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ABSTRACT With the elderly and disabled population increasing worldwide, the functionalities of smart
wheelchairs as mobility assistive equipment are becoming more enriched and extended. Although there
is a well-established body of literature on fatigue detection methods and systems, fatigue detection for
wheelchair users has still not been widely explored. This paper proposes a neuro-fuzzy fatigue tracking
and classification system and applies this method to classify fatigue degree for manual wheelchair users.
In the proposed system, physiological and kinetic data are collected, including surface electromyography,
electrocardiography, and acceleration signals. The necessary features are then extracted from the signals and
integrated with a self-rating method to train the neuro-fuzzy classifier. Four degrees of fatigue status can be
distinguished to provide further fatigue and alertness prediction in the event of musculoskeletal disorders
caused by underlying fatigue.

INDEX TERMS Fatigue, ECG, EMG, neuro-fuzzy classifier, body sensor network, smart wheelchair.

I. INTRODUCTION
With the continuous growth of the elderly and disabled
population worldwide, there is an increasing demand for
mobility assistive equipment. The wheelchair is one of the
most practical devices and is widely used by elderly and
disabled individuals. Since research on the efficient design
of wheelchairs has been in the spotlight for over two decades,
researchers have focused on awide variety of fields, including
health informatics, assistive robotics, and human-computer
interaction [1]. According to the latest report from the
World Health Organization [2], more than 1 billion people
suffer from different degrees of disability and handicaps
around the world. Nearly 20% of this population experi-
ence relatively extreme difficulties in their daily lives due
to severe physical impairments. However, the existing assis-
tance products on the market are still very far from meet-
ing the practical requirements of such customers. Therefore,
enriching and extending the wheelchair with multiple func-
tionalities is becoming an active area of research. Even
though wheelchairs are becoming increasingly intelligent and

multi-functional with the use of smart sensors and electronic
elements, wheelchair users still have some fundamental needs
that are worthy of investigation.

It is known that cumulative physical fatigue can easily give
rise to musculoskeletal disorders (MSDs) [3] such as spinal
cord injury, stroke, or paralysis, especially for athletes who
train with high-intensity exercise over long periods every day.
Therefore, detecting and monitoring fatigue are very impor-
tant aspects in preventing the development of such disorders.
In recent years, fatigue detection and classification have been
widely studied in the sport [4] and automotive domains.
In fact, athletes are one of the most vulnerable groups
suffering from MSD during dynamic exercise. Similarly,
driver fatigue can have disastrous consequences. Researchers
have concentrated on the analysis of surface electromyog-
raphy (sEMG) [5] and heart rate variability (HRV) [6] in
combination with multi-sensor fusion techniques in body
sensor networks [7], [8] to indicate fatigue states and prevent
injuries. However, most of the literature specifically con-
centrates on changes in the physiological features between
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non-fatigue and fatigue states [9], and most experiments
are implemented in a laboratory setting [10]. In addition,
wheelchair users, who represent another community sus-
ceptible to MSD, have not been considered in previous
research. Mobility-impaired individuals and seniors are usu-
ally not as sensitive as healthy adults in perceiving underlying
physical fatigue. Thus, based on the above issues, a practical
and universal method for the detection and classification of
fatigue degree for wheelchair users is significantly mean-
ingful in preventing them from acquiring these irreversible
disorders and, ultimately, in improving their quality of life.

This work employs a neuro-fuzzy classification
method [11] and a wheelchair system consisting of multiple
wearable sensing devices (sEMG, ECG and accelerometer
sensors) to classify fatigue degree. In our proposed system,
all physiological and kinetic signals are collected in a non-
laboratory setting. Furthermore, a neuro-fuzzy classification
system is beneficial in describing the uncertainty of the
relationship between fatigue and biological signals since the
membership function can describe the degree of membership
in the corresponding fuzzy set (fatigue set or non-fatigue
set) [12]. Our method can effectively categorise fatigue
degree and reduce unnecessary feature extraction and exe-
cution in the algorithm. Thus, our approach can be applied in
real life and can serve as a fatigue indicator with a relatively
high accuracy to effectively prevent wheelchair users from
developing MSD.

An early prototype of such a wheelchair has been described
in [13]. The major contributions of this work are as follows:
• Use of fewer muscles to acquire effective sEMG sig-
nals and fewer features to detect and categorise fatigue
degree;

• Use of a fuzzy inference system to classify fatigue
degree in a non-laboratory setting;

• Development of a fatigue detection and classification
wheelchair system targeting a more vulnerable social
group (motor-impaired and elderly people).

In this paper, we present a complete wheelchair system
with fatigue detection and classification functionalities and
discuss the validation of the system, which shows a relatively
high degree of accuracy. Section II introduces the related
work in terms of the state-of-the-art of smart wheelchair and
existing dynamic state fatigue detection methods. Section III
details the designed system and the proposed fatigue detec-
tion and classification method. In Section IV, we analyse the
sEMG signals from different muscles, illustrate the relation-
ships between physiological features and fatigue degree and
validate the accuracy of our system. In Section IV-D, some
research challenges and potential solutions are discussed.
Finally, in Section V, conclusive remarks are drawn.

II. RELATED WORK
A. SMART WHEELCHAIRS
To facilitate the independence of impaired people, many
scientific works aiming to make the electric wheelchair
‘‘smarter’’ have been proposed. Such works, summarised

in [1], aim to enrich the functionalities of wheelchairs in terms
of health informatics, assistive robotics, human-computer
interaction and emotion and behaviour recognition.

Health informatics concerns the monitoring of various
health parameters, including heartbeat, respiration rate, and
blood pressure, and recognizing physical and psycholog-
ical states to avoid emergencies [14]. Assistive robotics
is another important set of technologies that can be used
to upgrade the smart wheelchair [15]. Researchers have
primarily concentrated on extending the features of the
smart wheelchair in terms of navigation, obstacle detection,
and safety maintenance, which effectively improve mobil-
ity by employing assistive alternatives. Due to the different
impairments of wheelchair users, a wide range of human-
computer interfaces are available for controlling traditional
manual wheelchairs [16]. Facial movement, eye movement,
and sEMG signals are used extensively to control electric
wheelchairs. Finally, emotion and behaviour recognition [17]
are being applied in smart wheelchairs to reduce the bur-
den of caregivers in their care for disabled and elderly peo-
ple in combination with different communication techniques
(e.g., wireless sensor networks, Bluetooth, and Global Sys-
tem for Mobile Communications).

B. FATIGUE DETECTION IN DYNAMIC STATES
Physiological fatigue can be defined as the loss of maximal
force-generating capacity during muscular activity or as the
failure of the functional organ, while psychological fatigue
has been defined as a state of weariness related to reduced
motivation [18]. Undoubtedly, people in dynamic states
experience these two kinds of fatigue, which often occur
simultaneously. The aggregation of underlying fatigue during
dynamic states usually causes serious injuries that can be
irreversible. Therefore, the best way to avoid such injuries
is to detect fatigue, classify its degree and ultimately try to
predict it.

Muscle fatigue is one of the most significant sources
of human fatigue. Most muscle fatigue detection meth-
ods are based on the analysis of sEMG signal parameters.
González-Izal et al. [19] comprehensively describe linear
and non-linear sEMG models for estimating muscle fatigue.
In these models, the amplitude- and spectrum-based param-
eters’ i) averaged rectified value (ARV), ii) root mean
square value (RMS), iii) mean power frequency (MPF), and
iv) median frequency (MDF) are applied to assess muscle
tiredness in daily life [20], [21]. Specifically targeting repet-
itive upper limb tasks [10] such as wheelchair propulsion,
the change in instantaneous mean power frequency (IMPF)
is used to indicate and quantify muscle fatigue.

However, since muscle fatigue is just one source of human
tiredness, other aspects, such as cardiac activity, are consid-
ered to improve the accuracy of human fatigue detection and
classification. Eskofier et al. [22] utilises 3 heart rate fea-
tures, 9 Heart Rate Variability (HRV) features and other bio-
mechanical features to distinguish the runner’s fatigue state
and achieved an accuracy of 88.3%. In addition, the spectral
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TABLE 1. Comparison of related works.

analysis of HRV has been used as an indicator to assess driver
fatigue [23]. According to these studies, fatigue can lead to
variability in ECG signal parameters. Total power (TF), low-
frequency power (LF), high-frequency power (HF) and low-
/high-frequency power (LF/HF) are widely analysed in the
frequency domain as basic indexes of fatigue, and the mean
heart rate value (HRmean) and standard deviation of beat-to-
beat intervals (SDNN) are examined in the time domain [24].
Yanci et al. compare the differences in the heart rate peak
and HRmean between fatigue and non-fatigue states for
wheelchair basketball players [25]. Although physiological
signals such as ECG and EMG can be effectively used in the
analysis of human fatigue, kinematics information cannot be
ignored. Fatigue detection for wheelchair users is an emerg-
ing direction in research [26]. Accelerometers have been
attached to wheelchairs to analyse fatigue in users with lower
limb paralysis [27]. Patrick et al. combinemyoelectric signals
with pushrim data from the SmartWheel recording system to
acquire both physiological and kinematic data to assess the
time remaining until muscle fatigue [28]. A comparison of
the related works is reported in Table 1.

III. FATIGUE CLASSIFICATION METHOD
In Figure 1, the proposed fatigue detection and classifica-
tion method based on a neuro-fuzzy classifier is depicted.
During the experiments, we collected all raw physiologi-
cal and kinetic data as well as information labeled by the
subjects, and preprocessing and signal feature extraction are
then implemented (see Section III-C). The features extracted
from the training samples represented the input for train-
ing the neuro-fuzzy classifier. Specifically, we conducted a
regression analysis on the feature data to identify the crucial
variables and formulate the membership function. After that,
the rule base was further determined according to the training
sample data integrated with the self-reported fatigue data
reported by the subjects. Section III-D provides details on the
neuro-fuzzy classifier. Finally, we imported testing data into
the neuro-fuzzy classifier and matched the outputs with real
fatigue degrees reported by subjects to calculate the accuracy
of our system.

A. SYSTEM ARCHITECTURE
The smart wheelchair-based fatigue measurement system
(described in detail in our previous work [13]) is depicted

FIGURE 1. Flowchart of the proposed method based on a neuro-fuzzy
classifier for fatigue classification.

in Figure 2. The fatigue-tracking system is composed of
a smart wheelchair layer, a smartphone layer and a data
analysis layer. Signals are transfered among those layers via
Bluetooth. Regarding hardware, the smart wheelchair layer
involves a Shimmer sEMG sensor, an ECG-enabled Shimmer
sensor and one accelerometer, which are used to acquire
both physiological and kinetic signals. The smartphone layer
is based on a smartphone with a custom application for
playing audio fatigue questions and the Runtastic App to
check real-time speed and elapsed time in the experiment
phase. Finally, all collected signals are transmitted via Blue-
tooth to the data analysis layer, which includes a central
processing computer with a well-trained neuro-fuzzy classi-
fier (see Section III-D) to recognise fatigue degree. This data
analysis layer is also in charge of managing the entire Body
Sensor Network (BSN) [29]. Moreover, when the fatigue
degree is detected and classified in the real scenario, the clas-
sified fatigue degree is delivered via Bluetooth from the data
analysis layer to the smartphone, which presents the fatigue
degree to the wheelchair user.
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FIGURE 2. Diagram of hardware deployment and communication
between layers.

B. EXPERIMENTAL SETTING
In our experiments, we recruited eight volunteers (5 males,
3 females, mean age 25±5years, mean weight 60±15kg)
i) without any history of upper-limb injury or neuromuscular
disorder to execute the designed exercise and ii) without med-
ical contraindications, such as severe concomitant disease,
alcoholism, drug abuse, or psychological problems. Each
subject performed 8 trials on a flat paved surface, of which
7 trials were used for training while 1 trial was utilised for
testing. Figure 1-(1) depicts the data collection procedure;
during each trial, the sEMG and ECG data are collected
and labeled with the fatigue degree level reported by the
participant.

Before initiating the experiment, the subjects were
informed of the purpose and procedures of the experiment and
were then asked to follow the experimental protocol detailed
below. Specifically, the subjects were asked to attach the
sEMG electrodes on the belly of the middle deltoid and ECG
electrodes to the left of the sternum in the fourth intercostal
space. These areas must be shaved and then cleaned with 90%
alcohol. The electrode wires were then secured to the mus-
cle using double-sided adhesive tape. The participants were
required to propel the wheelchair and maintain a constant
speed of 1.6 m/s [9](a rather fast speed so as to accelerate
the development of fatigue) on a flat concrete track until
they were not able to maintain the target speed. The speed
was easily checked by the Runtastic App on the smartphone,
which also played the audio fatigue questions during the trial.
The sEMG, ECG and acceleration signals were acquired with
the Shimmer units and transferred to the central processing
PC via Bluetooth. At the same time, participants used the
self-ratings described in Table 2 to label their fatigue degree
during each trial [30].

The experimental protocol is described in the following:
• Step 1: We choose a 10-meter-long track to allow the
subjects get used to the track and achieve the required
speed of 1.6 m/s during the preparatory phase.

• Step 2: Subjects must maintain 1.6m/s on a 500-meter
track until they are not able to maintain the speed.

• Step 3: Participants label their fatigue according to the
four degrees in Table 2 during Step 2. Subjects must

TABLE 2. Self-rating description.

FIGURE 3. Preprocessing flowchart.

verbally report their fatigue degree level, as in Table 2,
throughout the experiment. At the same time, the experi-
mental observer usesMultiShimmerSync to annotate the
data according to the subject’s labeling.

• Step 4: Each subject repeats the previous steps twice per
day (morning and afternoon). In total, we spent 4 days
collecting the data obtained across 8 sessions from each
participant.

C. SIGNAL PREPROCESSING AND FEATURE EXTRACTION
1) PREPROCESSING OF sEMG, ECG AND
ACCELERATION SIGNALS
In Figure 1-(2), we preprocess the sEMG and ECG data
using multiple filters and segment those data by accelera-
tion signals. Figure 3 shows the preprocessing flowchart.
The first filtering phase removes the baseline and move-
ment artifact noise from the sEMG, ECG and acceleration
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FIGURE 4. Diagram of the segmentation and connection of sEMG signals.

signals [31], [32]. The sEMG and acceleration signals are
sampled at 512 Hz [33]. Although it is often recommended to
sample sEMG at 1024 Hz, we chose 512 Hz to reduce packet
loss. The ECG signal is sampled at 102.4 Hz according to pre-
vious results [34], in which Shimmer 2R sensors were used
for the same purpose as in this study and in which the ECG
signal was sampled at 100Hz.We then applied a second-order
Butterworth band-pass filter (20 400 Hz) to the sEMG signals
and a band-pass filter (0.05 100 Hz) to the ECG signals [13]
in the time domain because these two frequency bandwidths
include the most efficient sEMG and ECG signals. Then,
a notch filter with a 50 Hz cut-off frequency and 1 Hz
bandwidth is used to remove power line interference. All
non-repetitive data, including the sEMG, ECG, acceleration
and label signals, that correspond to the very first and final
data of the trial should be eliminated because the wheelchair
users are not executing periodic movements. Then, because
wheelchair propulsion is a repetitive movement and because
each propulsion consists of a contraction and a recovery
phase corresponding with active sEMG and inactive sEMG
signals, respectively, we segment the contraction movement
and connect the corresponding active sEMG signals using the
acceleration data, which is useful in recognizing arm move-
ment [35]. The contraction and recovery phases are shown
in Figure 4. Finally, the preprocessed data are synchronised
using the timestamp.

2) EXTRACTION OF FEATURES STRONGLY
RELATED TO FATIGUE
The sEMG and ECG signal features that are strongly
associated with fatigue are widely described in the
literature [19], [24]. EMG features such as MPF, ARV, and
MDF are often used as fatigue indexes, while HRV fea-
tures such as LF, HF, and SDNN are often used to indi-

FIGURE 5. Diagram of feature extraction.

cate fatigue status. As described in Figure 1-(3), we select
the MPF and ARV of sEMG signals and the LF of ECG
signals as the input sources for classifying fatigue degree.
The chosen features are the most widely used according to
the literature (see Section II-B). Our preliminary experiments
show clear relationships between these features and fatigue
degree (see Section IV-B). The feature extraction procedure
is described in Figure 5. The ECG features, RR peak and
RR interval [36] can be extracted using the Kubios soft-
ware [37]; Fast Fourier Transforms (FFT) are then applied to
RR series, thus obtaining the power spectral density (PSD).
FFT and PSD are also applied to the preprocessed sEMG
signal. Furthermore, the LF, MPF and ARV are calculated
using the fragment window scaled by the acceleration signal
in Figure 4. The computation formulas are presented below:

ARV = 1/n
∑n

i=1
xn (1)

where xn is the value of the sEMG signal and n is the
number of sample.

MPF =

∫ u2
u1
u · PSD(u) du∫ u2

u1
PSD(u) du

(2)

MPF denotes the mean power frequency at time t, which
is the middle time in every fragment time window, while
PSD(u) is the power spectrum density at frequency u.
u1 and u2 are calculated as the smallest and largest frequen-
cies, respectively, after applying FFT to the sEMG signal in

19424 VOLUME 5, 2017



W. Li et al.: Neuro-Fuzzy Fatigue-Tracking and Classification System for Wheelchair Users

every fragment time window.

LF =
∫ f2

f1
PSD(f ) df (3)

Additionally, the definition of the LF of the ECG is the
area under the PSD function, with the frequency ranging from
0.04-0.15 Hz. Therefore, f2 is equal to 0.15 Hz, while f1 is
equal to 0.04 Hz.

D. FATIGUE CLASSIFICATION BASED ON NEFCLASS
The first neuro-fuzzy approach (NEFCLASS) for data classi-
fication was proposed by Nauck and Kruse [38]. Fuzzy logic,
as an important concept in fuzzy inference systems (FIS), can
integrate human decision-making in the form of IF-THEN
rules. Since the relationship between the sEMG, ECG, accel-
eration signal features and fatigue cannot be quantified
directly, the fuzzy set, which is used to represent some form of
uncertainty, can describe it effectively. All of the relationships
between the feature inputs and fatigue (or non-fatigue) can
be fuzzed into values of [0, 1], which is expressed by the
membership function. Then, the integration of the IF-THEN
rules and the fuzzy sets determines the output. All member-
ship functions and the IF-THEN rules should be trained and
defined using large datasets and acquired knowledge.

The adaptive neuro-fuzzy inference system for classifica-
tion has been implemented in MATLAB with our custom
code and fuzzy logic toolbox [39].

In our work, we adopted the Mamdani system as our
FIS [40]. Although Mamdani-type fuzzy inference is similar
to the method proposed by Sugeno [41] in many aspects,
the former is more suitable for human input and the expres-
sion of human knowledge. As depicted in Figure 1-(6),
an S-shaped membership function was used to express the
fuzzed input, in which we use the slope of MPF, ARV and LF
as input variables due to their conformities to the function
shape. Figure 6 presents the FIS structure with 3 inputs,
denoted by Ii, the 8 rule bases in Table 3, as determined by the
training data (subjective, physiological and kinematic data)
and experimental experience as well as the 3 Zi outputs.

TABLE 3. Rule bases integrated with self-rated fatigue degrees.

As shown in Figure 1-(4), after feature extraction, we cal-
culated the slope of each feature and analysed it by

FIGURE 6. Structure of a neuro-fuzzy network for classification.

curve fitting. f (t) = aln(t)+bwas the selected curve function
for all features; this function has been validated as the most
proper fitting curve for sEMG signals [10].We also compared
another normal fitting curve and found it to be meaningful for
ECG signals. Furthermore, as shown in Figure 1-(7), the cru-
cial membership parameters and rule bases are determined by
a large amount of data (see Figure 1-(5)). Finally, we imported
the test sample into the trained classifier.

IV. STUDY RESULTS
A. ANALYSIS OF THE sEMG SIGNALS OF
DIFFERENT MUSCLES
In a laboratory environment, a large number of muscles
should be considered in fatigue measurement [42] to guaran-
tee recognition accuracy. However, too many sensors, elec-
trodes and wires attached to the human body will affect the
comfort of the subject. Especially during a dynamic activ-
ity, the use of several devices obstructs natural movement.
A trade-off between accuracy and wearability is a critical
research issue. Therefore, we analysed the performances of
different specific muscles proposed in the literature during
normal wheelchair propulsion exercises and chose the muscle
with best performance as the target for collecting the sEMG
signal. Figure 7 shows the sEMG signals of seven distinct
muscles in the upper limbs; it is evident that the middle
deltoid has the most distinctive boundary between the con-
traction and recovery phases. Moreover, the statistical param-
eters (i.e., Standard Deviation (SD) and Mean Value (MV))
demonstrated in Table 4 support this choice. Our analysed
statistical parameters focus on the contraction, recovery, and
whole propulsion phases. We collected 60-s sEMG signal
segments in the propulsion trial with a fixed speed of 1.6 m/s.
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FIGURE 7. Comparison of the sEMG signals of 7 different muscles.

During the recovery phase, the SDwas calculated and formed
into a sequence that we call the standard deviation series
of recovery (SDSR). The same parameter was calculated

in the contraction phase (the standard deviation series of
contraction (SDSC)). Then, the MVs of the SDSR and SDSC
were calculated. In addition, we used the SDSR and SDSC to
obtain a new series according to the time sequence called the
standard deviation series of propulsion (SDSP). Then, the SD
of SDSP was calculated.

The SDSR shows the stability of the recovery phase
because the muscle is not active and the signal should have
a tiny fluctuation that can be revealed with a small SDSR
value. In contrast, the SDSC should have a relatively greater
value, which means that the sEMG signal of the contraction
phase fluctuates considerably when this muscle shows a more
active status. We calculate the MV of the SDSR and SDSC to
acquire this information from the whole trial. The SD of the
SDSP represents the distinction between the contraction and
recovery phases. The fluctuation in the SDSP, which corre-
sponds to the SD of the SDSP, helps better understand the
information from the whole trial. When the SDSP fluctuates
more noticeably, the boundary between the contraction and
recovery phases is more clear. In other words, the larger the
value of the SD of the SDSP, the more distinct the difference
is between the contraction and recovery phases.

According to the data in Table 4, it is clear that the middle
deltoid has the lowest SDSR value and the highest SDSC
value. This means that the sEMG signal from the middle
deltoid has a stable recovery phase and a fluctuating con-
traction phase. At the same time, although the SD of the
SDSP in middle deltoid signal is not the highest compared
to the other muscles, it still has a rather large value, demon-
strating the clarity of the sEMG signal. To summarise, there
are three reasons for choosing the middle deltoid as the
target muscle. First, the recovery phase sEMG signals change
slightly. Second, the large fluctuation in the contraction phase
sEMG signals demonstrates their activity. Third, the sEMG
signals for the whole trial show a clear boundary between the
contraction and recovery phases.

B. THE TRENDS OF FEATURES DURING
WHEELCHAIR PROPULSION
To avoid physiological similarity within the set of
participants, we the analysed ECG and EMG data of all the
subjects to validate the homogeneous tendency of the rela-
tionships between physiological features and fatigue status.
Here, we utilise the trial data extracted from four subjects
from our database to demonstrate this tendency and vali-
date the homogeneity. Following our experimental protocol,
after we collected the data, we selected one trial from the
4 different participant trial sets and calculated the features
of the sEMG and ECG signals (i.e., MPF, ARV, and LF).
Then, by using regression analysis, we discovered that these
features have the same trends during each experimental
trial between different subjects. More precisely, the MPF
trend for different subjects is homogeneous, experiencing
an evident decrease. As shown in Figure 8, the trends of
the 4 subjects exhibit the same behavior: the MPF decreases
with increasing tiredness. This relationship between muscle
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TABLE 4. Comparison of time series statistical parameters in the contraction and recovery phases of the sEMG signals.

FIGURE 8. The relationship between MPF and fatigue during each trial for 4 different subjects.

fatigue and the MPF of the sEMG signal is consistent both
with the conclusion of Merlettia [43] and with the experiment
performed by Roman-Liu et al. [10]. Although our curves
are not as clean as those of Roman-Liu et al. (it is worth
noting that their experiments were performed in a strictly
controlled laboratory environment), they still convincingly
demonstrate the similarity in the behaviour in our practical
environment. Moreover, we illustrate changes in the other
two physiological parameters associated with fatigue degree.
With increases in the fatigue of a wheelchair user, the ARV
of the sEMG shows an increase, as demonstrated in Figure 9,
whereas the LF of ECG decreases considerably, as seen
in Figure 10.

C. CLASSIFICATION ACCURACY
According to our literature analysis, there is little research on
the classification of fatigue, and most studies have examined

the accuracy of fatigue detection. For example, Patel et al. use
HRV as the human physiological measure to detect the early
onset of fatigue in drivers [23]. Although a high accuracy
of up to 90% has been achieved in detecting human fatigue,
the classification of multiple degrees of fatigue can definitely
be improved [22]. The three different fatigue degrees pro-
posed in our work make sense in terms of the prediction
and identification of fatigue. More precisely, the ‘‘rather’’
status could be used as an indicator of pre-fatigue, thus
reminding the wheelchair user to avoid cumulative under-
lying fatigue. In Table 5, we compared the classification
accuracy of our proposed method and the results obtained
by Eskofier et al. [22]. In [22], the classification rates of
two different classifiers (Support VectorMachine [44] (SVM,
linear kernel) and Linear Discriminant Analysis [45] (LDA)),
were compared. Distinct physiological and kinematic fea-
tures and feature numbers were chosen for the comparison of
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FIGURE 9. The relationship between ARV and fatigue during each trial for 4 different subjects.

FIGURE 10. The relationship between LF and fatigue during each trial for 4 different subjects.

classification results. From this comparison, we can observe
that combining physiological and kinematic features leads
to better performance than a single feature source when

detecting fatigue degree. Eskofier can use two feature types
to reach 89.8% accuracy, which is higher than either the
single kinematic feature accuracy of 88.2% or the single
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TABLE 5. Comparison of the accuracy of different features and classification algorithms.

physiological feature accuracy of 68.5%. Our analysis also
illustrates the same behaviour, in which the accuracy is
improved to 80% by integrating kinematic information.
In fact, without the kinematic information from the
accelerometer to segment the sEMG signals, the relationship
between sEMG features and fatigue cannot be demonstrated
very clearly in a practical environment. Therefore, we can
conclude that it is better to include a greater variety of data
sources to recognise fatigue. Secondly, our proposed method
used fewer features to achieve a relatively high accuracy of up
to 80%. Even though Eskofier achieved up to 89.8% accuracy,
many more features are needed and fewer fatigue degrees
were distinguished. In other words, our proposed method
can distinguish three fatigue levels (non-fatigue, rather and
fatigue), while Eskofier’s method only proposed two fatigue
levels (low perceived fatigue and high perceived fatigue).
Finally, the neuro-fuzzy classifier outperforms the other two
classifiers (SVM and LDA) in analyzing physiological sig-
nals. Specifically, we can reach a 78% accuracy by analyzing
two sEMG features, while an approximately 68% accuracy
was achieved using Eskofier’s method. Therefore, the neuro-
fuzzy classifier demonstrates an advantage in terms of the
classification of physiological signals.

D. DISCUSSION
The accuracy of our neuro-fuzzy network can be improved
in different ways. In this research, the neuro-fuzzy network,
when applied to sEMG, ECG, and acceleration signal fea-
tures, achieved an accuracy of 80%. As these physiological
and kinematic signals vary with different individuals, data
from more subjects with different physiologies should be
collected and used to train the neuro-fuzzy network. This
will provide the network with sufficient learning on the dif-
ferent variations in these features and would thus further
increase the accuracy of the network. Membership function
also plays an important role in improving the accuracy of
the neuro-fuzzy network since a more precise representation
of the probability of fatigue degree would result in a higher
accuracy. The rule base is also of great importance: the
discovery of a more reasonable rule base would be a good
way to further increase the accuracy.

In addition to sEMG and ECG signals, electroencephalo-
gram (EEG) [46] signals are a significant source of fatigue
features and have been previously analysed to recognise
human fatigue by attaching the electrodes to the scalp.

In future work, we aim to improve the accuracy of this method
by selecting and adding other effective features from the EEG
signal. To improve our dataset and more deeply analyse the
accuracy of our method, we will continue our experiments
to collect more sEMG, ECG and acceleration data and to
introduce EEG information.

V. CONCLUSIONS
This paper proposed a complete fatigue-tracking and fatigue-
classification method and system for wheelchair users. For
classification, the fatigue degrees were derived from sEMG
and ECG features and integrated with acceleration signals of
propulsion movements. The raw signals were preprocessed
to remove baseline and movement artifacts to improve the
signal-to-noise ratio (SNR). From the preprocessed signals,
the extracted features (MPF, ARV and LF) have been demon-
strated to be strongly associated with human fatigue. The
relationship between these features and the fatigue degree
was demonstrated with regression analysis. Furthermore,
by applying our experimental protocol, we created a dataset to
train a novel neuro-fuzzy classifier and achieved a relatively
high classification accuracy of 80%, obtained by distinguish-
ing between three fatigue levels (‘‘non-fatigue,’’ ‘‘rather,’’
and ‘‘fatigue’’). Additionally, we analysed the sEMG signals
of seven muscles and selected the middle deltoid as the target
muscle because its EMG signal provides clear indications
of fatigue during wheelchair propulsion. This allowed us
to reduce the number of required sensors and thus improve
system wearability.

The contributions of our work have been described in
many aspects. We targeted the most vulnerable groups in
society - the disabled and the elderly - to improve their
quality of life. Our experimental setting was a non-laboratory
environment, which is more beneficial for the practical appli-
cation of our method. Regarding hardware, we minimised
the number of sensors. In the future, a close-fitting vest
with a small number of embroidered electrodes could be
designed to further improve the wearability of the system.
Furthermore, we extracted fewer features, reducing the com-
putation load and speeding up the execution of the embedded
implementations.
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