2000; Ting and McKay 2007). Synchro-
nous muscle synergies have been suggested as a model for this
translation (Bizzi et al. 2002; d’Avella and Bizzi 2005;
Ivanenko et al. 2004; Saltiel et al. 2001; Ting and Macpherson
2005; Tresch et al. 1999; Weiss and Flanders 2004).
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A muscle synergy is a set of relative nonnegative levels of
muscle activation (Ting and McKay 2007) and each synergy is
activated by a nonnegative activation signal. The absolute
activation level of each muscle over time is the summation of
the contributions from all synergies, weighted by the activation
signals. The concept of muscle synergies is supported by
results of studies at different levels of the neuromuscular
system. For example, a common drive in the oscillation of
discharge rates of motor units has been observed across syn-
ergistic muscles (DeLuca and Erim 2002). Moreover, there is
a correlation between the discharge of neurons located in the
primary motor cortex of the monkey and surface electromyo-
graphs (EMG) of multiple muscles, suggesting that descending
fibers project to motor neuron pools of different muscles
(Holdefer and Miller 2002). Similar results were obtained in
studies in which cortical neurons of the cat (Ethier et al. 2006)
or interneuronal sites in the spinal cord of the frog were
stimulated (Saltiel et al. 2001). These results suggest that motor
control by the CNS may be organized into a small number of
modules that can be activated by descending neurons and
combined to produce a wide range of movements.

Matrix factorization algorithms have been proposed for the
decomposition of a muscle activity pattern into synergies and
activation signals. These algorithms include principal compo-
nent analysis (PCA), factor analysis (FA), independent com-
ponent analysis (ICA), and nonnegative matrix factorization
(NMF) (Tresch et al. 2006).

The synergistic model of motor control is attractive for
designing strategies for movement restoration. According to
the concept of synergistic muscle activations, the recruitment
of a large number of muscles may be performed by a reduced
number of independent control signals (activation signals) that
are translated into individual muscular activation patterns by a
transformation matrix (the synergy matrix). These activation
signals might be delivered either through intraspinal electrical
stimulation, exploiting the intrinsic synergistic organization of
the spinal circuitries, or by functional electrical stimulation
(FES) of peripheral nerves that control specific muscles, using
an appropriately derived synergy matrix. The first approach has
been widely investigated in theoretical (Barbeau et al. 1999;
Mussa-Ivaldi 1992; Mussa-Ivaldi and Giszter 1992) and exper-
imental studies (Bizzi et al. 1991; Giszter et al. 1993; Lemay
and Grill 2004; Lemay et al. 2001; Mussa-Ivaldi et al. 1994).
Moreover, it has been shown that the spinal motor output
modularity is preserved in the cat after chronic spinalization
(Boyce and Lemay 2009), suggesting the possibility of using
intraspinal microstimulation to restore motor output following
chronic spinal cord injury.
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The possibility of using synergistic control in function res-
toration using FES of peripheral nerves has been less exten-
sively explored. Such an approach requires the identification of
a synergy matrix that can accurately describe a large number of
functional tasks. Although it has been shown that some syner-
gies extracted from different movements are similar to each
other (d’Avella and Bizzi 2005), the possibility that a single
matrix of limited dimensionality can describe (and thus pre-
dict) a large variety of tasks (including tasks not used for the
computation of the matrix) has been examined in only a few
studies (Ajiboye and Weir 2009; Torres-Oviedo et al. 2006).

In this study, we analyzed the multijoint system consisting
of the shoulder and elbow during movements in the horizontal
plane. The functional degrees of freedom (DOFs) in these
movements are two, one for each joint (Li 2006). This system
is relevant in many functional tasks and has been investigated
in several rehabilitation strategies for recovery of function
(e.g., Popovic et al. 2002). Recent studies on FES of the
complex shoulder—elbow have focused on the identification of
a subset of muscles under voluntary control from which stim-
ulation levels necessary for paralyzed muscles can be predicted
(Hincapie and Kirsch 2007, 2009). This approach is consistent
with the notion that muscles across the upper extremity are
controlled by the CNS in a synergistic manner. Therefore a
linear controller based on muscle synergies should in principle
allow obtaining performance comparable to that of a full-
dimension, nonlinear controller (Berniker et al. 2009).

This study is intended to provide additional support to the
use of a synergistic controller in FES by proposing a method to
effectively reduce the number of control signals. We hypoth-
esize that one synergy matrix of limited dimensionality can
describe the muscle activation of all functional reaching tasks
in the horizontal plane and we propose strategies to extract
these context-unspecific synergies. Therefore the aim of the
study was to demonstrate that one synergy matrix is sufficient
to describe all functionally relevant reaching tasks in the
horizontal plane and to propose methods to experimentally
compute this synergy matrix. The results of the study have
direct relevance in designing electrical stimulation patterns for
paralyzed muscles.

METHODS
Subjects

Eight healthy men (age, 26.6 = 3.2 yr; weight, 75.8 = 8.2 kg;
stature, 180.1 = 7.6 cm) volunteered for the experiments. Subjects
provided written informed consent before participation and the pro-
cedures were approved by the local ethics committee.

Procedures

The experiment consisted of movements in the horizontal plane.
The subjects sat in front of a table with the right (dominant) arm
supported by a custom-designed manipulandum that allowed flexion
and extension of the shoulder and elbow (Fig. 14). The upper trunk
was not restrained, but analysis of the kinematics data showed that its
movement during the investigated tasks was negligible, as previously
observed (Galloway and Koshland 2002). “Reaching” in the horizon-
tal plane was defined as the task of moving the arm such that the
position of the wrist, which was projected on the table surface by a
laser beam, was within a circle of 20-mm diameter (target). Audible
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FIG. 1. A: posterior view of the manipulandum used to perform single- and

multijoint tasks in the horizontal plane. B: shoulder extension—flexion move-
ments. The initial position corresponded to the shoulder flexed at Vg, = 90°
and the final position corresponded to the shoulder extended at Vg, = 180°.
This task was repeated for 3 elbow angles (V = 60, 105, 150°). C: elbow
extension—flexion movements. The initial position corresponded to the elbow
flexed at V,; = 60° and the final position corresponded to the elbow extended
at V., = 150°. This task was repeated for 3 shoulder angles (Vg, = 90, 135,
180°). D: reaching tasks with starting point the center of the circle and targets
around the circle. The reaching tasks were repeated for 3 positions of the center
point.

cues were given to indicate the start and end of a movement and the
subjects trained for the tasks for about 15 min before the recordings.

Tasks

Each movement had a duration of 1 s and movements were
separated by 5 s of rest. Synchronous synergies are invariant for speed
and load both in terms of muscle activations (Gabriel 1997), joint
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torque (Gottlieb et al. 1996), and joint angles (Lacquaniti and So-
echting 1982) and thus speed and load were not varied in this study.
The subjects performed single-joint movements of the shoulder and
elbow and multidirectional, multijoint reaching movements in the
horizontal plane. The order with which the movements were per-
formed was randomized.

For single-joint movements with the shoulder, the initial position
corresponded to the shoulder flexed at 90° and the elbow at an angle
that varied among 60° (SH1), 105° (SH2), or 150° (SH3) (Fig. 1B).
The subject extended the shoulder from the initial position to 180° of
flexion in 1 s, rested for 5 s, returned to the starting position in 1 s by
flexing the shoulder, and rested in the starting position for 5 s before
the next movement. The elbow was fixed at one of the three angles
during these tasks. The shoulder extension/flexion task was repeated
10 times, which took 120 s, for each position of the elbow.

Single-joint movements of the elbow were performed in a way
similar to that of the shoulder movements (Fig. 1C). The initial
position corresponded to the elbow flexed at 60° and the shoulder joint
at 90° (EL1), 135° (EL2), or 180° (EL3). The target position corre-
sponded to the elbow at 150°. The number of repetitions and resting
intervals was the same as that for the shoulder tasks.

The multijoint movements in the horizontal plane consisted in
reaching 12 targets evenly spaced along a circumference (Fig. 1D).
The radius of the circumference was half the distance between the
olecranon and styloid process of the ulna. The starting point was the
center of the circle and corresponded to the elbow joint angle at 90°
and the shoulder joint angle at either 100° (JO1), 120° (JO2), or 140°
(JO3). Each target was reached once in random sequence. The
reaching movement had 1-s duration and was followed by 5 s of rest
at the target position and the return to the center point in 1 s. Thus
reaching all targets took 144 s and was repeated for the three initial
shoulder angles.

EMG recordings

Surface EMG signals were recorded in bipolar derivations with
pairs of Ag/AgCl electrodes (Ambu Neuroline 720 01-K/12; Ambu,
Ballerup, Denmark) with 22 mm of center-to-center spacing. Prior to
electrode placement the skin was shaved, if necessary, and lightly
abraded. The EMG signals were amplified with a gain of 2,000
(EMG-USB, LISiN; OT Bioelettronica, Turin, Italy), band-pass fil-
tered (eighth-order Bessel filter, bandwidth 10-750 Hz), sampled at
2,048 Hz, and A/D converted on 12 bits. A reference electrode was
placed at the wrist of the nondominant arm.

The EMG signals were recorded from the following muscles
[electrode locations are in accord with those reported by Hermens
et al. (1999) unless specified otherwise]: brachioradialis (BIO, one sixth
the distance ranging from the midpoint between the cubit fossa and
the lateral epicondyle to the styloid process of ulna), anconeus (ANC,
2 cm distal to the midpoint between the lateral epicondyle and the
olecranon process), biceps brachii medial head (BME), biceps brachii
lateral head (BLA), brachialis (BIA, 4 cm proximal with respect to the
midpoint between the fossa cubit and the lateral epicondyle), triceps
lateral head (TLA), triceps long head (TLO), deltoid medial part
(DME), pectoralis major (PEC, one third the distance ranging from
the glenohumeral joint to the lowest point of the sternum), deltoid
anterior part (DAN), deltoid posterior part (DPO), and latissimus dorsi
(LAT, 4 cm below the inferior border of the scapula, half the distance
between the spine and the lateral edge of the body).

Kinematics

Reflective ball-shaped markers (18-mm diameter) were placed in
correspondence of the left acromion (LAC), right acromion (RAC),
lateral epicondyle of humerus (LEP), and posterior midpoint between
the styloid processes of radius and ulna (MST). Positions of the
markers were tracked with a motion analysis system (Qualisys Track
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Manager; Qualisys, Gothenburg, Sweden) with eight infrared digital
video cameras (ProReflex MCU; Qualisys). The kinematics data were
recorded with a sampling frequency of 240 Hz and synchronized with
the EMG recordings for data analysis.

Synergy model

It was assumed that a system with D biomechanical DOFs is driven by
a muscular system with N activation signals, denoted by the vector P(k)

P(k) = [pi(k), pa(k), . ... pM(B)]" ()

where p,,(k) is the nth activation signal and k indicates the time. In this
model, each activation signal represents a synaptic input from premo-
tor neurons to motor neuron pools. Activations signals will also be
referred to as control signals in the context of electrically stimulated
muscles.

Assuming that M muscles are involved in the movement, their
activity levels at the time instant k are described by the muscle
activation vector X(k)

X(k) = [xy(k), x(k), ..., xu(k)]" 2)
where x,

(k) is the level of activation of the mth muscle. The activation
of a muscle represents the combined output of all active motor
neurons innervating the muscle. In this study, X(k) was estimated from
rectified and low-pass filtered surface EMG signals, assuming that
cross talk was negligible. The evolution of the muscle activation
vector over time is referred to as muscle activation pattern.

The relationship between X(k) and P(k) is described as

X(k) = X,(k) = S-P(k) (3

where X, (k) is the reconstructed signal, S = {s,,,,} is an M X N matrix
and s,,, is the gain by which the nth activation coefficient is trans-
ferred to the mth muscle activation signal. Each column of S is
referred to as a synergy and the matrix S will be indicated as the

synergy matrix.

EMG preprocessing

The EMG signals were off-line band-pass filtered (fourth-order
zero-lag Butterworth digital filter, bandwidth 20—400 Hz) to attenuate
DC offset, motion artifacts, and high-frequency noise (Hermens et al.
1999). The filtered signals were full-wave rectified and low-pass
filtered (fourth-order zero-lag Butterworth digital filter, cutoff fre-
quency 1 Hz) to obtain the muscle activation patterns. The surface
EMG signals recorded from the upper trunk (PEC and LAT) were
contaminated by electrocardiogram (ECG) artifact. Thus a reference
channel measuring the ECG signal was recorded from the left pecto-
ralis muscle and used in a least mean squares adaptive digital trans-
versal filter (50 taps) (Mesin et al. 2008) to eliminate the ECG artifact
from the two contaminated channels.

Tonic EMG levels were observed in some muscles between tasks,
presumably acting as joint stabilizers (Suzuki et al. 2001), e.g., ANC
and TLO. Only the time intervals corresponding to movements were
analyzed. The center instant of a movement was defined as the time
instant of maximum angular velocity, as measured from the kinemat-
ics data. Each movement was analyzed in an interval ranging from 1 s
before to 1 s after the center instant.

Kinematics data processing

The three-dimensional positions of the reflective markers were
projected onto the horizontal plane. The upper trunk and limbs were
modeled as an interconnected chain of rigid bodies (Cappellini et al.
2006): LAC-RAC for the upper trunk, RAC-LEP for the arm, and
LEP-MST for the lower arm. The joint angles of the shoulder

« MARCH 2010 + WWW.jn.org

/7102 ‘T udy uo G'€£°022°0T Aq /6o ABojoisAyd-uly/:dny wouy papeojumoq



http://jn.physiology.org/

MUSCLE SYNERGIES IN SINGLE- AND MULTIOINT MOVEMENTS 1535

(LAC-RAC-LEP) and elbow (RAC-LEP-MST) were calculated at
each time sample. The joint angle signals were low-pass filtered
(fourth-order zero-lag Butterworth digital filter, cutoff frequency 1
Hz) to reduce instrumentation noise. The first derivative of the angle
signals was calculated to estimate the angular velocity. The processing
of kinematics variables was performed exclusively for the purpose of
signal segmentation.

Methods for synergy extraction

An NMF algorithm (Lee and Seung 2001) was used to extract N
muscle synergies from the EMG signals. The synergy matrix S (M X N) and
the activation signal matrix P (N X K), where K is the number of samples,
were initialized with random nonnegative values. The same synergy
matrix S was used to describe the muscular activation pattern of a
large set of movements, including movements not used for synergy
extraction. This was accomplished by a modified version of the NMF
algorithm, referred to in the following text as nonnegative reconstruc-
tion (NNR). With NNR, the synergy matrix S was fixed and, at each
iteration, only the activation signal matrix P was updated, following
the update multiplicative rule proposed by Lee and Seung (2001). In
contrast to the pseudoinverse approach, which would also provide an
estimation of P given X and S, the proposed NNR algorithm ensures
nonnegative activation signals.

The proposed NNR method is consistent with a practical applica-
tion in which one synergy matrix is fixed and used to transform
activation signals into muscular activation signals. Like other matrix
factorizations algorithms, the results of NMF and NNR present
ambiguities of scaling and permutation. The scaling ambiguity implies
that it is possible to identify only the relative, and not the absolute,
activations between synergistic muscles. In this study, the scaling
ambiguity has been addressed by normalizing each synergy with
respect to the level of activity of the most active muscle in that
synergy. With this normalization, the maximum value in each column
of the synergy matrix is equal to 1. The ambiguity of permutation is
not relevant in the synergy context. Given a certain synergy matrix as
input to the NNR algorithm, the control signal corresponding to the
nth synergy (the nth column in the synergy matrix) is multiplied by
the nth row of the activation signal matrix.

In this study, we propose methods to extract a common synergy
matrix S that describes the entire set of investigated functional tasks in
the horizontal plane. The estimated muscular activation pattern X, =
SP was compared with the recorded pattern X by the coefficient of
determination 7. The coefficient of determination used in this study
was the square of the correlation coefficient of the concatenated
muscular signals. d’Avella et al. (2003, 2006) defined the multivariate
r* as the variation that can be explained by the model: VAF = 1 —
SSE/SST, where SSE (sum of squared errors) is the unexplained
variation and SST (total sum of squares) is the total variation (of the
data). The choice adopted in the present study ensures nonnegativity
of the performance index. Results obtained with other indexes, such as
the VAF index, did not substantially differ from those obtained with
the square of the correlation coefficient (see RESULTS).

The reconstruction performance was analyzed as a function of the
factorization dimension to select the number of synergies needed to
describe the tasks used for synergy calculation. A cross-validation
procedure was used in which a random portion of the samples in a
data set (80%) was selected for synergy extraction and reconstruction
was performed on the remaining samples (20%) (d’Avella et al.
2003). Mean values over 10 simulation runs were used for this
analysis and the coefficient of determination was displayed as a
function of the number of synergies (range: 1-6). The optimal
dimensionality was associated with the number of synergies corre-
sponding to a change in slope of the association between coefficient of
determination and number of synergies (d’Avella et al. 2003).

To compare pairs of synergies, the scalar product of the two vectors
was divided by the product of the norms. This value ranges between

0 and 1 because vectors of synergies are nonnegative. To test for the
level of performance that was due to chance, random synergies were
generated by random samples from exponential distributions with a
mean value of 10. These distributions were chosen because they are
similar to the distributions observed in the analysis of experimental
data in previous studies (Tresch et al. 2006). Random activation
patterns were also generated from exponential distributions with the
same mean value, but signals were low-pass filtered (fourth-order
zero-lag Butterworth digital filter, cutoff frequency 1 Hz) to match the
frequency content of the experimental activation patterns.

Different synergy matrices were computed from different sets of
tasks. Each synergy matrix was then tested by its ability of describing
the entire set of directions in the multijoint reaching task investigated.
Synergy matrices were extracted from: /) the single-joint movements
of the elbow and shoulder or 2) a combination of multijoint move-
ments in 1, 2, 3, and 12 directions. In each case, the extracted synergy
matrix was used to reconstruct the entire set of directions of the
multijoint reaching task with the aim of assessing whether this matrix
was sufficiently general to describe a large set of conditions.

For the purpose of synergy extraction, muscle activation patterns
(EMG envelopes) were resampled by interpolation to a sampling
frequency of 40 Hz.

RESULTS

Figure 2 shows a representative example of the 12 muscle
activation signals and the 2 joint activation signals during 6
elbow movements (single-joint) of a representative subject.
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FIG. 2. Representative example of muscle activation patterns (A: 12 traces)
and angular velocities (B) of shoulder (SH) and elbow (EL) joints recorded
from a subject during 3 repetitions of elbow extension and flexion with the
shoulder angle at 135°. The vertical lines indicate the time instants of
maximum angular velocity. C: the marker positions of the first movement
(indicated by the square in the joint activation patterns) are shown for 9 evenly
spaced samples (250 ms per interval) over a time interval of 2 s.
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The first movement is illustrated by a chain of rigid bodies. As
it appears from this example, the muscle activation pattern is
highly redundant. Figure 3 shows the decomposition of the
muscle activation pattern represented in Fig. 2 into activation
signals and muscle synergies. Synergies were extracted using
the NMF algorithm from the signal obtained concatenating the
2-s intervals centered on the instant of maximum angular
velocity of each of the 6 movements (12 s in total). Each
synergy is activated mainly during either extension or flexion
of the elbow; thus the maximum values of the activation
signals correspond to the peaks of the joint activation signals
for extension and flexion (Fig. 3). The tonic activity level is
part of the synergy contributing mainly to elbow extension. In
this example, the 7> index of reconstruction accuracy was 0.86.

Figure 4A shows the performance index * (mean *+ SD, n =
8 subjects) as a function of dimensionality using NMF when
synergies were extracted from the single-joint tasks.

Muscle activation patterns were reconstructed with 2 >0.85
when using two dimensions in the single-joint movements.
Moreover, the performance index steeply increased when in-

Activation signal 1 Synergy 1 Muscle activation patterns
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FIG. 3. Decomposition of the muscle activity pattern shown in Fig. 2 into
activation signals and muscle synergies. In all, 12 s of the signal corresponding
to the single-joint movements shown in Fig. 2 were used for the extraction
(each of the 6 movements was analyzed in an interval ranging from 1 s before
to 1 s after the instant of maximum angular velocity). The recorded muscle
activation pattern is shown on the right (dashed line) together with the pattern
estimated using 2 activation signals (solid line).
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creasing the number of synergies from 1 to 2, whereas it did
not change substantially for a further increase. Thus it was
assumed that the dimensionality of the single-joint muscular
activation patterns was two (d’Avella et al. 2003).

The mean similarity between synergies extracted from two
repetitions of the same single-joint movement (across 8 sub-
jects and 6 single-joint movements, for a total of 48 compar-
isons) was 0.99, indicating high reliability of synergy extrac-
tion across repetitions. Conversely, repeating the same analysis
on random data led to a mean similarity of 0.67. Figure 4B
shows the synergies extracted from the single-joint movements
of shoulder and elbow when the nonmoving joint was fixed at
three angles. Considering the task SH2, it can be noted that the
most active muscles in the shoulder synergies are the DPO and
the DAN (a shoulder extensor and flexor, respectively). During
the task EL2, the ANC, which mainly contributes to elbow
extension, is the muscle mostly contributing to one of the two
synergies, whereas the BME, BLA, and BIA, active during
elbow flexion, are grouped in the other synergy. Thus the
extraction of synergies from single-joint tasks determined a
separation between DOFs. The similarity between synergies
extracted from two trials of the same type of movement with the
nonmoving joint in different positions was 0.87 (across 8 subjects
and 3 combinations for each joint, 72 comparisons in total).

Table 1 shows the reconstruction performance when a mus-
cle activation pattern of one single-joint movement was used to
reconstruct another single-joint movement. The performance
index was very low when attempting the reconstruction of
elbow movements from synergies extracted from shoulder
movements and vice versa. However, the performance index r
was high when using synergies obtained from the same move-
ment but with the nonmoving joint at different angles.

The selection of different performance indexes did not
change the relative comparisons. For example, the reconstruc-
tion of the tasks SH1 and SH2 using synergies extracted from
the same tasks led to a performance of 0.76 * 0.3 and 0.87 =
0.08, respectively, when using the index VAF (d’Avella et al.
2003). Thus the relative quality of reconstruction was the same
as that when analyzed with the index used in this study (Table 1).
The trends in the results were also the same when using the two
performance indexes for the other tasks.

Reconstruction of multijoint tasks with synergies extracted
from single-joint tasks

Multijoint movements were reconstructed using the syner-
gies extracted from the single-joint movements and synergies
directly extracted from a set of multijoint directions. Similar to
the results for single-joint tasks, the results presented in the
following for the multijoint movements were very similar
varying the initial shoulder joint angle of 100°, 120°, or 140°.
Thus for clarity of the presentation, only the results for the
reaching task performed with shoulder joint angle of 120° are
presented in the following.

Table 2 shows the index #* associated with the reconstruction
of single-joint and multijoint reaching movements, as well as
random structureless data, when using the synergy matrix ex-
tracted from single-joint movements. One synergy was not suffi-
cient to describe any task, as predicted by the dimensionality
analysis (Fig. 4), whereas two synergies could explain single-joint
tasks but not multijoint tasks, as expected. When using four
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FIG. 4. A: analysis of dimensionality of muscle activation patterns for single-joint tasks. A cross-validation procedure was used to obtain a robust measure
of 7 for a given dimension. Six data sets were used for synergy extraction (corresponding to the 6 panels): SH1, SH2, SH3 (shoulder movements with elbow
at 60, 105, or 150°, respectively) and EL1, EL2, EL3 (elbow movements with the shoulder at 90, 135, or 180°, respectively). Data are mean and SD of r* across
the 8 subjects. The number of synergies was estimated as the dimension at which the slope of the 7 curve changed sharply (d’Avella et al. 2003) and was 2
in all cases. B: for each of the 6 data sets, the 2 mean synergies (mean across the 8 subjects) are shown. See text for task description.

synergies extracted from the two single-joint tasks independently,
the accuracy in the reconstruction was high for both single-joint
movements and the reaching task in the horizontal plane. Four
random synergies did not allow the description of activation
patterns in any condition and random structureless data could not
be reconstructed by any of the synergies extracted from the
experimental data. Table 2 demonstrates that a large set of directions
in a multijoint reaching task can be expressed by one synergy matrix
of dimension four, extracted from single-joint tasks and capable of
reconstructing a large set of tasks not used for the synergy computa-
tion. Moreover, the four synergies extracted using the single-joint
tasks were very similar across subjects. The mean similarity of
synergies (average across all pairs of subjects) was 0.80 = 0.07.

Directional tuning of synergies extracted from
single-joint tasks

Figure 5A shows the index r* for the 12 targets in the
reaching tasks as a circular plot. The reconstruction was

TABLE 1.

synergies extracted from another movement (indicated in the columns)

performed using the four synergies extracted from the single-
joint movements (two for each single-joint task, extracted
independently). In addition, the reconstruction was obtained by
using only one synergy, chosen from among those extracted
from single-joint movements. The r* index for the multijoint
reaching task was >0.8 for all directions using the four
synergies (Fig. 5). Moreover, the elbow and shoulder contri-
butions were directionally tuned and combined to produce
multijoint movements. For example, Fig. 5 indicates that the
synergy that group the muscles responsible for shoulder exten-
sion (shoulder synergy 1 in Fig. 4B) provided a good recon-
struction in the zones of the horizontal plane that can be
reached by shoulder extension; similar results are observed for
the synergies that group the muscles responsible for shoulder
flexion (shoulder synergy 2 in Fig. 4B) and for elbow extension
and flexion (elbow synergy 1 and elbow synergy 2). Figure 5,
B—E shows the performance in reconstruction when using three
of the four synergies obtained from the single-joint move-

Performance index in the reconstruction of muscle activation patterns of one movement (indicated in the rows) using two

Extraction
Reconstruction SH1 SH2 SH3 EL1 EL2 EL3
SH1 0.88 = 0.11 0.74 £0.23 0.62 = 0.24 0.13 £0.12 0.19 £0.17 047 £0.27
SH2 0.80 + 0.08 0.93 £0.04 0.82 = 0.10 0.24 = 0.25 0.30 £0.28 0.51 £0.32
SH3 0.59 £ 0.19 0.81 £0.12 091 £0.04 0.36 = 0.26 041 £0.25 0.63 = 0.21
EL1 0.21 = 0.15 044 £0.17 0.48 +0.23 0.88 £ 0.04 0.80 = 0.08 0.51 +£0.30
EL2 0.10 £ 0.10 0.37 £0.20 0.50 = 0.21 0.81 £ 0.07 0.90 = 0.05 0.62 = 0.27
EL3 0.34 +0.30 0.56 £0.27 0.72 £0.17 0.53 +0.30 0.66 £ 0.29 0.93 +0.03

Values are means = SD of 7%, n = 8 subjects. When the extraction pattern and the reconstruction pattern were of the same type (diagonal entries), two different
trials were used for extraction and reconstruction. SH1, SH2, SH3: shoulder movements with elbow fixed at 60, 105, or 150°; EL1, EL2, EL3: elbow movements
with shoulder fixed at 90, 135, or 180°, respectively. See text for task description.
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TABLE 2.  Performance index in the reconstruction of muscle activation patterns of one movement (indicated in the rows) using synergies

extracted from another movement (indicated in the columns)

Extraction
Reconstruction SH2 (1) EL2 (1) SH2 (2) EL2 (2) SH2 (2) + EL2 (2) Four Random Synergies
SH2 0.70 £0.14 0.13 £0.13 0.93 £0.04 0.30 = 0.28 0.94 = 0.02 0.23 £0.18
EL2 0.12 £0.13 0.62 = 0.15 0.37 £ 0.20 0.90 = 0.05 0.92 = 0.04 0.21 £0.22
JO2 045 £0.17 0.43 £0.16 0.73 £0.10 0.62 = 0.18 0.87 = 0.03 0.32 £0.22
Random 0.01 =0.00 0.01 = 0.00 0.06 = 0.00 0.07 = 0.01 15 +0.03 0.12 £ 0.01

Values are means = SD of °, n = 8 subjects. In the columns, the number of synergies extracted is denoted in parentheses. When the extraction pattern and
the reconstruction pattern were of the same type, two different trials were used. SH2: shoulder movement with elbow fixed at 105°; EL2: elbow movement with
shoulder fixed at 135°; JO2: multijoint reaching tasks (average over the 12 targets). See text for task description.

ments. None of the selections of three synergies allowed
accurate reconstruction of the reaching task in all directions.
For example, when removing the synergy characterized by a
high contribution of the DPO muscle (shoulder synergy 1 in
Fig. 4B), the reconstruction worsened in the zone of the
horizontal plane that is reached by shoulder extension (Fig. 5B).
Similarly, three synergies obtained as linear combinations of
the four synergies extracted from the single-joint movements
did not allow accurate reconstruction of the multijoint reaching
task (results not shown).

These results indicate that if synergies are extracted inde-
pendently from single-joint movements to describe multijoint
tasks, two synergies are needed for each DOF.

Reconstruction of multijoint movements with synergies
extracted from multijoint movements

Synergies were also extracted directly from a set of multi-
joint directions and used to describe all reaching directions.
When four synergies were extracted from only one reaching
direction, it was possible to describe that specific direction but
it was not possible to accurately describe all the other direc-
tions (Fig. 6). Therefore these synergies are specific: the
reconstruction of the same task used for extraction has high
accuracy, although the reconstruction of other tasks may be
poor. The same conclusion was reached when using three
synergies extracted from one task only, which allowed recon-
struction of only a few directions.

It was also not possible to describe all the reaching direc-
tions when using two reaching directions for the synergy
extraction, regardless of the number of synergies used (results
not shown). However, three synergies extracted from three
directions were often sufficient for describing all the other
directions with a level of accuracy similar to that obtained
when using four synergies extracted from the single-joint
movements. The results depended strongly on the directions
chosen for synergy extraction. Figure 7 shows some represen-
tative examples of quality in task reconstruction when using
three reaching directions for synergy extraction and two to four
synergies. The choice adopted in Fig. 7, A and B provided good
reconstruction for all the directions (if at least three synergies
were used), whereas the choice adopted in Fig. 7, C and D led
to poor reconstruction in correspondence of the same targets.
Note that two of the targets used for synergy extraction in Fig. 7, C
and D are close to each other. In general, when the three
directions chosen for synergy extraction were sufficiently sep-
arated in the horizontal plane, the muscular activation pattern

J Neurophysiol « VOL 103

could be well described in all directions by the same matrix
comprising three synergies, but not two (Fig. 7, A and B).
However, when the tasks chosen corresponded to similar
directions (Fig. 7, C and D), the muscular activation pattern
could not be well described.

Figure 8 shows the index r* averaged over all directions and
across the eight subjects when using three synergies extracted
from all combinations of three directions. Because Fig. 7
representatively shows for only a few selections of the direc-
tions, Fig. 8 indicates that the performance in reconstruction
depended substantially on the selection of directions. Table 3
reports the angles between the three directions chosen for
synergy extraction that led to the best averaged reconstruction
quality when using three synergies. Although the two angles
varied depending on the initial direction chosen, on average
they were about 120° (Table 3), which indicates the maximum
separation between the three directions. When the optimal
directions were chosen, three synergies extracted from three direc-
tions could describe the muscular activation patterns in all directions,
including directions not used for the synergy computation, with
reconstruction quality >0.9 (Table 3). Finally, the three syn-
ergies extracted were very similar across subjects for the
optimal directions shown in Table 3. The mean similarity of
synergies across subjects (average over all pairs of subjects)
was 0.76 = 0.09.

DISCUSSION

The study shows that the muscular activation pattern during
reaching in the horizontal plane can be characterized by a
minimum of three activation signals. The synergy matrix that
translates the activation signals into the muscular activation
pattern can be obtained from a limited set of single-joint or
multijoint movements and allows representation of all reaching
tasks. This matrix constitutes a reduction in dimensionality that
can be adopted in systems for restoring functions (e.g., FES),
by reducing the dimensionality of the control of complex
functions.

The single-joint movements could not be described using
only one synergy (* <0.70). Two synergies, however, were
sufficient for describing single-joint movements with perfor-
mance index about 0.9, as a result of the nonnegative constraint
in muscle activations. The mean muscle synergies across the
eight subjects for the single-joint movements indicated that one
synergy contributed mainly to either flexion or extension. The
mean synergies extracted from shoulder and elbow movements
were very different and almost orthogonal (null scalar prod-
uct), indicating a separation between the two DOFs.
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1 synergy (sh ext)

1 synergy (sh flex)
* 1 synergy (el ext)
* 1 synergy (el flex)
* all 4 synergies

3 synergies
(el ext, el flex, sh flex)
* all 4 synergies

3 synergies
(el ext, el flex, sh ext)
* all 4 synergies

* 3 synergies
(el flex, sh ext, sh flex)

* all 4 synergies

* 3 synergies
(el ext, sh ext, sh flex)

* all 4 synergies

FIG. 5. Circular plots representing the performance index value when
describing the muscular patterns during reaching tasks in the 12 directions. The
values are averages across 8 subjects. The central black dot denotes no
reconstruction (7> = 0), the external circumference (solid line) denotes perfect
reconstruction (7> = 1), whereas the black star symbols indicate the perfor-
mance index obtained when using the 4 synergies extracted from the single-
joint movements. A: the muscular patterns are described using only one of the
4 synergies extracted from single-joint movements (green: shoulder extension;
cyan: shoulder flexion; red: elbow extension; blue: elbow flexion). B: same as in A, but
using only 3 of the 4 synergies (elbow extension, elbow flexion, and shoulder flexion).
C: as in A, using elbow extension, elbow flexion, and shoulder extension. D: as in A,
using elbow flexion, shoulder extension, and shoulder flexion. E: as in A, using elbow
extension, shoulder extension, and shoulder flexion.

The kinematics of movements in a multijoint system can be
represented as a combination of single-joint movements. The
results of this study showed that the muscular activation
patterns can also be well reconstructed (mean r* = 0.87) using
two synergies extracted from each single-joint movement (four
in total). The extraction of synergies from single-joint tasks
provided the way to describe the multijoint tasks in a subspace
of orthogonal synergies associated with the two DOFs of the

tasks. When using these orthogonal set of synergies, it was not
possible to decrease the dimension to fewer than four. Three
synergies extracted directly from the single-joint movements or
from linear combinations of synergies extracted from the
single-joint movements were not sufficient to describe all
directions. Thus the subspace spanned by orthogonal synergies
extracted from the two DOFs had a dimension of four when
used to describe the multidirectional reaching task.

The extraction of synergies from each individual reaching
direction (Fig. 6) allowed the description of the specific direc-
tion with low dimensionality, similar to the use of four syner-
gies from single-joint tasks. However, the synergies extracted
from a specific direction could not describe all the reaching
directions in the horizontal plane and were specific to direc-
tions similar to those used for the extraction (Fig. 6). These
synergies would not allow an efficient reduction in the com-
plexity of the control since a different synergy matrix would be
required for different directions. To obtain a synergy matrix
that characterized all directions, it was necessary to extract the
synergy space from a representative set of directions. When at
least three representative directions were included in the pro-
cedure for synergy extraction, it was possible to reconstruct all
reaching directions with only three synergies and thus less than
that in the case of orthogonal synergies (Fig. 7, A and B).
However, in this case the choice of the tasks from which the

eYaT)
GGG

e
0O

FIG. 6. Circular plots representing the performance index value when
describing the muscular patterns (star symbols) during reaching tasks in the 12
directions. Four synergies were extracted from each direction and these
synergies were used to describe all tasks. The task from which the 4 synergies
were extracted is indicated by the corresponding number (1 to 12) along the
circumference. The central black dot denotes no reconstruction (> = 0), the
external circumference (solid line) denotes perfect reconstruction (> = 1),
whereas the gray shaded area (delimitated by solid line) indicates the perfor-
mance index obtained when using the same set of 4 synergies extracted from
the single-joint movements for reconstructing all reaching tasks. The synergies

obtained from one reaching movement only are context-specific and they do
not allow good reconstruction of all tasks.
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* 3 synergies * 4 synergies

FIG. 7. Circular plots representing the performance index value when
describing the muscular patterns during reaching tasks in the 12 directions.
Two (green lines), 3 (red lines), and 4 (blue lines) synergies were extracted
from 3 of the reaching directions and these synergies were used to describe all
directions. The directions from which the synergies were extracted are indi-
cated by the corresponding numbers (1 to 12) along the circumference. Four
representative examples are shown for different choices of the 3 directions.
The central black dot denotes no reconstruction (> = 0), the external
circumference (solid line) denotes perfect reconstruction (> = 1), whereas the
gray shaded area (delimitated by solid line) indicates the performance index
obtained when using the same set of 4 synergies extracted from the single-joint
movements for reconstructing all reaching tasks. The reconstruction quality
strongly depended on the 3 directions chosen for synergy extraction.

synergies were computed was important for the accuracy of the
reconstruction (Figs. 7 and 8). As was shown in Fig. 7, there
were several choices for three directions from where synergies
could be extracted to accurately describe the entire set of
directions. The three optimal directions were on average equi-
separated, i.e., the angles between directions were about 120°

09158
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90 0.72
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Coefficient of determination (
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30 60 90 120 150 180 210 240 270 0,(°)

FIG. 8. Colored map (interpolated by a factor 4) representing the perfor-
mance index value when describing the muscular patterns using 3 synergies
extracted from 3 of the reaching directions. Given a reference target (target 1
in the inset), a pair of angles 6, and 6, define 3 directions (see inset). For each
pair of angles 6, and 6, there are 12 choices of the reference target (target 1).
The * value in reconstruction was computed when the synergies were
extracted from the 3 directions defined by 6, and 6, for all choices of target 1
(12 values of * for each pair of angles 6, and 6,). The map represents, for each
pair 0, and 6,, the value of 7 averaged over the 12 choices of target 1. Results
from the 8 subjects are also averaged in this representation.

TABLE 3.
reconstruction quality for the 12 choices of target 1

Set of directions leading to the best average

Target 1 0,, deg 0,, deg ”
1 120 60 0.90
2 90 180 0.90
3 90 150 0.90
4 90 120 0.90
5 60 120 0.91
6 150 120 0.90
7 120 180 0.91
8 150 120 0.90
9 120 120 0.90
10 210 60 0.90
11 180 60 0.91
12 150 90 0.90
Mean *= SD 127.5 £42.7 115.0 £ 42.1 0.90 = 0.00

See inset in Fig. 8 for definition of target 1. Three synergies were extracted
from three directions and used to reconstruct the reaching task in all directions.
The first direction (target 1) was fixed between 1 and 12 (first column), the
second was separated from the first by the angle 6,, and the third from the
second the angle 0, (see inset in Fig. 8). The values of the performance index,
averaged over the reconstruction of all 12 directions, are reported for the set of
directions leading to the best average reconstruction quality for the 12 choices
of the first direction. The performance index was similar for the optimal set of
three directions independently of the first direction. The mean and SD of the
angles between the optimal directions are also reported.

(Table 3). The reconstruction quality did not substantially
depend on the rotation of the three directions as long as the
directions were approximately equiseparated (Table 3). The
observation that any combination of the three synergies ex-
tracted from single-joint movements did not allow accurate
reconstruction in all the directions indicates that at least one
synergy extracted from multijoint tasks was different with
respect to the synergies extracted from single-joint tasks.

Both the single- and multijoint synergy identification used in
our study provided a sufficient basis set to explain the variance
in muscle activation patterns during planar reaching move-
ments. Since these synergies also showed high intersubject
similarity, they are suitable for applicative purposes, such as
FES. Reduction in the number of control signals obtained by
extracting synergies from multijoint movements depends on
the fact that the two joints are not controlled independently
during reaching, which implies that the CNS does not separate
the two DOFs.

A definitive physiologically validated notion of “natural
synergies” (i.e., encoded by the CNS) has not been obtained.
However, evidence so far indicates that natural modules oper-
ate over multiple joints [e.g., synergies associated with spinal
force fields in the frog (Giszter et al. 1993) as well as synergies
in human reaching (d’Avella et al. 2006; Iftime et al. 2005)].
Previous studies on spatial synergies (Iftime et al. 2005)
showed a strong coupling of shoulder flexion/extension and
elbow flexion/extension for reaching. d’Avella et al. (2006)
also pointed out that synergies acting during reaching include
anatomically synergistic muscles but also muscles active on
different joints. Moreover, animal experiments also indicate
that movement modules involve multiple joints, since all ob-
served force fields have rather complex structures that cannot
be obtained by single-joint torque profiles (Giszter et al. 1993).

In our experiment, the fact that the set of three synergies
from multijoint movements reconstructed the data with the
same accuracy as that of the set of four synergies from
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single-joint movements suggests that the synergies extracted
from single-joint movements are not the ones encoded by the
CNS. Rather, single-joint extraction forces the algorithm to
find synergies specialized in describing the biomechanical
demand of single-joint movements, excluding system dynam-
ics that are not relevant to single-joint tasks, i.e., excluding the
coupling that naturally occurs during multijoint reaching. In
other words, the data set used for single-joint synergy extrac-
tion is not sufficient to capture the invariant spatial structure
underlying multijoint reaching tasks with minimal dimension-
ality. Indeed, such synergies are specific to the context of
single-joint movements. Generalizing to other tasks in which
more degrees of freedom are involved, the data set used for
synergy extraction has to include multijoint movements repre-
sentative of the degrees of freedom at those joints to capture
the coupling between the degrees of freedom.

Ajiboye and Weir (2009) recently observed that 8 muscle
synergies extracted from a set of 11 static hand postures could
predict the EMG pattern of 11 hand muscles for 22 postures. In
that study, a decrease in the dimensionality to <8 resulted in a
loss of similarity of the synergies across the subject population.
However, the use of muscle synergies as a basis of control for
movement restoration is relevant only if an effective reduction
in the control complexity can be obtained. Our study demon-
strated that it is possible to control 12 muscles with only three
control signals to produce a large repertoire of multijoint
movements in the horizontal plane with a transformation ma-
trix that is common to all tasks and similar across subjects.

In this study, the level of muscle activity has been estimated
from the amplitude of the surface EMG. Although this relation
is not exact (Clancy et al. 2002; Farina et al. 2004) and there
is variability across subjects due to electrode placements,
subcutaneous layer thickness, and muscle size, it is sufficient
for the purposes of the study, as discussed in previous works
(d’Avella et al. 2003, 2006). Among the factors affecting the
results, EMG cross talk deserves a special attention when
extracting muscle synergies (d’Avella et al. 2008). Cross talk
between muscles may appear as synergistic muscle behavior
and was not accounted for in the synergy model. Although it is
not currently possible to eliminate or accurately identify EMG
cross talk (Farina et al. 2004), d’Avella et al. (2006, 2008)
previously demonstrated during similar tasks as those analyzed
in this study that the extracted synergies do not substantially
change when eliminating from the analysis the muscles mostly
affected by potential cross talk.

This study focused on reaching tasks, although the paradigm
of muscle synergies could also be effectively exploited in the
restoration of lower-limb muscle activations during posture or
locomotion. For example, Torres-Oviedo and Ting (2007)
investigated postural responses to multidirectional perturba-
tions and concluded that a limited number of synergies robust
across trials and subjects sufficed for reproducing leg and
lower-back muscle activation patterns (see also Torres-Oviedo
et al. 2006). Raasch and Zajac (1999) showed in simulations
and human experiments that pedaling with different cadences,
workloads, and directions can be performed with the same
functional muscle groups. A small number of activation signals
also account for the muscle activity patterns during locomotion
(Ivanenko et al. 2004; Olree and Vaughan 1995).

In conclusion, a large set of multijoint reaching movements
in the horizontal plane can be described to a good approxima-

tion by linear combinations of a limited number (at least three)
of activation signals that are sufficient to generate the activa-
tion patterns of a large set of muscles. The coefficients in the
linear combination (synergy matrix) can be fixed for all reach-
ing directions and thus represent an effective transformation
matrix valid for a large class of movements and similar across
subjects. This property is fundamental for a practical imple-
mentation of the synergy approach in techniques for restoration
of functions.
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