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Abstract

Trajectory planning and tracking are crucial tasks in any
application using robot manipulators. These tasks become
particularly difficult when obstacles are present in the ma-
nipulator’s workspace. In this paper it is assumed that the
obstacles can be approximated in a conservative way with
discs. The goal is to represent the obstacles in the robot
configuration space, in order to allow an efficient and accu-
rate trajectory planning and tracking. Moreover, the paper
provides the methods for checking the collision between the
n-joint manipulator and the obstacles. Trajectory planning
depends on tracking accuracy. In this paper an adequate
tracking accuracy is guaranteed assuming the use of a suit-
ably designed robust controller.

1 Introduction

It is common for robot manipulators to operate in
workspaces where the manipulator mobility is limited due to
the presence of obstacles. In general, an obstacle can be any
object which is present in the robot workspace and must be
properly avoided for achieving the correct behaviour of the
robot. Other objects may be present in the robot workspace
but, depending on the application, they may not be consid-
ered as obstacles (e.g., the target object of a grasping de-
vice). An application example where obstacles play an im-
portant role is the autonomous motion of a robot in a space
shuttle, where obstacles are represented by people, tools, in-
struments and other manipulators [16].

A possible approach to keep in account the presence of
obstacles is to analytically describe the obstacles geometry
in the manipulator configuration space, and use it for tra-
jectory planning and control. In [5, 13, 14], this approach
has been considered together with the problem of planning a
suitable trajectory, giving many possible solutions. To plan
the trajectory, the geometric description of workspace and
the configuration space must be available, even in a partial
fashion. However, the description of the configuration space
may be particularly complex when the system has more than
three degrees of freedom (see [1, 16]). Some approaches try
to avoid the description of the configuration space, by ana-
lyzing the shape of the links and the shape of the obstacles

directly in the workspace (see, for instance, [11]).
To describe the geometry of obstacles in the configura-

tion space, two fundamental approaches have been followed.
The first assumes a model for the whole configuration space
before starting the trajectory planning (see [1, 8, 9, 12, 17])
while the second limits the modelling of the configuration
space to a region close to the actual robot configuration, by
making numerical approximations (see [16, 20]). Since the
analytical modelling of the configuration space is, in many
cases, complex, numerical approximations are introduced
also by relying on fluid dynamics (see [10, 12]).

This paper presents an analytic approach to the descrip-
tion of geometries of planar obstacles, with the aim of de-
veloping a dedicated path planning strategy for a robot ma-
nipulator. In general, the path planning problem based on
a description of the configuration space is solved relying on
potential functions or on particular strategies based on the
optimization of some cost functions [14]. However, in or-
der to decouple the path planning problem from the problem
of trajectory tracking control, robust control methods must
be implemented [7]. By adopting a particular Second Order
Sliding Mode Control (SOSMC) algorithm [2], it is possi-
ble to assume an upper bound for the tracking error. Such
upper bound relies on the maximum input disturbance that
can occur in the system and depends on the constants used
to describe the model.

Despite the complexity of the mapping in the general
case, the mapping of circular planar obstacles can be done
in an analytical way for a general n-link planar manipula-
tor, obtaining interesting and useful geometric properties for
the shape of the obstacles in the configuration space. This
analysis can be very useful when a 6 d.o.f anthropomorphic
manipulator is considered. In fact, in this case, the problem
of planning the trajectories for the first three links can be
decoupled from the problem of planning the trajectories for
the last three links with good approximation, if the lengths
of the last 3 links are short enough [15]. Since in an anthro-
pomorphic manipulator the second and the third link make
motions on a vertical plane possible, and the first link can
be devoted to the selection of such a plane, the geometric
analysis of the shape for a planar manipulator becomes rele-
vant. On the other hand, circular obstacles can be thought as
a good approximation of various obstacles types, and more
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than one circular obstacle can be defined in order to repre-
sent real obstacles having complex generic shapes.

2 System model and notation

Throughout the paper, we denote the robot manipulator
by R and its workspace by W. No constraints are supposed
on the angular displacements of joints, i.e. it is assumed that
each link is able to perform a full revolution around the cor-
responding joint. All the possible configurations assumed
by the robot lie in a space C called configuration space. A
configuration vector is denoted with Q = (Q1, ..., Qn) ∈ C,
where Qi, 1 ≤ i ≤ n, represents the angular displacement
of the i-th link with respect to the x axis. The i-th link has
length li (see Figure 1). Taking into account the manipulator
link geometry, Q specifies the position of all points of R in
the space W. The vector Q(i) = (Q1, ..., Qi) ∈ Ci, i ≤ n
denotes the i-th sub-configuration of R and the space Ci as
a i-th sub-configuration space restricted to the first i links.

Q1

Qi

P1 = (0, 0)

P2

Pi+1

Pi Qw
ij(Pi)

δij

Vj

Rj

A1, l1

Ai, li

Figure 1. Description of a generic circular ob-
stacle and a generic manipulator link in the
workspace W.

The first rotational joint of the manipulator is located
at the origin O of a {x, y} plane which represents the
workspace W. Given the vector of relative rotations between
two consecutive links in the Denavit-Hartenberg representa-
tion q = (q1, ..., qn), Qi is

Qi =
i∑

j=1

qj , i = 1, ..., n (1)

while the position of the extreme point of each joint k is
given by

Pk =
[

xk

yk

]
=

k−1∑
i=1

[
li cosQi

li sin Qi

]
(2)

with k = 2, . . . , n + 1 and P1 ≡ O. The Pn+1 point
represents the position of the end-effector. Moreover it is
manifest that the subspaces Ci are 2π periodic.

The subset of the points of W belonging to the robot ma-
nipulator when a particular configuration Q is assumed, is
denoted by A(Q) ⊆ W. The subset of the points of W be-
longing to the i-th link of the robot manipulator when a par-
ticular configuration Q is assumed, is denoted by Ai(Q) ⊆
W. Therefore, A(Q) =

⋃
∀i Ai(Q).

The workspace contains m obstacles denoted by Bj , 1 ≤
j ≤ m, modelled as discs having center Vj and radius Rj ;
the j term represents the index of the obstacle. The re-
gion Wfree = W−∪∀jBj denotes the subset of workspace
points where the robot can be placed without colliding with
any obstacle. Each obstacle Bj can be mapped in the sub-
configuration space Ci as a subset of points CBij , i.e.

CBij = {Q(i) ∈ Ci : Ai(Q(i)) ∩ Bj �= ∅} (3)

indeed, the set CBij contains the points representing all the
possible configurations in which the Ai link collides with the
j-th obstacle. The subset of Ci containing all the possible
configurations in which the Ai link can be placed without
colliding the obstacles can then be defined as

C
free
i = Ci − ∪∀jCBij (4)

Moreover the free configuration space is denoted by

Cfree =
{
Q ∈ C : ∀i, Q(i) ∈ C

free
i

}
.

The objective of above definitions is to provide the for-
malism to discuss the approach described in this paper, aim-
ing to find a collision-free path between two configurations
denoted by Qinit ∈ Cfree and a suitable Qgoal ∈ Cfree rep-
resenting the desired target to be reached. This path can be
formally defined as the problem of finding a continuous map
t : s → C, s ∈ [0, 1], t(s) = (t1(s), . . . , tn(s)) such that
t(0) = Qinit, t(1) = Qgoal and ∀i, s : (t1(s), . . . , ti(s)) ∈
C

free
i .

3 Planar n-link obstacle mapping

This section discuss the case of a generic n-link planar
manipulator with n rotational joints. The purpose is to give
an analytical formulation of the shape of obstacles in the
configuration space of the manipulator.

3.1 Collision detection and geometric description of a
single obstacle for a single joint

A single planar circular obstacle B centered in V =
(Vx, Vy) with radius R is considered. Since the case of a
single obstacle is considered in this section, the j index is
left out for simplifying the notation. It is faced the problem
of representing the obstacle in a particular sub-configuration
space Ci ∈ R

i and therefore of giving formulas for the ge-
ometries of the CBi subsets.

The two key concepts of critical and worst configuration
are now introduced to support the development of the pro-
posed approach.

Definition 1. The critical configuration of a given link Ai,
having the corresponding joint located at [xi; yi]T , with re-
spect to the obstacle B centered in V = (Vx, Vy) is defined
as

Qw
i

def= atan2(Vx − xi, Vy − yi) (5)

The critical configuration, also referred as critical case,
for the Ai link is defined as the angle for which the link lays
on the straight line defined by the obstacle’s center and the
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position Pi of the i-th joint. From Definition 1, it is clear
that Qw

i is function of (Q1, . . . , Qi−1), however such de-
pendency is not reported in the rest of the paper to simplify
the notation. Figure 1 shows an example of critical configu-
ration.

Definition 2. The worst configuration QW =
(QW

1 , . . . , QW
n ) for the entire manipulator is when ev-

ery joint is in its critical configuration.

The worst configuration corresponds to the case in which
the versus of each joint points to the center of the obstacle.
It is worth to outline the different orientation of each link de-
pending on the relative position of the obstacle with respect
to the corresponding link joint.

Looking at Definition 2, it is straightforward to verify that
QW

1 = atan2(Vx, Vy) = QW
2 + k2π = QW

3 + k3π = ... =
QW

n + knπ for some ki ∈ Z, i = 2, . . . , n, i.e., all joints
lay on the straight line defined by O and the center of the
considered obstacle, and ki are chosen such that the versus
of each joint is toward the center of the obstacle.

On the basis of the above definitions, the following result
can be proved once defined Δ as a vector of angular values.

Theorem 3.1. Being Δ = (δ̄1, . . . , δ̄i) and QW (i) =
(QW

1 , . . . , QW
i ), the configuration QW (i) + Δ causes the

Ai link to collide with the obstacle B if and only if also
QW (i) − Δ does.

Proof. It is straightforward considering the radial symme-
try of a circular obstacle with respect to its center and the
definition of QW

i .

Theorem 3.1 shows that QW (i) is a point of central sym-
metry for CBi. An example is shown in Figure 2 in which
the property is depicted for two particular angular vectors,
namely ΔA and ΔB .

Theorem 3.1 considers the worst configuration for the i-
th link. However, the general case corresponds to the situa-
tion where the link Ai is its critical configuration, while all
the Aj , 1 ≤ j < i, are not in their critical configurations.
The symmetry property of this latter situation is captured by
Theorem 3.2.

Theorem 3.2. Suppose it is given a value δ and Qw
i to be

the critical case of Ai. Then the angle QW
i + δ causes Ai to

collide with the obstacle B if and only if also QW
i − δ does.

Proof. Again, it is an obvious result of the radial symmetry
of circular obstacles and of the definition of critical configu-
ration.

A symmetry property captured by Theorem 3.2 is de-
picted in Figure 2 for CB2 in which δ represents a particular
angular value.

Definition 3. The angular function δi(Q1, ..., Qi) is defined
such that when the angular displacement Qi+1 of the Ai+1

link satisfies

Qi+1 ∈ (Qw
i+1 − δi(·), Qw

i+1 + δi(·)) (6)

the Ai+1 link intersects the obstacle, otherwise it does not.

Q1

Q2

QW + ΔA

QW − ΔA

QW + ΔB

QW − ΔB

QW

Qw
2 (Q1)

Qw
2 (Q∗)

Qw
2 (Q∗) + δ

Qw
2 (Q∗) − δ

Q∗

Figure 2. Symmetries of a CB2 geometry. ΔA

and ΔB are two vectors in C2, Q∗
1 and δ are two

scalar values.

Theorem 3.3 shows the formulation of the generic δi(·)
function as a function of the corresponding link, joint and
obstacle parameters.

Theorem 3.3. The δi(Q1, ..., Qi) function is given by

δi(·) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arcsin R
di+1

if l2i+1 ≥ d2
i+1 − R2

arccos l2i+1+d2
i+1−R2

2di+1li+1

if (di+1 − R)2 < l2i+1 ≤ d2
i+1 − R2

0 otherwise
(7)

where the function di+1 is defined as

di+1(Q1, ..., Qi) =
√

(Vx − xi+1)2 + (Vy − yi+1)2 (8)

and [xi+1, yi+1]T is defined in (2).

Proof. Once di is defined as the distance from the i-th joint
to the center of the obstacle, when l2i ≥ d2

i −R2, the link Ai

can intersect in a tangential way the boundary of the obsta-
cle. In this case, the angular displacement of such tangential
intersection is given by Qi = Qw

i ± arcsin R
di

, thus it is
independent from li.

When (di − R)2 < l2i < d2
i − R2, Ai cannot intersect

the boundary of the obstacle in a tangential way. In this case,
straightforward trigonometry gives the two angular displace-
ments such that there is only one point of intersection re-
spectively

Qi = Qw
i ± arccos

l2i + d2
i − R2

2dili
(9)

The third case for the equation (7) is to be considered
when the Ai+1 link cannot reach the obstacle, given the an-
gular displacement Qi.

The δi(·) function can be used to check a possible colli-
sion between the (i+1)-th joint and the obstacle, with i ≥ 1.
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Consider the C
free
i subspace. In case of multiple ob-

stacles, R does not collide with any Bj if and only if
(Q1, . . . , Qi) ∈ C

free
i ∀i, i.e.

∀i, j : Q(i) = (Q1, . . . , Qi) /∈ CBi,j (10)

To verify condition (10), each Ai+1 link of the manipula-
tor must be outside from the obstacle. The possible collision
with the link depends, in general, on the configuration of the
previous i links. This condition can be written as

∀i : Qi+1 /∈ [Qw
i+1,j − δi,j(·), Qw

i+1,j + δi,j(·)] (11)

Note that the complexity required to verify possible col-
lisions is O(nm), where n is the number of manipulator’s
links, and m is the number of obstacles in the workspace.

3.2 Example on a planar 2-link manipulator configura-
tion space

As an example, this section considers the problem of
finding the analytical description for the CB2,j surface, that
is the mapping of a planar circular obstacle Bj in the sub-
configuration space C2 associated to the A2 link of the ma-
nipulator.

The planar circular obstacle Bj is centered in Vj =
(Vj,x, Vj,y) with radius Rj . It is represented by

(x − Vj,x)2 + (y − Vj,y)2 ≤ R2
j (12)

The worst configuration is given by

QW
1,j = atan2(Vj,x, Vj,y) (13)

and QW
2,j = QW

1,j if the center of the obstacle is located out-
side the reachable area of the first joint, otherwise QW

2,j =
QW

1,j + π.
The generic critical case for the A2 link is given by

Qw
2,j(Q1) = atan2(Vj,x − l1 cos(Q1),

Vj,y − l1 sin(Q1))
(14)

The angular function δ1,j(Q1) is defined such that when
the angular displacement Q2 of the A2 link satisfies

Q2 ∈ [Qw
2,j − δ1,j(Q1), Qw

i+1 + δ1,j(Q1)] (15)

the A2 link intersects the obstacle, otherwise it does not.
Corollary 3.4 follows from Theorem 7.

Corollary 3.4. The δ1,j(Q1) function is given by

δ1,j(Q1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arcsin Rj

d2,j
if l22 ≥ d2

2,j − R2
j

arccos l22+d2
2,j−R2

j

2d2,j l2

if (d2,j − Rj)2 < l22 ≤ d2
2,j − R2

0 otherwise

(16)

where

d2,j =
√

(Vj,x − l1 cos(Q1))2 + (Vj,y − l1 sin(Q1))2

Once the δ1,j(Q1) and the Qw
2,j functions are defined, the

analytical representation of CB2,j can be written as

CB2,j = {(Q1, Q2) ∈ C2 :
Q2 ∈ (Qw

2,j(Q1) − δ1,j(Q1), Qw
2,j(Q1) + δ1,j(Q1))}

(17)

3.3 Some considerations on the CBij geometries
In this subsection, some characteristics of the CBij ge-

ometries, especially in the case of multiple obstacles, are
described. The following corollaries can be proved consid-
ering Equation (7); it is supposed that there are m circular
obstacles Bj lying in the W space, each one related to n
geometries CBij which are characterized by the functions
Qw

i,j(Q1, . . . , Qi−1) and δi−1,j(·) for every Ai link.

3.3.1 Reliance on the obstacle radius

Suppose that an obstacle Bj is replaced by another obstacle
B∗

j having radius R∗
j , the same center (V ∗

j = Vj ) and n CB∗
ij

geometries characterized by a Qw,∗
i+1,j and a δ∗i−1,j(·) for any

Ai link.

Corollary 3.5. The following results hold:

1. if R∗
j > Rj , then Qw,∗

i,j = Qw
i,j;

2. if ∃ (Q1, . . . , Qi−1) such that δi−1,j(·) > 0 then
δ∗i−1,j(·) > δi−1,j(·) and δ∗i−1,j(·) > 0 for some of
values (Q1, . . . , Qi−1) in which δi−1,j(·) = 0;

3. CBij ⊆ CB∗
ij .

Corollary 3.5 shows that, when the radius R∗ is higher
than R, the curve Qw

i,j , i.e. the locus of the critical configu-
rations, does not change (item (1)), while the old geometry
is a subset of the new one (item (3), which is consequence
of item (2)).

Depending on the obstacle radiuses, two interesting situ-
ations can be verified, that are illustrated by corollaries 3.6
and 3.7.

Corollary 3.6. Given the Ai link, if ‖Vj‖ > R∗
j +

∑i
k=1 lk,

then CBij ≡ ∅
Corollary 3.7. Given the Ai link, if ‖Vj‖ < R∗

j +
∑i−1

k=1 lk,
then ∃ Θ : Θ ⊆ Ci−1, δ∗i−1,j(Θ) ≥ π

Corollary 3.6 illustrates the situation in which an obstacle
is too far and is not reachable by the Ai link even in the worst
case (see Figure 3 A). The second situation represents the
cases in which, for some configurations of Q1, .., Qi−1, the
Ai−1 link virtually enters the obstacle and consequently the
Ai link is inside the obstacle whatever Qi is (see Figure 3
D).

3.3.2 Reliance on the obstacle position

Suppose that an obstacle Bj is replaced by another obsta-
cle B∗

j having the same radius, but different center, and a
CB∗

ij characterized by a Qw,∗
i,j and a δ∗i−1,j(·) for any Ai

link. Cylindrical coordinates are going to be used to indi-
cate the Bj center Vj = (ρj cos(θj), ρj sin(θj)) and the B∗

j

center V ∗
j = (ρ∗j cos(θ∗j ), ρ∗j sin(θ∗j )).

Corollary 3.8. The critical case functions for the obstacle
B∗

j are Q∗,w
i,j = Qw

i,j + (θ∗j − θj) , ∀i. If ρj = ρ∗j , then, the
CB∗

ij geometries are obtained from the CBij geometries by
means of a rigid translation in Ci of a vector (θ∗j − θj , θ

∗
j −

θj , . . . , θ
∗
j − θj).
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Figure 3. W and C2 spaces when the radius
is changed: (A) The radius is small enough,
then CB2j = ∅; (B-C) CB2j is not a null set; (D)
The radius is large and, for some values of Q1,
any value of Q2 causes a collision.

If ρj < ρ∗j then the shapes of geometries CB∗
ij (∀i)

change: the new shapes can be evaluated with considera-
tions very closed to the ones seen in the case of changing
the radius of an obstacle.

3.3.3 Reliance on the link length

Suppose that the Ai link is replaced by a different link
having length l∗i . Define Ψij(l) : R → C− as the
set of sub-configurations (Q1, . . . , Qi−1) in which l2 ≥
(di(Q1, . . . , Qi−1))2 − R2

j (see equation (8)).

Corollary 3.9. 1. If l∗i > li then Ψij(li) ⊆ Ψ∗
ij(l

∗
i ). For

these configurations, the intersections analysis does
not depend on the link length.

2. If Ψ∗
ij(l

∗
i ) ≡ Ci−1, then δ∗ij(·) = arcsin Rj

di(xi,yi)
>

0 ∀(Q1, . . . , Qi−1) ⊆ Ci−1.

Item (2) states that a long link may create a partition of
the the Ci space. This partition means that the manipulator
cannot step over an obstacle turning completely around it.
If the partitioning obstacles are more than one, the manipu-
lator may not be able to reach some feasible configurations
(Figure 4).

Figure 4. W and C2 spaces when the second
link length is changed: (A) The link is short,
CB2j = ∅; (B-C) The CB2j is not a null set;
(D) The link is long and, for any values of Q1,
there are some values of Q2 which causes a
collision (a partitioning is present, Ψ2j ≡ C1 ).

3.3.4 Multiple Obstacles

When more than one obstacle are present, some considera-
tions can be done (see Figure 5).

Corollary 3.10. The worst configuration for the Ai link is
always on one of these special directions: QW

ij = QW
1j +

kπ, ∀i, j, k ∈ Z.

Having multiple obstacles, a remarkable situation is
when two of the geometries CBij intersect each other. This
situation is very important because it indicates the case in
which it is impossible to turn around an obstacle without
collide with the other, and may induce problems during the
trajectory planning. For this reason in the next subsection we
will discuss the problem of identifying these intersections.

A

B

Figure 5. Multiple Obstacles (CB2j): (A) all the
CBij are located with the central symmetry
center on the same straight line; (B) Two ge-
ometries can intersect in some points.

3.3.5 Intersections of the CBij geometries

The problem of finding the intersections of geometries CBij

can be solved by evaluating the non-linear system made by
the equations which describe the geometries using numer-
ical methods. However, the formulas change from link to
link (every aspect of the Ai link is solved in Ci); in this sec-
tion some considerations are given which can simplify some
aspects of the evaluation.

Definition 4. It is given an obstacle Bj . Suppose that the
generic Ai link has its first point in Pi = (xi(·), yi(·)),
length li and direction given by Qi. The function
dij(xi(·), yi(·)) is the distance between Vj and Pi. The cir-
cular equivalent obstacle Bij(xi(·), yi(·)) is defined as the
obstacle having center V ′

ij(xi, yi) and radius R′
ij(xi, yi) so

that (V ′
ij − Pi)di = (Vj − Pi) and the radius is to be de-

termined in one of this two ways: if l2i ≥ d2
ij − R2

j then

R′
j = Rj

dij
, else R′

j =

√
1 −

(
l2i +d2

ij−R2
j

2dij li

)2

.

From the definition of V ′
ij it is obvious that

d′i−1,j(xi, yi) =
∥∥V ′

ij − Pi

∥∥ = 1. The locally defined
circular equivalent obstacle depends on the starting point
Pi(Q1, . . . , Qi−1), which is the reason to say it is locally
defined. Theorem 3.11 explains the equivalence.

Theorem 3.11. The Ai link starting at point
Pi(Q1, . . . , Qi−1) intersects Bj if and only if it inter-
sects the locally defined circular equivalent obstacle
B′

i,j(Q1, . . . , Qi−1)

763



Proof. The proof follows from Theorem 3.3. In fact R′
j

is evaluated so that δij = arcsinR′
j in every case. The

function δ′ij can be evaluated as δ′ij = arcsin R′
j

d′
ij(xi,yi)

, but

d′ij(xi, yi) = 1. Then δij = δ′ij

The result of Theorem 3.11 gives the possibility of
proposing a simple rule to characterize the intersections of
the geometries.

Theorem 3.12. Given the Ai link, two different obstacles
Bj and Bk, and a sub-configuration (Q1, . . . , Qi−1), if
R′

j + R′
k ≥ d′i(j,k), where d′i(j,k) =

∥∥V ′
ij − V ′

ik

∥∥, then the
interval of values Qi for which the link intersects both Bj

and Bk is non-null.

Proof. The locally defined circular equivalent obstacles B′
j

and B′
k are considered. The center of these discs, i.e.

V ′
ij and V ′

ik , are at distance 1 from (xi, yi). The triangle
given by (xi, yi), V ′

ij and V ′
ik is an isosceles triangle. If

R′
j + R′

k ≥ d′i(j,k), then it is impossible to trace a ray be-
tween (xi, yi) and any point on the edge given by V ′

ij and
V ′

ik without intersecting one of the the two locally defined
circular equivalent obstacles, i.e. without intersecting one
of the real obstacles.

4 Planar n-link trajectory planning with mul-
tiple obstacles

In this section the problem of the existence of a collision
free path between two configurations for a n-link robot ma-
nipulator is considered. A particular solution is proposed in
the 2-link case. The problem of path planning for a n-link
manipulator can be solved considering known heuristic al-
gorithms [5]. The geometric description given by previous
sections is useful to determine the best solution to the path
planning problem.

4.1 Goal point reachability
As stated in Section 2, the problem of finding a

suitable path between an initial configuration Qinit =
(Qinit1, Qinit2) ∈ Cfree and a final configuration Qgoal =
(Qgoal1, Qgoal2) ∈ Cfree is the problem of finding a contin-
uous function t(s) connecting Qinit to Qgoal which repre-
sents a collision free set of configurations. Some considera-
tions are needed to prove the main result regarding the goal
point reachability.

Definition 5. The minimal burden of the robot is obtained
by optimizing the function

min{ai} {| inf S(a2, . . . , an)|, | sup S(a2, . . . , an)|}
ai = ±1, i = 2, . . . , n

(18)
where

S(·) =

{
l1, l1 + a2l2, . . . , l1 +

n∑
p=2

aplp

}

Definition 6. Given an angular displacement for Q1, a min-
imal burden configuration for the robot R is given by

(Q1, a2Q1, a3Q1, . . . , anQ1) (19)

where a vector minimizes (18).

A fundamental condition to be evaluated in order to guar-
antee the existence of a path is given by

⋃
∀j,k

(CBij ∩ CBik) = ∅

This condition assures that each Ai link cannot collide at the
same time with two different obstacles.

Finally, the main result reported in this paper regarding
the existence of a path is given by the following theorem.

Theorem 4.1. Given m circular obstacles Bj , 1 ≤ j ≤ m,
in the workspace W and a planar n-link robot manipulator
R, if

• the robot, at any minimal burden configuration, can
move without colliding any obstacle.

• there are no intersections of the CBij geometries in the
C space, i.e.

⋃
∀j,k

(CBij ∩ CBik) = ∅ (20)

then a collision-free trajectory between two configurations
Qinit ∈ Cfree and Qgoal ∈ Cfree is guaranteed to exist.

Proof. A collision free trajectory in the configuration space
between two configurations Qinit ∈ Cfree and Qgoal ∈
Cfree can always be found if the Cfree space is completely
connected. Note also that the Cfree space is periodic in all
the dimensions for a robot manipulator.

In order to exclude the presence of non-connected subsets
of the Cfree space, since, by the first condition, the CBij ge-
ometries are limited and simply connected subsets (see Sub-
section 3.3.3), it has to be avoided the presence of intersec-
tions between two different CBi geometries which can lead
to the presence of partitioning of the space Cfree. Since the
best work conditions for the robot are given by the minimal
burden configuration, then if the robot can move around the
origin remaining in the minimal burden configuration, no
more partitioning of the space Cfree is present.

4.2 Two link trajectory planning
In this section it is considered the problem of planning a

trajectory for a 2-link manipulator R moving in a workspace
W with m obstacles Bj . Assume that the conditions of The-
orem 4.1 hold, then the two joints of the manipulator cannot
reach the obstacles. In this case, the hypothesis of Theo-
rem 3.1 are verified and all the obstacles have theirs center
of symmetry lying on the straight line Q1 = Q2, which is
defined in the C space.
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Two points in the configuration space, given by the fol-
lowing two systems, are useful for defining the initial stage
of the path

Q
′
=

{
Q2 = Q1 + π
Q2 = Qinit2 − (Q1 − Qinit1)

(21)

Q
′′

=
{

Q2 = Q1 − π
Q2 = Qinit2 − (Q1 − Qinit1)

(22)

while the following two points can be useful for the final
stage of the path

Q∗ =
{

Q2 = Q1 + π
Q2 = Qgoal2 − (Q1 − Qgoal1)

(23)

Q∗∗ =
{

Q2 = Q1 − π
Q2 = Qgoal2 − (Q1 − Qgoal1)

(24)

The path to be followed can be obtained in the following
way:

• move the robot from the initial configuration Qinit to
the closer point between Q

′
and Q

′′
along a straight

line defined in the C space.

• move the robot from the current configuration to the
closer point between Q∗ and Q∗∗ along a straight line.

• move the robot from the current configuration to the
Qgoal configuration along a straight line.

It is still possible that, applying the foregoing procedure, the
robot collides with an obstacle. In this case, the following
rule can be introduced.

• Define, for each obstacle Bj , a security area (which
can be considered as an area obtained by enlarging a
particular CBij by a particular angular value) such that
it is not possible, by considering the performances of
the robot controller, to hit the obstacle after the robot
has accidentally entered the security area of a particular
obstacle.

• Check, for each sampling instant, if any link of the ma-
nipulator entered the security area of an obstacle.

• If the robot configuration has entered in any security
area CB∗

ij , follow the geometry of the security area
until the trajectory intersects the straight line that was
followed by the trajectory before entering the security
area.

Moreover, the check needed to choose the trajectory can be
done by considering the δi,j functions (see Subsection 3.1)
with little computational effort.

5 Tracking accuracy analysis

In order to guarantee collision free motions of a real robot
manipulator R, a suitable controller must be implemented.
This controller has to accurately track the planned trajectory
qd(t) ∈ R

n, provided that the tracking represents a feasi-
ble goal, i.e. accelerations q̈d are bounded and positions qd

and velocities q̇d do not exceed the limits imposed by the
mechanical constraints.

By considering classical manipulator control algorithms,
such as PID [18] and adaptive control laws [6], it may be dif-
ficult to guarantee an exact tracking of a reference trajectory,
since the project of these controllers do not take in account
the tracking error as a main objective to be achieved. The
main problem is represented by the presence, in the con-
trolled system, of noise, uncertainties, unmodelled effects,
and unknown payloads, which can lead to a significant devi-
ation from the expected behaviour of the system dynamics.
However in real experiments, due to uncertainties, an exact
tracking cannot be guaranteed since common digital con-
trollers have a finite sampling frequency. Finally, note that
also bounded small biases on sensor measurements can be
interpreted as bounded tracking errors.

A possible solution to this problem, almost in the ideal
case (i.e. when infinite sampling frequency of the con-
troller is assumed), is represented by sliding mode control
laws [19]. These control laws are robust versus input un-
certainties, unmodelled effects, and unknown payloads. In
presence of finite sampling time, the discretization chat-
ter effect becomes evident, but the tracking error remains
bounded and this bound depends on the maximum uncer-
tainties and on the sampling time [3]. To reduce the dis-
cretization chatter effect, higher order sliding mode control
algorithms can be adopted, as in [4]. Note that since the
bound on the tracking error exists, it can be found project-
ing the controller or by means of experimental evaluations.

Suppose that a sliding mode controller is adopted to
control a n-link planar manipulator R and consequently
the maximum tracking error is represented by Δe =
(Δe1, ...,Δen) where Δei = sup(| qdi(t) − qi(t) |). This
tracking error leads to an uncertain positioning of the whole
manipulator. In this case, given the nominal (i.e. desired)
configuration qd, the real configuration q̂d lies in the interval

q̂di = [qdi − Δei; qdi + Δei] ∀i (25)

hence, the position Q̂d in the space C lies in the interval

Q̂di = [Qdi −
i∑

j=1

Δej ; Qdi +
i∑

j=1

Δej ] ∀i (26)

In this case, once defined ΔEi =
∑i

j=1 Δej , the maximum
distance between the expected position Q and the real posi-
tion Q̂ is given by

sup
√

(Q − Q̂)T (Q − Q̂) = sup
√

ΔET ΔE (27)

The maximum tracking error expressed by (27) is useful
to define a security area around the obstacle to ensure
collision-free operations.

6 A simulation example

Consider a 2-link manipulator with l1 = 0.5m and l2 =
1m. Two circular obstacles are present in the workspace, the
first with center V1 = (0.62; 0.66)m and radius R1 = 0.22m
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and the second with center V2 = (1.3;−0.9)m and radius
R2 = 0.62m (see Figure 6). A security area is considered
surrounding the CBij geometries. The initial configuration
is Qinit = A = (−78;−67.6)deg (see Figure 6 A) while
the final configuration is Qgoal = D = (8.02; 37.82)deg
(see Figure 6 D). The complete path is composed by three
stages. First the robot moves to the point B, then the robot
moves along the straight line Q2 = Q1 + π reaching the
point C. Finally, the robot moves to D along the straight line
Q2 = 0.66 − (Q1 − 0.14) until the security area (marked
with the light gray color in figure) of the obstacle is reached.
The security area of the obstacle is followed and finally the
robot moves to the point D. The security area of the obstacle
is obtained by assuming a maximum tracking error of 0.1deg
for the two joints.

Figure 6. W and C2 in the simulation example.

7 Conclusions

This paper describes the geometric modellization of cir-
cular planar obstacles in the configuration space of a n-links
manipulator. The analytical description of the obstacle ge-
ometries is done to allow an accurate trajectory planning and
tracking.

The properties of the proposed model are discussed when
main parameters, like the length of links and obstacles, are
changed. The paper also provides a method to check the
collision between the manipulator and obstacles, and to effi-
ciently plan the robot trajectory in presence of multiple ob-
stacles within the workspace. The special case of a 2-link
manipulator is described in details and an example of path
planning is given for that case.
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