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A Smartwatch Step Counter for Slow and
Intermittent Ambulation
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evaluation for fall risk assessment [6, 7], sleep assessment [8],
Abstract— The ambulatory monitoring of human movement fall detection and prevention [9]. Albeit the importance of a
can provide valuable information regarding the degree of reliable strategy for activity assessment in free living
functional ability and general level of activity of individuals. conditions for the elderly is widely recognized, the available
Since walking is a basic everyday movement, automatic step technological solutions are not generally ready for

detection or step counting is very important in developing denl " th . h d h
ambulatory monitoring systems. This paper is concerned with the G€Ployment: there is not enough evidence to support the

development and the preliminary validation of a step counter assumption that those solutions, validated by testing on young
(SC) designed to operate also in conditions of slow and adults data, can be used without proper consideration that
intermittent ambulation. The SC was based on processing the elderly people move differently from younger people. Age
acc;elerometerb(ilata measureg Réiﬁe;‘rdz tsmat”"‘;a;;h runnifng a related changes in gait patterns and characteristics such as
lotal of 80 trials, was used to tune ADAM. Finally, ADAM was  SPeed of duration of walking episodes are known [10] and
compared with two differents commercial SCs: the native SC have been observed to affect inertial sensor data processing
running on the Gear 2 smartwatch and a waist-worn SC, the [11, 12]. Thus, dedicated strategies have to be designed and
Geonaute ONSTEP 400. A second dataset of 8 additional users,developed with the specific aim of an effective activity
for a total of 80 trials was used for the assessment study. The monitor for the elderly. In this paper, we moved a first step in
three SCs performed quite similarly in conditions of normal  his girection, by carrying out experimental tests in which
walking over long paths (1-3% of mean absolute relative error), v\ 0 \olunteers were asked to walk, with different styles and
ADAM outperformed the two other SCs in conditions of slow and . . . . i
intermittent ambulation: the error incurred by ADAM was speeds, including slow and intermittent ambulation, so as to
limited to 5%, significantly lower than errors of 20-30% incurred  Stress the capabilities of the novel step detection and counting
by the two other SCs. method we propose. The method was implemented in a
smartwatch; its performances were compared with the ones
Index Terms— accelerometer; elderly; inertial sensor; given by the native app running in the device, and by a

pedometer; smartwatch; step counting; walking; wrist. commercially available waist-worn step counter (SC).

I. INTRODUCTION A. Wearable technology for step counting

Ageing of the population and the concurrent increase of theAn SC — the device used for recording the number of
number of people who spend a large part of their dailyalked steps — counts each step by detecting the motion of the
time at home, motivates the development of ambulatogerson’s arm or hip and it is considered a valid option for
monitoring systems that are capable to evaluate the levelasgsessing physical activity in research and practice [13, 14].
physical activity in conditions of restrained mobility [1].Differently from past switch-based devices, modern SCs are
Because of the importance of walking for a healthy lifestyl®ased on Micro-Electro Mechanical Systems (MEMS)
step detection and counting is believed to convey valuatdgcelerometers. There are several factors that can limit the
information about the complex relationships existing betwedtcuracy of SCs, including placement site, intensity of
health and physical activity [2]. walking, counting errors due to non-ambulatory activities [15-
A large number of devices and applications have bedd]. The most common placement site of SCs is the waist:
developed for the purpose of physical activity monitoring [3devices are attached to the waistband or belt by means of a
5]. Accelerometry is the technology of choice for wearablélip. Measuring the acceleration in all directions in the three-
devices to measure and assess physical activity, with sevdlignensional space relieves the wearer from the need to
applications documented, including gait and balance quan@y:curately position the device in relation to an anatomical
reference frame, which can be influenced by body fat and
This paper was submitted for review on March 2817. This work was Clothing [15, 17]. User comfort and acceptability are generally
supported in part by the EC funded project I-SSUPPORT "ICT-Supported Balfigh, since the freedom of movement is not restricted and
Roalo.ts(éeanc?vzeOs:Hi(; 1v?/it?143t?1€;6).8'ioRobotics Institute, Scuola Superiorgonmng_domng is easy and Conv.e.ment' Whereas c_o_untlng
Sant'Anna, Pisa , Italy (e-mail: vincenzo.genovese @santannapisa.it) errors due to non-ambulatory activities may not be critical to
A. Mannini is with the BioRobotics Institute, Scuola Superiore Sant'Anngheir performance, waist-worn SCs are grossly inaccurate

Pisa , Italy (e-mail: andrea.mannini@santannapisa.it) when the walkina speed is low [1. 18
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development of mobile devices (namely, smartphones) th
endowed with inertial sensors, have motivated further res
in the field. The problem with smartph«-based SCs is that
the mobile devices araot necessarily taken in the sa
location at all times, and in the same position relative tc
body (e.g., trouser pocket and bag$®]{ In contrast with
waist-worn SCs, smartphone-baseslC< are also more
sensitive to the influence of n@mbulatory activitiesalbeit
interesting results have been recently reported as fo
recognition of activity and the estimation of sp«temporal
parameters of gait [20, 21Moreover, movements of tl
upper arm when the smartphone is carried in the hand a
necessarily correlated with walkingn interesting avenue 1
research concerns the creation of signiocessing methods
that can help reduce the sensitivity of -counting algorithms
to the issue of placement and rembulatory activitieq19,
22, 23]. Anyway in a similar fashion to wa-worn SCs,
smartphone-based SCsuffer from accuracy degradatic
when the walking speed is slow. In the attempt to improwv:
performance of smartphone-based S@mbedded MEM:
gyroscopes have also been considered as an alternat
accelerometers [24].

B. Smartwatch technology fetep countin

The reluctance to accept and to rouly use new
technologies is an important issue for the developmel
wearable sensor systems, such as activity monitorsSCs.
Lack of interest or motivation in using them is hig
predictive of later refusal. In this regard, a new generatic
mobile devices may ease a changédalbitc. The compliance
with the use of a device worn at the wrist (hamely
smartwatch) would be generally high, which is one reaso
the increasing interest devoted this technolog. Recent
works involving long-term momitring in large cohorts
users highlighted that using wristern sensor devices ci
grant longer wear times [25-27Moreover, smartwatche
provide unprecedented oppamity for collection of large
datasets of continuous measurement of physiolo
parameters (e.g., heart rate, galvanic skin resistance
temperature), and activitglated data (e.g.,, bt-in
accelerometer recordings).llAhese datacan be used for
longitudinal monitoring of health status and for quantime
selftracking, as advocated by the Quantified Self movel
[22, 28-31].

The problem of theeliability of measurements is cited a
major obstacle to avider use of wearable health monitori
devices such as smartwatchedlot dissimilarly from
smartphones processing the accelerometer dafrom
smartwatches for activity recognition ¢hallenging because
of the wrist gesticulation and variability in moveme
compared with otheplacement sites such as waist or ai
[32]. The wrist may move differently during the same acti\
depending on what is in the hand and what the hand is hc
or stabilizing. It is expcted that these difficulties may aff
step counting using a wrist-worrSC, although arm
movements are generally well correlated with leg moven
during steady walking.

2

In the case of intermittent ambulation activities, a cril
issue is the numberf missed steps that may occur due to
irregular signal patterns from the b-in accelerometer,
regardless of thelacement site. For instance, consider
problem of estimating a few steps interspersed with frec
stops and restarts. In this scrio, acceleration peaks
correlated with steps are expected to be distributed irreg!
both in amplitude and in time; hence, any predic
mechanism embedded in the algorithm of step counti
likely to perform poorly, due to the difficulty to spec and
match template patterns describing the events occurring ¢
any single step. Another element of difficulty is that ¢
windowing itself would be a critical process in conditions
slow and intermittent walking (low tin-resolution issue) [19].
A wristwatch SCthat would search for the periods inherer
the cyclical nature of walking would require indeed I
signal windows for extracting, e.g., the freque-domain
features needed for step identificat

The literature existing on the applican of wrist-worn
accelerometry to the problem of step counting is still sc
and scattered, especially in conditions of slow and interm
ambulation, [33, 34]This paper is an initial attempt to fill t|
gap. Previous research on smartphstep counting showed
that frequencyomain or correlation approaches did
accrue substantial benefits compared with windowed
detection (WPD)methods for step counting in conditions
normal walking [19]; on the other hand, WPD methods
easier to implement and present reduced computational
Therefore, we developed an adaptive WPD algorithm
wristwatch-based step counting using the ilt-in
accelerometer of a commercial smartwatch. We compare
performance of the proposed algorithm, the native app rul
in the smartwatch for step counting, and waist-worn
commercial SC. Eperimental tests included steady walking
several speeds, joggingnon-ambulatory activities, and
intermittent and slow ambulati.

Il. EXPERIMENTAL SECTION

A. System Design and Implementat

The technologicasolutionwe propose and describe in this
paper can be considergast as a module of a full suite of
devices and algorithm®f a multi-purpose Body Sensor
Network (BSN) for monitoring and assessing (eldel

Waist:

Fall risk assessment
Wrist:
Balance assessment
o N Activity recognition
Activity recognition

Step counting
Physical activity level

. Sleep assessment
Fall detection

Pocket / Smartphone:
Activity recognition

Fall detection

Shank s Foot:

Gait assessment

'

Fig. 1. Multipurpose Body Sensor Network (BSN) for monitor
and assessing (elderly) individuals in d-life activities.

Activity recognition
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(a) (b)
Fig. 2. (a) The Gear 2 smartwatch used for ADAM developn(b)
The mobile reference frame aligned with the sensitivity axes ¢
embedded accelerometer.

individuals involved in several of their de-life activities, see
Fig. 1. Within the frameworlof this platforn, algorithms for
fall risk assessment [30fait and balance assessn[35], fall
detection [36], activity recognition [33,7] and gait alteration
detection [38, 39] have been andrrently beingconceived
and deployed.

Given the scope of this paper, ttevelopment of a sing
sensor unitis targeted, aiming specifically at providi
solutions to the problem aftep countin. The smartwatch is
thus just another node that was integrated in the BSN, wi
sensor and processing resources needed to perform
counting.

The deeloped algorithm was implemented in a wear:
app named ADAM (Advanced Daily Activity Monito
running on a commercidlizen smartwatch (Gear 2, Samsi
Electronics Co., Ltd.), Fig..2ADAM was written in HTML5
using the IDE Tizen SDK for Wearable (vion 1.0.0). The
smartwatch provided acceleration compona,, a,, &, at the
sampling frequencfs = 25 Hz (sampling interveTs = 40 ms),
normalized to the gravitational acceleratg, g = 9.81 m/$,
relative to the mobile reference frame shown in Flb.
Additionally, a triaxial gyroscope was available to meas
the angular velocity. Howeveacceleration data onl were
included in the SC algorithm.

B. Experimental Protocol

Two sets of experimental trials were performed, with
aim to build one daset for tuning the parameters neede«
the step counting algorithm (training dataset), and an
dataset for assessing its performance (testing dat
Although field tests involving elderly users are surely net
for a thorough validation of the g@posed approa, just two
groups of healthy adult subjects participated inpreliminary
experimental phaseeported in this pap. All participants
signed an informed consent before starting experim
sessions. Research procedures were in accorcwith the
Declaration of Helsinki. All subjects wore the Gea
smartwatch on the naeminant hand wrist and a commer«
SC (Geonaut©NSTEP 400), which was clipped to the wi
belt at the right anterior iliac spine. During experime
sessions, subjectwere free to wear their preferred shi
Although the testing was not done in ly naturalistic
conditions, we took care of minimizingxperimental biases,
by asking subjects to move as naturally as they c
Moreover, they did not receive verbal my other feedback
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information abouthe SC outpy, only start and stop messages
were issued to them. Thraeviceinitialization required a 2-s
interval when the subject was asked to stand still in tl-
called neutral standing posture, which allo to recognize
whether the smartwatch was worn on the left or right w
Because of the absence alflerly participant in the subject
pool, particular care was devoted to the definition of
experimental study protoccwhich also involved conditions
of slow and intermittenambulatior typical of walking habits
of elderly peopleAfter initialization took placesubjects were
instructed to walk at their preferred sp (free-selected
speed), slower, or much slower, than normal and faster
normal, being fre to interpret the speed at their o
convenience. Anactivity named“In-home task” was also
considered, figure 3. Thiall set of activities considered for
training ADAM and for testing ADAM, the Gear 2 and !
Geonaute SCs, is reported Table I. The experimenter
observed the participants while performing activities
counted the number of steps walked in each trial, so
compute the reference step cowWN,s used for algorithm

TABLE |
ACTIVITY TYPES AND DESCRIPTION
Type Description

Walk-turn- Walk ten steps along a straight p including a half-

walk turn to walk ten steps in the opposite direction so i
return to the initial location (a rest of two seco
allowed before and after the kturn). Repeat at four
different speeds: slower than normal, normal (
freesselected), fster than normal, jogging.

Slow and Walk 500 steps at constant, slow speed (I

steady walk walking); directional changes are allown

Variable- Walk 500 steps at variable speed (level walking),

speed walk walking speed being freely changed (slc than
normal, normal, faster than normal); directio
changes and sto-starts are allowed.

Very slow Walk 100 steps at very low speed (level walkir
walk with minimal trunk and head oscillations; directio
changes and sto-starts are allowed.

Jog Jog 100 steps; directional changes and -starts are

allowed.
Going up- Climb a staircase of 11 steps -cm high), including
and-down a halfturn to the higher floor; walk downstairs alo
stairs the same staircase, so as to return to the i
location.
In-home task  Subjects were asked to do a predefined sequen

actions in a structured room, walking at their ¢

preferred speed (sFig. 3):

a)Take a box placed on the desk at point A and
it on the top of the shelf at point B (d = 7.8

b)Read the coat rack at point C and pick up a
(d=3.6m)

c)Carry the bag on the top of a second shelf at poi
using the smartwatch side ¢ (d = 8.4 m)

d)Reach the shelf at point B and recoup the
d=7.2m)

e)Bring the box on the desk at point A (7.8 m)

f) Reach the shelf at point D and recoup the
(d=4.2m)

g)Carry the bag to the coat rack at point C using
leffarm (d=8.4n

h)Reach the point A (d = 6.6

The distance walked in each section from a) to |

denoted with d. Between each section, subjects

asked to rest for two secon
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| Coat racl

B sher£2 Shelf1 |
Fig. 3. Room layout, with the furniture location for the-home task

activity. The red shapes are fixed obstacles to be avoided. Th
shapes are thertget points. The grid size is 60 x 60 cm

performance assessment.

The training dataset included the acceleror data
acquired from group %$ubjects asked to perform tiWalk-
turn-walk activity, with all variants indicated in Tabl. Eight
subjects (5 males and 3 females) participated in the tre
phase. Age ranged from 28 to 55 years (+ 11.8 years) and
height from 160 to 185 (172810.5 cm). The testing data:
included the accelerometer data acquired from (-2
subjects asked to perform all activities in Tall. Eight
subjects (3 males and 5 females) participated in the te
phase. Age ranged fro@9 to 54 years (37.+ 9.7 years) and
height from 158 to 187 (17249.5 cm).

C. The Step Counting Algorithm

A standard calibration procedure was employed to calil
the built-in tri-axial accelerometer [40The computed value
of offset and scale factor along the three sensitivity axes
used to compensate for calibration errors before processil
accelerometer measurements by ADAM.

The acceleration magnitude

1)

was computed from the acceleration components. -
point moving average filter was applied to the acceler:
magnitude, following a Point moving median filter, in th
combined effort to remove the hidglequency noise and
mitigate the effects of outlying measurements. If the abs
difference between the current sample and the pre
sample at the output of the moving median filter was less
a small thresholdl(,), the current sample was clipped he
previous sample, yielding,.. A highpass filtered version «
An. was obtained, namelj.,, by subtracting an -point
moving averaged version 8§, from A, itself. On a separate
conditioning line, the acceleration componea,, a,, a, were
filtered using a 16oint moving average filter, yieldina,,
AL, AL

1) Dynamic Thresholding

In accordance to previous studies, we hypothd that
local maxima of the acceleration magnitude corrd with
foot contacts at the beginning of each gait stepvided that
such peak values were high enough amade not determined

Ay = fa§+a§+a§

4

by acceleration measurement n{41]. Hence, each peak of
AL whose value exceedesbme threshold valuép could
increase the step count by one unit, depending onutcome
of the step validation procedure described in the follow
We propose to determine the threshold vain on-line
conditions (i.e.dynamic thresholding) by tin-shifting A, of
79 = KyTs secondsand clipping its value to a prefix
minimum value(to reduce the effects of ttdevice vibrating
very rapidly or very slowly from a cause other than wall.
The rationale behindhis choice was explained, first, by
analyzing the shortcomings of a popular means to conip
[41]:

_ max{AmL}rW + min{AmL}rw )

D — 2 .

The adaptive thresholdvas computed as the arithmetic
mean between the maximum and the minimum valueA,
occurring ina signal window of lengtk,, that extended from
the current,,, samplebackward, respectivelymax{A,,, }-,,
and min{A,, },,, the thresholdwas then clipped to a
minimum value Ai,. The peakwas searched in the time
interval from the positive crossing time (rising time), i
when A, crossedip with positive slope, to the negati
crossing time (falling time)i.e., whenA,,. crossedi, with
negative slope. In the example reported in 4, 15 was
computed over different time windows according to (2),
clipped to Anin (Amin = 1.023 g). When A,. exceeded the
dynamic thresholdlp, the SC state was set tarmed (not
armedotherwise).

In the example, it is noted that the step annotated was
not detected whety, = 1 s, yieldinca false negative in the step
detection process (Figa}i This behaviowas quite typical,
especially when the peak values A, differed markedly
during consecutive steps, namely when left and right
were not symmetric. Slight asymmetries are typical eve
healthy gait as highlighted by analyzincta from waist-worn
sensors [42hnd they are likely to exist as far as the motio
the upper arm is considel Intermittent ambulation (e.g.,
frequent stops and starts, abrupt directional charwould
further exacerbate the flem. In the effort to make tt
dynamic threshold adapting faster to the signal stz, could
be reduced, as in Figh4wherez, = 0.08 s. The peak at P4
was correctly detected, however we observe a false po:
occurring in the case of the peak al. It is also noted that
reducing thewindow’s lengthz,, the time function of the
dynamic thresholdp tendec to a delayed replica .. Let
us suppose that the time windwas narrowed down to the
point whent, = T in which case the dynamic thresh
turned out to bed, delayed by one sample. Following f
reasoning above, the algorithm would become hi
responsive, with the consequence that several false po:
might arise, especially when the (wrist) acceleration pat
were irregular. In ouwWPD implementationour proposal was
to design the dynamic threshold using a deliberate-shift
of AL by Kq > 1 samples, in the effort to avoid proliferatior
false positives, whilst retaining good adaptation propel
Hence,lp was computed as the clipped (Amn) and time-
shifted (byzy = K4Ts second) replica ofA,,.. We hypothesize
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that this approach may ensure fast adaptation to any changsexdonds, was computed as the difference between successive

the underlying signal shape. Fig. 5 shows the results for thecurrences of thA,, peaks that were identified by dynamic

same example as in Fig. 4 was computed by delayind,,  thresholding. The cadence, expressed in Hz, was computed by

by four samples, and the result was then clippeghtp inverting the average step time, which was estimated from a
In this particular example, the peak at P4 was correctgpecified number of step times. Finally, the Root Mean Square

detected, without introducing false positives in the stepf A,y (RMS;) was calculated in a window of lengtQ

detection process. However, successful peak identification digtending from the current sampleA&fy backwards over the

not imply that the step count be increased necessarily by omedow z.

unit; the detected step-related event must be further validated

for achieving better robustness to false positives. In 2) Step Validation

preparation for the step validation phase, the following The step validation was intended as a set of algorithmic

guantities were computed. The step time, expressed prescriptions used to reduce the rate of wrong detections

‘ ‘ ‘ ‘ ; incurred by the step-counting process. In particular simple

1af [—An ] heuristics were implemented, which helped improving

T s performance by enforcing reasonable constraints of walking
131 Min <, 15 Psi 1 [43]. Throughout the various stages of the step validation

process, the SC status was determined based on the values of
two parameters: the total number of steps counted since the
beginning of the current counting procedd{), and the
number of peaks that were recognized as valid, up to the
current time Contyy) since last stop. A block scheme of the
proposed algorithm is reported in figure 6.

The set of rules and the related parameters as implemented

(I S B A @ in the block scheme are illustrated in Table Il and briefly
explained in the following. In particular, on a sample-by-

A sample basis, Rule #1 was applied to avoid false positives that
A o< <008 P3 were likely to occur due to arm swinging during the last step
. before a walk StopA min, A min Armin ArmaxWere the values of
thresholds applied to single acceleration data channels, tuned
to discard signals that were not compatible with the walking-
related arm swing. A second group of rules (#2 and #3) was
applied in the case when dynamic thresholding indicated an
“armed” condition, i.e. the threshold was crossed upwards, but
it was not yet crossed in the opposite direction. Rule #2 reset
the Contep value to zero in case of long time intervals elapsed
‘ ‘ . ‘ . ‘ , from the last valid step, based on the thresfslg,,. Rule #3
et ke 4(b) detected sudden stops of walking and was designed to reject
Fig. 4. The time functions of 4 (blue) andho (red) are reported false positives related to arm swinging occurring in the course
forg‘a r.epresentative walking bout from activ?ty Walk-turn-walk. (a) of th_e_ Iast_sFep before a Walk_ stop. In order to deFeCt such
tw=1s; (b)w = 0.08 s. Red and green triangular markers indicate ~ conditiona joint check was carried on the RMS the signal
the samples within which the dynamic threshold is crossed in rising by means of th&kys threshold, on the time elapsed from the
and falling directions, respectively. last step (threshold st as in Rule #2), on the value of
Contyep, (this had to be greater than its minimum vafiig,)
and on the value df,

Rules from #4 to #9 acted at the time instant of step
detection, which occurred when the dynamic threshold was
crossed downwards (“falling” state, see figure 7). Depending
on the outcome of rules from #4 to #9, we were in the position
to accept the step or not. Rule #4 was related to the
assumption that a steady walking activity required at least
some consecutive steps to occur [41]. In partictber,update
of the Ny, value was inhibited untCont,e, value reached the
threshold valueSt,, Rules #5 and #6 coded the intuitive

P6

Acceleration (g)

0.9
0

Acceleration (g)

0.9
0

Acceleration (g)

09} : . : . : . : . notion that a gait step cannot have abnormal durations (neither
Time (s) too long nor too short), and must be characterized by a
Fig. 5. The time functions of 4 (blue) andk, (red) are reported for the  Significant acceleration footprint [43]. These rules were
same walking bout from activity Walk-turn-walk in Fig. 4. driven by the parameter§stia, TStwin (maximum and
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) TABLE Il
( Start <
\_ Y, STEP VALIDATION RULES
Rule ID Description SC state
1 Suspend thresholding @ontep=> 2 Stvin, or the  Sample
New sample step counter is armed or one of the following by
available four conditions is satisfied: sample
L 2 Ax, min
a/L < Ay min
o : =T 2 Az. min
Filtering AL < As max
+ 2 If the time elapsed from last valid step Not
(ElapsedTimeFromLastStepxceedd Stnax armed
Dynamic threshold thenConte,= 0
value update 3 If the following conditions are satisfied: Not
¥ 1. RMS;=StRMS armed
2. ElapsedTimeFromLastStepTstnax
Sample-by-sampl Relesy N
;:]e ky (5#1) ple | sample checks 3. Conkiep= Stiin
checks passed? 4. Nsep>0
thenNste, = Nsie; — 1, andContye, = 0
4 Wait updating Nep until Contyep= Sthin Falling
If step time< Tstyi, Or step time= Tstnay, then Falling
Dynamic Contyep=0
thresholdi . .
erf:ciio':g 6 If cadencee Stfyax thenConte,= 0 (cadence is Falling
computed from the la8tyi, steps)
If max(Au) = ACGnax thenContep,= 0 Falling
Is in «armed» «not armed» state 8 If max(An) < ACGnin, thenContyep,= 0 Falling
state? checks (#2 and #3) If A exceedsl, for a time less thadT, Falling
I thenContyep,=0
155 i
Is in «falling» N . Current
state? 14 Step time "falling” event ]
3 Rising
S Falling |
S Peak
Y < AccMin |
«falling» state Checks passed? 8 |
checks (#4 to #9)
Checks passed? N paatelrand 08 ]

Conty,, variables . . . I . . . . .

Time (s)
Fig. 7. Schematic description of parameters used in the step validation
rules that were applied in the “falling” state (green marker). In
particular, rules #5 and #6 of Table Il were applied to stride time and
cadence evaluated starting from peaks (black markers), rules #7 and #8
referred to the amplitude of the sign@c,n, black dashed line),
AcGnaxis not reported (2.5 g). Rule #9 was applied to the time interval

Accept step
detection

Fig. 6. Block diagram showing the algorithm of step validation in

action. Blocks colored in blue refer to dynamic thresholding, blocks . X . h
colored in orange refer to different stages of the step validation in which An_exceeded the dynamic threshal(red dashed line). In

procedure. The numbers reported within the orange blocks correspond orange, _the dynamip threshold that will be applied tadhsamples of
to the IDs of the rules described in Table II. the An, signal following the current sample.

minimum step time),Stf,.x (Maximum cadence)AcG.x perform sedentary activities (i.e., answering phone calls,
(maximum value of\,), ACG,» (Minimum value ofA,,) and drinking, typing a keyboard, gesticulating while speaking) and
AT (minimum duration of a step-related acceleration burst). exercise breaks (i.e., outstretching the arms in different spatial
) o orientations) — total recording time: 30 min per subject.

D. Algorithm training The training procedure was then implemented in two steps.
As explained in the Experimental Protocol section, tweirst, the parameters, whose actual setting wadieario
datasets (with different subjects involved in each) wersignificantly affect the algorithm performance, namily K,
considered for the purpose of training and testing thg . andSt,, were identified. The remaining parameters were
algorithm. In addition to the activities prescribed by thgjven default values that were found acceptable in the current

protocol in Table |, we performed several other tests with th@enario. In the second step, the parameigr&y, Ann and
subjects wearing the smartwatch; they were asked to freely
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St.in were tuned offline by implementing a grid search foour experiments, with the exception of tkery slow walk
determining their optimal value. Empirically, we verified thatctivity. The same comment concerning the factory calibration
they were important in determining the algorithms pertinent to explain the behavior of the Samsung SC.
performance, especially the time del&y which turned outto  Limiting the statistical analysis to the trials in which the
be the essential element of the proposed WPD methadethods did not undergo complete failure, Table V reports the
Compared with the case whig = 4, a too small value tended CE statistics for each activity, averaged across subjects (mean
to increase the detection sensitivity at the expense of thalue, standard deviation, minimum value, maximum value).
specificity; conversely, a too high value (sKy,> 8) tended to The two commercial devices, particularly the Samsung SC,
improve the detection specificity, at the expense of thended to undercount steps, especially when the walking
sensitivity. Overall, the parameter setting we choose (Talktenditions differed to some extent from those assumed for the
) turned into 100% specificity, including analysis of datdactory calibration. Conversely, ADAM performed acceptably.
from sedentary activities and exercise breaks. It goes withddtie to an outlying subject performing théariable-speed
saying that the native Samsung SC accumulated several couvask activity, namely one subject for which ADAM heavily

in the same situation where ADAM was not affected by falaendercounted steps, the mean error and the standard deviation

positives. were slightly greater than those achieved by the two other
E. Metric of Performance methods.
: . i TABLE Ill
_ gheb(;ount ErrorCE) was defined as follows-th activity, INPUT PARAMETERS OFADAM.
j-th subject): o o o Processing
CE(L,)) = Nstep (i) — Nrer(i, ), (3) v, 9 0.017
i=1,..,10;j=1,..8. Dynamic thresholding
The Mean Absolute Relative ErrodMARE was also }:”_ g ‘11‘033
considered as performance metric: ’ Step validation
8 . Strin 6
1 CE(i,J)
MARE (i) = 100-—2 —— i =1,..,10. 4 TStun, 0.30
® 8 L [Nrer G, )| @ TSl € 1.5
j=1 i ) ) Stfna HZ 3.00
CE andMAREAare the metrics to investigate the accuracy ofA,qn, g 0.2¢
the three SCs. Henceforth, the tecomplete failurewill be ~ Awin 9 ?)é?s
used to denote when one method was 100% inaccurate, in t Zm':)’g _o.'sc
sense that it could not register any valid step in a particulafce., g 2.50
activity. ACGrin, § 1.04
AT, s 0.12
7 S 3.00
lll. RESULTSAND DISCUSSION Skus 9 0.08
ADAM was trained using th€E-statistics generated from
TABLE IV

the training dataset. Table Ill shows the resulting setting of the NUMBER OF COMPLETE FAILURES FOR EACH METHAD

input parameters needed by the algorithm. Table IV repadrts Activity ADAM __ Samsung SC_Geonaute SC
the data concerning the complete failures of each SC. N@#lk-turn-walk (slow) 0 3 8
surprisingly, the Geonaute SC performed worse in conditioMg!k-tum-walk (normal) 0 3 8
hen th ber of tive steps walked before an s%alk'tum'walk (fasy ° 0 8
when the |jum €r of consecu - p y Bk-turn-walk (jogging) 0 5 7
was not high enough for step validatioWdlk-turn-walkand  Slow and steady walk 0 0 0
In-home task moreover, it suffered from some difficulties Variable-speed wal 0 0 0
. . . . Very slow walk 0 4 2
even during the activityery slow walk The explanation is Jog 0 0 0
that the factory calibration of the Geonaute SC was likelyoing up-anc-down stair 0 0 0
tailored to continuous walking at free selected walking speedighome task 0 0 5

0/80 21/80 38/80

The Samsung SC performed better than the Geonaute sd9iy!

TABLE V
STATISTICS OF THE PERFORMANCE METRICE.
Activity ADAM Gear SC Geonaute SC

Mean Max Min Std Mean Max Min Std Mean Max Min Std
Walk-turn-walk (slow) 0.7 4 -1 15 -3.0 -2 -4 1.0 NA NA NA NA
Walk-turn-walk (normal) 0.6 3 -1 1.4 -1.8 1 -4 21 NA NA NA NA
Walk-turn-walk (fast) 1.0 4 -2 2.0 -1.0 -1 -1 0.0 NA NA NA NA
Walk-turn-walk (jogging) 2.7 7 -3 3.2 2.3 7 -7 8.1 4.0 4 4 0.0
Slow and steady wa -4.€ 3 -20 7.1 -4.5 0 -17 5.t -4.8 3 -18 8.2
Variable-speed walk -11.1 18 -84 30.9 -4.6 23 -50 20.8 4.4 36 -10 14.1
Very slow walk -2.9 8 -17 7.1 -215 0 -76 36.4 -300 1 -82 38.5
Joc 0.C 5 -3 2.8 -5t 15 -63 240 4.C 17 -4 6.4
Going up-and-down stairs -0.1 3 -2 1.6 -1.3 1 -4 2.1 0.8 3 0 1.0
In-home task -5.5 1 —26 9.0 -105 10 —42 19.0 610 2 -103  55.6
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smartphone and the waist-band SC and fixed them at the L3
TABLE VI

VALUES OF THE PERFORMANCE METRIMARE. level (lower trunk). In these conditions, trunk accelerometry is

Activity ADAM Samsung SC Geonaute SC  Widely regarded as a feasible technique to accurately measure
Walk-turn-walk (slow) 5 15 NA spatio-temporal parameters of gait, including step time and
Walk-turn-walk (normal) 6 11 NA cadence [45, 46]; however, serious concerns exist for its
Walk-turn-walk (fast 9 5 NA L L . . .
Walk-turn-walk (jogging) 18 35 20 suitability when gait is pathologic, the gait speed is low, or
Slow and steady walk 1 1 1 both [47]. This same difficulty was recognized by Cheng et
xz;?gl'gjpﬁgﬁ(wa' g gl 230 al., in experiments involving COPD (Chronic Obstructive
Jog > 12 5 Pulmonary Disease) patients that performed the Six Minutes
Going uf-anc-down stair 2 3 2 Walking Test (6MWT), [44]; a discussion on the trend of
In-home task 6 17 61 state-of-the-art SCs to undercount steps in conditions of slow

walking is also reported by Turner et al., [48]. We verified the

Finally, Table VI reports th&MARE values scored by the same behavior for either the Samsung or the Geonaute SC,
three SCs. The three tested SCs performed similarly during thhich sometimes also completely failed to count at slow
extended walks oBlow and steady walkKariable-speed walk walking speeds. On the other hand, the undercount bias of
and duringGoing up-and-down stairsconversely, ADAM ADAM was generally small. We consider therefore the
outperformed the two other step counters in all conditio®SDAM error rate, particularly during the activityery slow
when the movement was very slow (i.e., durMery slow walk, a very promising result.
walk) and more intermittentalk-turn-walk(except jogging) It is noted that ADAM and the Samsung SCs are two apps
and In-home task Walk-turn-walk (jogging)was the only that run on the smartwatch, sharing the same raw
activity where the three methods performed poorly, althougitcelerometer data. The ADAM step counting loop works at
ADAM was better even in this case (no complete failures artde rate of 25 samples per second; in the absence of any
lower MARE values). further information, we believe that the sampling rate is the

The complete failures and the errors incurred by the threame for the Samsung SC. In terms of power consumption, we
methods, and especially by the Geonaute SC, during therified that the time from full charge to complete discharge
activity Walk-turn-walk in all conditions of walking speed, of the battery system is approximately 72 hours (low-power
can be partly explained as the consequence of the builtdareen-off mode) and 5 hours (screen-on mode), irrespective
assumption of registering a step only after that a certaifi whether the Samsung SC runs alone or ADAM works in
number of consecutive steps have been observed. Th@njunction with it (the Samsung SC is a permanent
assumption is common to all tested methods. In the absencapplication that cannot be aborted). The computational load of
documented information about the behavior of the twADAM is therefore similar to that of the Samsung SC, and
commercial devices, we can only conjecture which value bbth apps drain only a limited amount of battery power,
the parametefSt,,, they have $t,, = 10, we believe). The compared with the battery draining due to, e.g., the screen
approach we propose to dynamic thresholding allowesbndition. Of course, any further consideration about the
reducing St without substantial performance degradatiorbattery life must consider that smartwatches are devices that
provided that the time delad$y was suitably chosen. can be used for fulfiling many functions, including, e.g.,

From inspecting the performance data reported in Tablesephony, e-mailing, Bluetooth connectivity, which all are
IV-VI, the Samsung SC outperformed the Geonaute S&nown to be greedy of battery power. In this sense, the power
ADAM outperformed both duringWalk-turn-walk (in all requirements and the battery charging policies of a smartwatch
variants) andn-home taskMoreover, the two wrist-worn SCs would not be too dissimilar from those of a smartphone.
tended to perform better than the waist-worn SC when the
walking speed was slower than normal, with the preference to IV. CONCLUSIONS ANDOUTLOOK
be given to ADAM. We can conclude that the two commercial g paper was concerned with the development and the

SCs were not probably designed to perform accurate stigRjiminary validation of a step counter that was designed for
counting in those situations (slow and intermittent walkingypslications when ambulation can be slow and intermittent.
where ADAM suited better. The data reported in Tableo $he step counter was based on processing the accelerometer
indicate MARE values incurred by ADAM lower than 5%qata measured by a commercial smartwatch using a custom
during continuous walking across a range of speeds, whighsraple app (ADAM). Compared with either the native SC
increased to 5%-18% when short walking bouts WelRnning in the smartwatch or a waist-worn SC, ADAM
considered. We consider the results of this paper in connectiQtipited similar accuracy levels in conditions of normal

with the results reported by Cheng et al, who analyzed St@R\king, and was superior in conditions of slow and

counts using a custom smartphone algorithm and jgermittent ambulation. The WPD algorithm developed in this

commercial waist-band SC when two healthy subjects Walk%%per for step counting can be ported to any wrist-worn
500 consecutive steps, [44]. The custom smartphone algoritifhile device that embeds a tri-axial accelerometer to
outperformed the waist-band SC, showing performanggeasure wrist acceleration. Our novel approach to dynamic
comparable to ours (activitieSlow and steady walland  {hresholding might be useful even in the implementation of
Variable-speed wa)k However, they taped together thewpps for step counting using other accelerometer placement
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sites, although we have not tested it yet. As for the wrist, tfi£0] P. A. Hageman and D. J. Blanke, "Comparison of gait of

experimental results shown in the paper offer promise for a
robust solution to the problem of step counting in the difficult
conditions of slow and intermittent walking.

The availability of a step counter that can detect slow and
intermittent walking allows to overcome the limitations of
currently available commercial devices. As a consequence,
proposed ADAM app has the potential to improve the
reliability of the objective quantification of mobility, physical
activity level and fall risk in the elderly.

ACKNOWLEDGMENT
This work was partly supported by the EC funded project I-

[11] J. J. Kavanagh and H. B. Menz,

[13]

young women and elderly womerPhys Theryol. 66,

pp. 1382-1387, 1986.

"Accelerometry: a
technique for quantifying movement patterns during
walking," Gait & posturevol. 28, pp. 1-15, 2008.

&l T. Asai, S. Misu, R. Sawa, T. Doi, and M. Yamada, "The

association between fear of falling and smoothness of
lower trunk oscillation in gait varies according to gait
speed in community-dwelling older adultsléurnal of
neuroengineering and rehabilitationol. 14, p. 5, 2017.

C. Tudor-Locke, J. E. Williams, J. P. Reis, and D. Pluto,
"Utility of pedometers for assessing physical activity,"
Sports Medicineyol. 32, pp. 795-808, 2002.

SUPPORT “ICT-Supported Bath Robots” (H2020 PHC-1$14] M. McCarthy and M. Grey, "Motion Sensor Use for

643666).

[15]

REFERENCES

[1] K. L. Storti, K. K. Pettee, J. S. Brach, J. B. Talkowski, C
R. Richardson, and A. M. Kriska, "Gait speed and step-
count monitor accuracy in community-dwelling older
adults," Medicine & Science in Sports & Exercisal.
40, pp. 59-64, 2008.

[2] F. A. Storm, B. W. Heller, and C. Mazza, "Step detection
and activity recognition accuracy of seven physical
activity monitors,"PloS oneyol. 10, p. €0118723, 2015.

[3] C.-C. Yang and Y.-L. Hsu, "A review of accelerometry-
based wearable motion detectors for physical activity
monitoring,"Sensorsyol. 10, pp. 7772-7788, 2010.

[4] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski,
and R. Jafari, "Enabling effective programming an
flexible management of efficient body sensor networ
applications," IEEE Transactions on Human-Machine
Systemsyol. 43, pp. 115-133, 2013.

[5] G. Fortino, R. Gravina, W. Li, and C. Ma, "Using cloud-
assisted body area networks to track people physical
activity in mobility," in Proceedings of the 10th EAI
International Conference on Body Area Network315,
pp. 85-91.

[6] J. Howcroft, J. Kofman, and E. D. Lemaire, "Review of

fall risk assessment in geriatric populations using inerti?ﬁo]

sensors," Journal of  neuroengineering  and
rehabilitation,vol. 10, p. 91, 2013.

[71 M. Marschollek, A. Rehwald, K.-H. Wolf, M. Gietzelt,
G. Nemitz, H. M. zu Schwabedissen, and M. Schulz
"Sensors vs. experts-A performance comparison of
sensor-based fall risk assessment vs.
assessment in a sample of geriatric patie®8C Med
Inform Decis Makyol. 11, p. 48, 2011.

[8] V. T.van Hees, S. Sabia, K. N. Anderson, S. J. Denton
J. Oliver, M. Catt, J. G. Abell, M. Kivimaki, M.

Trenell, and A. Singh-Manoux, "A novel, open accesg2 ]

method to assess sleep duration using a wrist-worn
accelerometer,PloS oneyol. 10, p. e0142533, 2015.

[9] S. Chaudhuri, H. Thompson, and G. Demiris,
detection devices and their use with older adults:
systematic review,Journal of geriatric physical therapy
(2001),vol. 37, p. 178, 2014.

[16]

[17

18]

[19]

conventior[%

"FaL2 4]

Physical Activity Data: Methodological Considerations,"
Nursing researchyol. 64, p. 320, 2015.

S. J. Duncan, G. Schofield, E. K. Duncan, and E. A.
Hinckson, "Effects of age, walking speed, and body
composition on pedometer accuracy in children,"
Research quarterly for exercise and spaa). 78, pp.
420-428, 2007.

S. Horvath, D. G. Taylor, J. P. Marsh, and D. J.
Kriellaars, "The effect of pedometer position and normal
gait asymmetry on step count accuracypplied
Physiology, Nutrition, and Metabolismol. 32, pp. 409-
415, 2007.

E. L. Melanson, J. R. Knoll, M. L. Bell, W. T. Donahoo,
J. Hill, L. J. Nysse, L. Lanningham-Foster, J. C. Peters,
and J. A. Levine, "Commercially available pedometers:
considerations for accurate step countinBréventive
medicineyol. 39, pp. 361-368, 2004.

C. J. Dondzila, A. M. Swartz, N. E. Miller, E. K. Lenz,
and S. J. Strath, "Accuracy of uploadable pedometers in
laboratory, overground, and free-living conditions in
young and older adults,'International Journal of
Behavioral Nutrition and Physical Activitwol. 9, p.
143, 2012.

A. Brajdic and R. Harle, "Walk detection and step
counting on unconstrained smartphones Piaceedings

of the 2013 ACM international joint conference on
Pervasive and ubiquitous computjrgP13, pp. 225-234.

M. Susi, V. Renaudin, and G. Lachapelle, "Motion mode
recognition and step detection algorithms for mobile
phone users,Sensorsyol. 13, pp. 1539-1562, 2013.

éZl ] V. Renaudin, M. Susi, and G. Lachapelle, "Step length

estimation using handheld inertial sensoBghsorsyol.
12, pp. 8507-8525, 2012.

] M. A. Case, H. A. Burwick, K. G. Volpp, and M. S.

Patel, "Accuracy of smartphone applications and
wearable devices for tracking physical activity data,"
Jama,vol. 313, pp. 625-626, 2015.

A. Mannini, A. M. Sabatini, and S. S. Intille,
"Accelerometry-based recognition of the placement sites
of a wearable sensorPervasive and Mobile Computing,
vol. 21, pp. 62-74, 2015.

S. Jayalath and N. Abhayasinghe, "A gyroscopic data
based pedometer algorithm," i@omputer Science &
Education (ICCSE), 2013 8th International Conference
on, 2013, pp. 551-555.

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2702066, IEEE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Access

10

[25] UBC, "UK Biobank Coordinating Centre. Category Z38] A. Mannini, O. Martinez-Manzanera, T. F. Lawerman,

[27]

(28]

[29]

[30]

[33]
[34]

[35]

[36]

enhanced phenotyping at baseline assessment visit in last
100-150,000 participants.,” vol. Addendum to main
study protocol, ed. Stockport Cheshire 2009.

R. Troiano and J. Mc Clain, "Objective measures of
physical activity, sleep, and strength in U.S. National
Health and Nutrition Examination Survey (NHANES)[39]
2011-2014," in8th Internat Conf on Diet and Activity
Methods Roma, Italy, 2012.

A. Doherty, D. Jackson, N. Hammerla, T. PIl6tz, P.
Olivier, M. H. Granat, T. White, V. T. van Hees, M. I.
Trenell, and C. G. Owen, "Large scale population
assessment of physical activity using wrist worn
accelerometers: The UK Biobank StudifbS oneyol. [40]
12, p. e0169649, 2017.

G. Appelboom, E. Camacho, M. E. Abraham, S. S.
Bruce, E. Dumont, B. E. Zacharia, R. D’Amico, J.
Slomian, J. Y. Reginster, and O. Bruyére, "Smart
wearable body sensors for patient self-assessment and
monitoring," Archives of Public Healthyol. 72, p. 28, [41]
2014.

R. Rawassizadeh, B. A. Price, and M. Petre, "Wearables:
has the age of smartwatches finally arrived?[42]
Communications of the ACMol. 58, pp. 45-47, 2014.

A. Mannini and A. M. Sabatini, "A smartphone-centered
wearable sensor network for fall risk assessment in tfé3]
elderly," Proc. of the 10th EAI International Conference

on Body Area Networkg015.

M. S. Patel, D. A. Asch, and K. G. Volpp, "Wearable
devices as facilitators, not drivers, of health behavior
change,"Jama,vol. 313, pp. 459-460, 2015. [44]
A. Mannini, S. S. Intille, M. Rosenberger, A. M.
Sabatini, and W. Haskell, "Activity recognition using a
single accelerometer placed at the wrist or ankle,"

Medicine & Science in Sports & Exercis@l. 45, pp.
2193-2203, 2013.

M. Y. Rohit, "Wrist Pedometer Step Detection US Patent
2014/0140074431 " United States Patent, 2014. [45]

R. Sourabh, "Adaptive step detection US Patent
2013/0191069 A1," 2013.
A. Mannini and A. M. Sabatini, "Walking speed[46]

estimation using foot-mounted inertial sensors:
Comparing machine learning and strap-down integration
methods,"Medical Engineering & Physicsiol. 36, pp.
1312-1321, 2014.

A. M. Sabatini, G. Ligorio, A. Mannini, V. Genovese,[47]
and L. Pinna, "Prior-to-and post-impact fall detection
using inertial and barometric altimeter measurements,"
IEEE Transactions on Neural Systems and Rehabilitation
Engineeringyol. 24, pp. 774-783, 2016.

A. Mannini, M. Rosenberger, W. Haskell, A. M.[48]
Sabatini, and S. S. Intille, "Activity recognition in youth
using single accelerometer placed at wrist or ankle,"
Medicine & Science in Sports & Exercisal. April (in
press), 2017.

D. Trojaniello, U. Della Croce, D. A. Sival, N. M.
Maurits, and A. M. Sabatini, "Automatic classification of
gait in children with early-onset ataxia or developmental
coordination disorder and controls using inertial
sensors, Gait & postureyvol. 52, pp. 287-292, 2017.

A. Mannini, D. Trojaniello, U. Della Croce, and A. M.
Sabatini, "Hidden Markov Model-Based Strategy for
Gait Segmentation using Inertial Sensors: Application to
Elderly, Hemiparetic Patients and Huntington's Disease
Patients," presented at the 37th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society, Milan, Italy, 2015.

E. Bergamini, G. Ligorio, A. Summa, G. Vannozzi, A.
Cappozzo, and A. M. Sabatini, "Estimating orientation
using magnetic and inertial sensors and different sensor
fusion approaches: accuracy assessment in manual and
locomotion tasks,"Sensorsyol. 14, pp. 18625-18649,
2014.

N. Zhao, "Full-featured pedometer design realized with
3-Axis digital accelerometerAnalog Dialogueyol. 44,
2010.

R. Moe-Nilssen and J. L. Helbostad, "Estimation of gait
cycle characteristics by trunk accelerometdqurnal of
Biomechanicsyol. 37, pp. 121-126, 2004.

R. C. Gonzélez, A. M. Lépez, J. Rodriguez-Uria, D.
Alvarez, and J. C. Alvarez, "Real-time gait event
detection for normal subjects from lower trunk
accelerations,"Gait & posture,vol. 31, pp. 322-325,
2010.

Q. Cheng, J. Juen, Y. Li, V. Prieto-Centurion, J. A.
Krishnan, and B. R. Schatz, "GaitTrack: Health
monitoring of body motion from spatio-temporal
parameters of simple smart phones,"Proceedings of
the International Conference on Bioinformatics,
Computational Biology and Biomedical Informatics
2013, p. 897.

W. Zijlstra and A. L. Hof, "Assessment of spatio-
temporal gait parameters from trunk accelerations during
human walking,'Gait & posturevol. 18, pp. 1-10, 2003.

S. Nishiguchi, M. Yamada, K. Nagai, S. Mori, Y.
Kajiwara, T. Sonoda, K. Yoshimura, H. Yoshitomi, H.
Ito, and K. Okamoto, "Reliability and validity of gait
analysis by android-based smartphon&glemedicine
and e-Healthyol. 18, pp. 292-296, 2012.

D. Trojaniello, A. Cereatti, and U. Della Croce,
"Accuracy, sensitivity and robustness of five different
methods for the estimation of gait temporal parameters
using a single inertial sensor mounted on the lower
trunk," Gait & posturevol. 40, pp. 487-492, 2014.

L. J. Turner, L. Houchen, J. Williams, and S. J. Singh,
"Reliability of pedometers to measure step counts in
patients with chronic respiratory diseasdgurnal of
cardiopulmonary rehabilitation and preventioml. 32,

pp. 284-291, 2012.

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



