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Abstract— The ambulatory monitoring of human movement 

can provide valuable information regarding the degree of 
functional ability and general level of activity of individuals. 
Since walking is a basic everyday movement, automatic step 
detection or step counting is very important in developing 
ambulatory monitoring systems. This paper is concerned with the 
development and the preliminary validation of a step counter 
(SC) designed to operate also in conditions of slow and 
intermittent ambulation. The SC was based on processing the 
accelerometer data measured by a Gear 2 smartwatch running a 
custom wearable app, named ADAM. A dataset of 8 users, for a 
total of 80 trials, was used to tune ADAM. Finally, ADAM was 
compared with two differents commercial SCs: the native SC 
running on the Gear 2 smartwatch and a waist-worn  SC,  the 
Geonaute ONSTEP 400. A second dataset of 8 additional users, 
for a total of 80 trials was used for the assessment study. The 
three SCs performed quite similarly in conditions of normal 
walking over long paths (1-3% of mean absolute relative error); 
ADAM outperformed the two other SCs in conditions of slow and 
intermittent ambulation; the error incurred by ADAM was 
limited to 5%, significantly lower than errors of 20-30% incurred 
by the two other SCs. 
 

Index Terms— accelerometer; elderly; inertial sensor; 
pedometer; smartwatch; step counting; walking; wrist.  

I. INTRODUCTION 

geing of the population and the concurrent increase of the 
number of people who spend a large part of their daily 

time at home, motivates the development of ambulatory 
monitoring systems that are capable to evaluate the level of 
physical activity in conditions of restrained mobility [1]. 
Because of the importance of walking for a healthy lifestyle, 
step detection and counting is believed to convey valuable 
information about the complex relationships existing between 
health and physical activity [2].  

 A large number of devices and applications have been 
developed for the purpose of physical activity monitoring [3-
5]. Accelerometry is the technology of choice for wearable 
devices to measure and assess physical activity, with several 
applications documented, including gait and balance quality 
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evaluation for fall risk assessment [6, 7], sleep assessment [8], 
fall detection and prevention [9]. Albeit the importance of a 
reliable strategy for activity assessment in free living 
conditions for the elderly is widely recognized, the available 
technological solutions are not generally ready for 
deployment: there is not enough evidence to support the 
assumption that those solutions, validated by testing on young 
adults data, can be used without proper consideration that 
elderly people move differently from younger people. Age 
related changes in gait patterns and characteristics such as 
speed or duration of walking episodes are known [10] and 
have been observed to affect inertial sensor data processing 
[11, 12]. Thus, dedicated strategies have to be designed and 
developed with the specific aim of an effective activity 
monitor for the elderly. In this paper, we moved a first step in 
this direction, by carrying out experimental tests in which 
young volunteers were asked to walk, with different styles and 
speeds, including slow and intermittent ambulation, so as to 
stress the capabilities of the novel step detection and counting 
method we propose. The method was implemented in a 
smartwatch; its performances were compared with the ones 
given by the native app running in the device, and by a 
commercially available waist-worn step counter (SC). 

A. Wearable technology for step counting  

An SC – the device used for recording the number of 
walked steps – counts each step by detecting the motion of the 
person’s arm or hip and it is considered a valid option for 
assessing physical activity in research and practice [13, 14]. 
Differently from past switch-based devices, modern SCs are 
based on Micro-Electro Mechanical Systems (MEMS) 
accelerometers. There are several factors that can limit the 
accuracy of SCs, including placement site, intensity of 
walking, counting errors due to non-ambulatory activities [15-
17]. The most common placement site of SCs is the waist: 
devices are attached to the waistband or belt by means of a 
clip. Measuring the acceleration in all directions in the three-
dimensional space relieves the wearer from the need to 
accurately position the device in relation to an anatomical 
reference frame, which can be influenced by body fat and 
clothing [15, 17]. User comfort and acceptability are generally 
high, since the freedom of movement is not restricted and 
donning-doffing is easy and convenient. Whereas counting 
errors due to non-ambulatory activities may not be critical to 
their performance, waist-worn SCs are grossly inaccurate 
when the walking speed is low [1, 18].  

Recent technological advances, in particular the 
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development of mobile devices (namely, smartphones) that are 
endowed with inertial sensors, have motivated further research 
in the field. The problem with smartphone
the mobile devices are not necessarily taken in the same 
location at all times, and in the same position relative to the 
body (e.g., trouser pocket and bags) [19
waist-worn SCs, smartphone-based SCs
sensitive to the influence of non-ambulatory activities, 
interesting results have been recently reported as for the 
recognition of activity and the estimation of spatial
parameters of gait [20, 21]. Moreover, movements of the 
upper arm when the smartphone is carried in the hand are not 
necessarily correlated with walking. An interesting avenue of 
research concerns the creation of signal pr
that can help reduce the sensitivity of step
to the issue of placement and non-ambulatory activities 
22, 23]. Anyway, in a similar fashion to waist
smartphone-based SCs suffer from accuracy degradations 
when the walking speed is slow. In the attempt to improve the 
performance of smartphone-based SCs, embedded MEMS 
gyroscopes have also been considered as an alternative to 
accelerometers [24].  

B. Smartwatch technology for step counting

The reluctance to accept and to routinel
technologies is an important issue for the development of 
wearable sensor systems, such as activity monitors and 
Lack of interest or motivation in using them is highly 
predictive of later refusal. In this regard, a new generation of 
mobile devices may ease a change of habits
with the use of a device worn at the wrist (namely, a 
smartwatch) would be generally high, which is one reason for 
the increasing interest devoted to this technology
works involving long-term monitoring in large cohorts of 
users highlighted that using wrist-worn sensor devices can 
grant longer wear times [25-27]. Moreover, smartwatches 
provide unprecedented opportunity for collection of large 
datasets of continuous measurement of physiological 
parameters (e.g., heart rate, galvanic skin resistance and 
temperature), and activity-related data (e.g., built
accelerometer recordings). All these data 
longitudinal monitoring of health status and for quantimetric 
self-tracking, as advocated by the Quantified Self movement 
[22, 28-31].  

The problem of the reliability of measurements is cited as a 
major obstacle to a wider use of wearable health monitoring 
devices such as smartwatches. Not dissimilarly from 
smartphones, processing the accelerometer data 
smartwatches for activity recognition is 
of the wrist gesticulation and variability in movement, 
compared with other placement sites such as waist or ankle 
[32]. The wrist may move differently during the same activity, 
depending on what is in the hand and what the hand is holding 
or stabilizing. It is expected that these difficulties may affect 
step counting using a wrist-worn SC
movements are generally well correlated with leg movements 
during steady walking.  
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. The wrist may move differently during the same activity, 

depending on what is in the hand and what the hand is holding 
ected that these difficulties may affect 

SC, although arm 
movements are generally well correlated with leg movements 

In the case of intermittent ambulation activities, a critical 
issue is the number of missed steps that may occur due to the 
irregular signal patterns from the built
regardless of the placement site. For instance, consider the 
problem of estimating a few steps interspersed with frequent 
stops and restarts. In this scena
correlated with steps are expected to be distributed irregularly 
both in amplitude and in time; hence, any predictive 
mechanism embedded in the algorithm of step counting is 
likely to perform poorly, due to the difficulty to specify
match template patterns describing the events occurring during 
any single step. Another element of difficulty is that data 
windowing itself would be a critical process in conditions of 
slow and intermittent walking (low time
A wristwatch SC that would search for the periods inherent in 
the cyclical nature of walking would require indeed long 
signal windows for extracting, e.g., the frequency
features needed for step identification.

The literature existing on the applicatio
accelerometry to the problem of step counting is still scarce, 
and scattered, especially in conditions of slow and intermittent 
ambulation, [33, 34]. This paper is an initial attempt to fill the 
gap. Previous research on smartphone 
that frequency-domain or correlation approaches did not 
accrue substantial benefits compared with windowed peak 
detection (WPD) methods for step counting in conditions of 
normal walking [19] ; on the other hand, WPD methods are 
easier to implement and present reduced computational loads. 
Therefore, we developed an adaptive WPD algorithm for 
wristwatch-based step counting using the bu
accelerometer of a commercial smartwatch. We compared the 
performance of the proposed algorithm, the native app running 
in the smartwatch for step counting, and a 
commercial SC. Experimental tests included steady walking at 
several speeds, jogging, 
intermittent and slow ambulation

II. EXPERIMENTAL 

A. System Design and Implementation 

The technological solution 
paper can be considered just 
devices and algorithms of 
Network (BSN) for monitoring and assessing (elderly) 

Fig. 1. Multi-purpose Body Sensor Network (BSN) for monitoring 
and assessing (elderly) individuals in daily
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In the case of intermittent ambulation activities, a critical 
of missed steps that may occur due to the 

irregular signal patterns from the built-in accelerometer, 
placement site. For instance, consider the 

problem of estimating a few steps interspersed with frequent 
stops and restarts. In this scenario, acceleration peaks 
correlated with steps are expected to be distributed irregularly 
both in amplitude and in time; hence, any predictive 
mechanism embedded in the algorithm of step counting is 
likely to perform poorly, due to the difficulty to specify and 
match template patterns describing the events occurring during 
any single step. Another element of difficulty is that data 
windowing itself would be a critical process in conditions of 
slow and intermittent walking (low time-resolution issue) [19]. 

that would search for the periods inherent in 
the cyclical nature of walking would require indeed long 
signal windows for extracting, e.g., the frequency-domain 
features needed for step identification. 

The literature existing on the application of wrist-worn 
accelerometry to the problem of step counting is still scarce, 
and scattered, especially in conditions of slow and intermittent 

. This paper is an initial attempt to fill the 
gap. Previous research on smartphone step counting showed 

domain or correlation approaches did not 
accrue substantial benefits compared with windowed peak 

methods for step counting in conditions of 
; on the other hand, WPD methods are 

easier to implement and present reduced computational loads. 
Therefore, we developed an adaptive WPD algorithm for 

step counting using the built-in 
accelerometer of a commercial smartwatch. We compared the 
performance of the proposed algorithm, the native app running 
in the smartwatch for step counting, and a waist-worn 

xperimental tests included steady walking at 
 non-ambulatory activities, and 

intermittent and slow ambulation.  

XPERIMENTAL SECTION 

System Design and Implementation  

solution we propose and describe in this 
just as a module of a full suite of 
of a multi-purpose Body Sensor 

for monitoring and assessing (elderly) 

purpose Body Sensor Network (BSN) for monitoring 
and assessing (elderly) individuals in daily-life activities. 
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individuals involved in several of their daily
Fig. 1. Within the framework of this platform
fall risk assessment [30], gait and balance assessment 
detection [36], activity recognition [32, 37
detection [38, 39] have been and currently being 
and deployed. 

Given the scope of this paper, the development of a single
sensor unit is targeted, aiming specifically at providing 
solutions to the problem of step counting
thus just another node that was integrated in the BSN, with all 
sensor and processing resources needed to perform step 
counting.  

The developed algorithm was implemented in a wearable 
app named ADAM (Advanced Daily Activity Monitor) 
running on a commercial Tizen smartwatch (Gear 2, Samsung 
Electronics Co., Ltd.), Fig. 2. ADAM was written in HTML5 
using the IDE Tizen SDK for Wearable (versi
smartwatch provided acceleration components 
sampling frequency fs = 25 Hz (sampling interval 
normalized to the gravitational acceleration 
relative to the mobile reference frame shown in Fig. 
Additionally, a tri-axial gyroscope was available to measure 
the angular velocity. However acceleration data only 
included in the SC algorithm. 

B. Experimental Protocol  

Two sets of experimental trials were performed, with the 
aim to build one dataset for tuning the parameters needed by 
the step counting algorithm (training dataset), and another 
dataset for assessing its performance (testing dataset). 
Although field tests involving elderly users are surely needed 
for a thorough validation of the proposed approach
groups of healthy adult subjects participated in the 
experimental phase reported in this paper
signed an informed consent before starting experimental 
sessions. Research procedures were in accordance 
Declaration of Helsinki. All subjects wore the Gear 2 
smartwatch on the non-dominant hand wrist and a commercial 
SC (Geonaute ONSTEP 400), which was clipped to the waist 
belt at the right anterior iliac spine. During experimental 
sessions, subjects were free to wear their preferred shoes. 
Although the testing was not done in tru
conditions, we took care of minimizing 
by asking subjects to move as naturally as they could. 
Moreover, they did not receive verbal or a

      (a)                                   (b)   
Fig. 2. (a) The Gear 2 smartwatch used for ADAM development; 
The mobile reference frame aligned with the sensitivity axes of the 
embedded accelerometer. 
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individuals involved in several of their daily-life activities, see 
of this platform, algorithms for 

, gait and balance assessment [35], fall 
37] and gait alteration 

currently being conceived 

development of a single 
is targeted, aiming specifically at providing 

step counting. The smartwatch is 
thus just another node that was integrated in the BSN, with all 
sensor and processing resources needed to perform step 

veloped algorithm was implemented in a wearable 
app named ADAM (Advanced Daily Activity Monitor) 

Tizen smartwatch (Gear 2, Samsung 
. ADAM was written in HTML5 

using the IDE Tizen SDK for Wearable (version 1.0.0). The 
smartwatch provided acceleration components ax, ay, az  at the 

= 25 Hz (sampling interval Ts = 40 ms), 
normalized to the gravitational acceleration g, g = 9.81 m/s2, 
relative to the mobile reference frame shown in Fig. 1b.  

axial gyroscope was available to measure 
acceleration data only  were 

Two sets of experimental trials were performed, with the 
aset for tuning the parameters needed by 

the step counting algorithm (training dataset), and another 
dataset for assessing its performance (testing dataset). 
Although field tests involving elderly users are surely needed 

oposed approach, just two 
groups of healthy adult subjects participated in the preliminary 

reported in this paper. All participants 
signed an informed consent before starting experimental 
sessions. Research procedures were in accordance with the 
Declaration of Helsinki. All subjects wore the Gear 2 

dominant hand wrist and a commercial 
ONSTEP 400), which was clipped to the waist 

belt at the right anterior iliac spine. During experimental 
s were free to wear their preferred shoes. 

Although the testing was not done in truly naturalistic 
 experimental biases, 

by asking subjects to move as naturally as they could. 
Moreover, they did not receive verbal or any other feedback 

information about the SC output
were issued to them. The device 
interval when the subject was asked to stand still in the so
called neutral standing posture, which allowed
whether the smartwatch was worn on the left or right wrist. 
Because of the absence of elderly participants
pool, particular care was devoted to the definition of the 
experimental study protocol, 
of slow and intermittent ambulation
of elderly people. After initialization took place, 
instructed to walk at their preferred speed
speed), slower, or much slower, than normal and faster than 
normal, being free to interpret the speed at their own 
convenience. An activity named 
considered, figure 3. The full 
training ADAM and for testing ADAM, the Gear 2 and the 
Geonaute SCs, is reported 
observed the participants while performing activities and 
counted the number of steps walked in each trial, so as to 
compute the reference step count 

 
(b)    

2. (a) The Gear 2 smartwatch used for ADAM development; (b) 
The mobile reference frame aligned with the sensitivity axes of the 

T
 ACTIVITY TYPES AND DE

Type 
Walk-turn-
walk 

Walk ten steps along a straight path,
turn to walk ten steps in the opposite direction so as to 
return to the initial location (a rest of two seconds 
allowed before and after the half
different speeds: slower than normal, normal (i.e., 
free-selected), fa

Slow and 
steady walk 

Walk 500 steps at constant, slow speed (level 
walking); directional changes are allowed.

Variable-
speed walk 

Walk 500 steps at variable speed (level walking), with 
walking speed being freely changed (slower
normal, normal, faster than normal); directional 
changes and stops

Very slow 
walk 

Walk 100 steps at very low speed (level walking), 
with minimal trunk and head oscillations; directional 
changes and stops

Jog Jog 100 steps; directional changes and stops
allowed. 

Going up-
and-down 
stairs 

Climb a staircase of 11 steps (16
a half-turn to the higher floor; walk downstairs along 
the same staircase, so as to return to the initial 
location. 

In-home task Subjects were asked to do a predefined sequence of 
actions in a structured room, walking at their own 
preferred speed (see 
a) Take a box placed on the desk at point A and place 

it on the top of the shelf at point B (d = 7.8 m)
b) Reach the coat rack at point C and pick up a bag 

(d = 3.6 m) 
c) Carry the bag on the top of a second shelf at point D 

using the smartwatch side arm
d) Reach the shelf at point B and recoup the box 

(d = 7.2 m) 
e) Bring the box on the desk at point A (d = 
f) Reach the shelf at point D and recoup the bag 

(d = 4.2 m) 
g) Carry the bag to the coat rack at point C using the 

left arm (d = 8.4 m)
h) Reach the point A (d = 6.6 m)
The distance walked in each section from a) to h) is 
denoted with d. Between each section, subjects were 
asked to rest for two seconds. 
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the SC output, only start and stop messages 
device initialization required a 2-s 

interval when the subject was asked to stand still in the so-
called neutral standing posture, which allowed to recognize 
whether the smartwatch was worn on the left or right wrist. 

elderly participants in the subject 
, particular care was devoted to the definition of the 

experimental study protocol, which also involved conditions 
ambulation typical of walking habits 

After initialization took place, subjects were 
instructed to walk at their preferred speed (free-selected 
speed), slower, or much slower, than normal and faster than 

e to interpret the speed at their own 
activity named “In-home task” was also 

full set of activities considered for 
training ADAM and for testing ADAM, the Gear 2 and the 

 in Table I. The experimenter 
observed the participants while performing activities and 
counted the number of steps walked in each trial, so as to 
compute the reference step count Nref used for algorithm 

TABLE I 
CTIVITY TYPES AND DESCRIPTION 

Description 
Walk ten steps along a straight path, including a half-
turn to walk ten steps in the opposite direction so as to 
return to the initial location (a rest of two seconds 
allowed before and after the half-turn). Repeat at four 
different speeds: slower than normal, normal (i.e., 

selected), faster than normal, jogging. 

Walk 500 steps at constant, slow speed (level 
walking); directional changes are allowed. 

Walk 500 steps at variable speed (level walking), with 
walking speed being freely changed (slower than 
normal, normal, faster than normal); directional 
changes and stops-starts are allowed. 

Walk 100 steps at very low speed (level walking), 
with minimal trunk and head oscillations; directional 
changes and stops-starts are allowed. 

Jog 100 steps; directional changes and stops-starts are 

Climb a staircase of 11 steps (16-cm high), including 
turn to the higher floor; walk downstairs along 

the same staircase, so as to return to the initial 

Subjects were asked to do a predefined sequence of 
actions in a structured room, walking at their own 
preferred speed (see Fig. 3): 

Take a box placed on the desk at point A and place 
it on the top of the shelf at point B (d = 7.8 m) 

h the coat rack at point C and pick up a bag   

Carry the bag on the top of a second shelf at point D 
using the smartwatch side arm (d = 8.4 m) 
Reach the shelf at point B and recoup the box  

Bring the box on the desk at point A (d = 7.8 m) 
Reach the shelf at point D and recoup the bag  

Carry the bag to the coat rack at point C using the 
left arm (d = 8.4 m) 
Reach the point A (d = 6.6 m) 

The distance walked in each section from a) to h) is 
denoted with d. Between each section, subjects were 
asked to rest for two seconds.  
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performance assessment.  
The training dataset included the acceleromete

acquired from group 1-subjects asked to perform the 
turn-walk activity, with all variants indicated in Table 
subjects (5 males and 3 females) participated in the training 
phase. Age ranged from 28 to 55 years (38.5 
height from 160 to 185 (172.8 ± 10.5 cm). The testing dataset 
included the accelerometer data acquired from group
subjects asked to perform all activities in Table 
subjects (3 males and 5 females) participated in the testing 
phase. Age ranged from 29 to 54 years (37.2 
height from 158 to 187 (172.1 ± 9.5 cm). 

C. The Step Counting Algorithm  

A standard calibration procedure was employed to calibrate 
the built-in tri-axial accelerometer [40]. The computed values 
of offset and scale factor along the three sensitivity axes were 
used to compensate for calibration errors before processing the 
accelerometer measurements by ADAM. 

The acceleration magnitude 

�� � ���� � �	� � �
� 

was computed from the acceleration components. An 8
point moving average filter was applied to the acceleration 
magnitude, following a 3-point moving median filter, in the 
combined effort to remove the high-freq
mitigate the effects of outlying measurements. If the absolute 
difference between the current sample and the previous 
sample at the output of the moving median filter was less than 
a small threshold (λM), the current sample was clipped to t
previous sample, yielding AmL. A high-pass filtered version of 
AmL was obtained, namely AmH, by subtracting an 8
moving averaged version of AmL from AmL

conditioning line, the acceleration components 
filtered using a 16-point moving average filter, yielding 
ayL, azL.  

 

1) Dynamic Thresholding 
In accordance to previous studies, we hypothesize

local maxima of the acceleration magnitude correlate
foot contacts at the beginning of each gait step, pro
such peak values were high enough and were

Fig. 3. Room layout, with the furniture location for the In
activity. The red shapes are fixed obstacles to be avoided. The blue 
shapes are the target points. The grid size is 60 cm 
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The training dataset included the accelerometer data 
subjects asked to perform the Walk-

activity, with all variants indicated in Table I. Eight 
subjects (5 males and 3 females) participated in the training 
phase. Age ranged from 28 to 55 years (38.5 ± 11.8 years) and 

10.5 cm). The testing dataset 
included the accelerometer data acquired from group-2 
subjects asked to perform all activities in Table I. Eight 
subjects (3 males and 5 females) participated in the testing 

29 to 54 years (37.2 ± 9.7 years) and 
 

A standard calibration procedure was employed to calibrate 
. The computed values 

offset and scale factor along the three sensitivity axes were 
used to compensate for calibration errors before processing the 

(1) 

was computed from the acceleration components. An 8-
point moving average filter was applied to the acceleration 

point moving median filter, in the 
frequency noise and 

mitigate the effects of outlying measurements. If the absolute 
difference between the current sample and the previous 
sample at the output of the moving median filter was less than 

), the current sample was clipped to the 
pass filtered version of 

, by subtracting an 8-point 
mL itself. On a separate 

conditioning line, the acceleration components ax, ay, az were 
point moving average filter, yielding axL, 

In accordance to previous studies, we hypothesized that 
local maxima of the acceleration magnitude correlated with 
foot contacts at the beginning of each gait step, provided that 

were not determined 

by acceleration measurement noise
AmL whose value exceeded 
increase the step count by one unit, depending on the o
of the step validation procedure described in the following. 
We propose to determine the threshold value 
conditions (i.e., dynamic thresholding) by time
τd = KdTs seconds and clipping its value to a prefixed 
minimum value (to reduce the effects of the 
very rapidly or very slowly from a cause other than walking)
The rationale behind this choice 
analyzing the shortcomings of a popular means to compute 
[41]: 

�� � ���������
The adaptive threshold was

mean between the maximum and the minimum values of 
occurring in a signal window of length 
the current ��� 	sample backwards
and ���������; the threshold 
minimum value Amin. The peak 
interval from the positive crossing time (rising time), i.e., 
when AmL crossed λD with positive slope, to the negative 
crossing time (falling time),
negative slope. In the example reported in Fig. 
computed over different time windows according to (2), and 
clipped to Amin (Amin = 1.03
dynamic threshold λD, the SC
armed otherwise).  

In the example, it is noted that the step annotated as P4 
not detected when τw = 1 s, yielding 
detection process (Fig. 4a). This behavior 
especially when the peak values of 
during consecutive steps, namely when left and right steps 
were not symmetric. Slight asymmetries are typical even of 
healthy gait as highlighted by analyzing da
sensors [42] and they are likely to exist as far as the motion of 
the upper arm is considered
frequent stops and starts, abrupt directional changes) 
further exacerbate the problem. In the effort to make the 
dynamic threshold adapting faster to the signal shape, 
be reduced, as in Fig. 4b, where 
was correctly detected, however we observe a false positive 
occurring in the case of the peak at P0
reducing the window’s length 
dynamic threshold λD tended
us suppose that the time window 
point when τw = Ts, in which case the dynamic threshold 
turned out to be AmL delayed by one sample. Following the 
reasoning above, the algorithm would become highly 
responsive, with the consequence that several false positives 
might arise, especially when the (wrist) acceleration patterns 
were irregular. In our WPD implementation, 
to design the dynamic threshold using a deliberate time
of AmL by Kd > 1 samples, in the effort to avoid proliferation of 
false positives, whilst retaining good adaptation properties. 
Hence, λD was computed as the clipped (to 
shifted (by τd = KdTs seconds

 
3. Room layout, with the furniture location for the In-home task 

activity. The red shapes are fixed obstacles to be avoided. The blue 
rget points. The grid size is 60 cm × 60 cm 

CLICK HERE TO EDIT) < 4

by acceleration measurement noise[41]. Hence, each peak of 
 some threshold value λD could 

increase the step count by one unit, depending on the outcome 
of the step validation procedure described in the following. 
We propose to determine the threshold value in on-line 

dynamic thresholding) by time-shifting AmL of 
and clipping its value to a prefixed 

(to reduce the effects of the device vibrating 
very rapidly or very slowly from a cause other than walking). 

this choice was explained, first, by 
analyzing the shortcomings of a popular means to compute λD 

� � ���������2 . (2) 

was computed as the arithmetic 
mean between the maximum and the minimum values of AmL 

a signal window of length τw that extended from 
backwards, respectively: ��������� 

he threshold was then clipped to a 
. The peak was searched in the time 

interval from the positive crossing time (rising time), i.e., 
with positive slope, to the negative 

, i.e., when AmL crossed λD with 
negative slope. In the example reported in Fig. 4, λD was 
computed over different time windows according to (2), and 

= 1.033 g). When AmL exceeded the 
SC state was set to armed (not 

In the example, it is noted that the step annotated as P4 was 
= 1 s, yielding a false negative in the step 

a). This behavior was quite typical, 
especially when the peak values of AmL differed markedly 
during consecutive steps, namely when left and right steps 

not symmetric. Slight asymmetries are typical even of 
healthy gait as highlighted by analyzing data from waist-worn 

and they are likely to exist as far as the motion of 
the upper arm is considered. Intermittent ambulation (e.g., 
frequent stops and starts, abrupt directional changes) would 

blem. In the effort to make the 
dynamic threshold adapting faster to the signal shape, τw could 

b, where τw = 0.08 s. The peak at P4 
correctly detected, however we observe a false positive 

occurring in the case of the peak at P0. It is also noted that 
window’s length τw, the time function of the 

ed to a delayed replica of AmL. Let 
us suppose that the time window was narrowed down to the 

, in which case the dynamic threshold 
delayed by one sample. Following the 

reasoning above, the algorithm would become highly 
responsive, with the consequence that several false positives 
might arise, especially when the (wrist) acceleration patterns 

WPD implementation, our proposal was 
to design the dynamic threshold using a deliberate time-shift 

> 1 samples, in the effort to avoid proliferation of 
false positives, whilst retaining good adaptation properties. 

computed as the clipped (to Amin) and time-
seconds) replica of AmL. We hypothesize 
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that this approach may ensure fast adaptation to any change of 
the underlying signal shape. Fig. 5 shows the results for the 
same example as in Fig. 4: λD was computed by delaying AmL 
by four samples, and the result was then clipped to Amin.  

In this particular example, the peak at P4 was correctly 
detected, without introducing false positives in the step 
detection process. However, successful peak identification did 
not imply that the step count be increased necessarily by one 
unit; the detected step-related event must be further validated 
for achieving better robustness to false positives. In 
preparation for the step validation phase, the following 
quantities were computed. The step time, expressed in 

seconds, was computed as the difference between successive 
occurrences of the AmL peaks that were identified by dynamic 
thresholding. The cadence, expressed in Hz, was computed by 
inverting the average step time, which was estimated from a 
specified number of step times. Finally, the Root Mean Square 
of AmH (RMSH) was calculated in a window of length τs 
extending from the current sample of AmH backwards over the 
window τs. 

 
2) Step Validation 
The step validation was intended as a set of algorithmic 

prescriptions used to reduce the rate of wrong detections 
incurred by the step-counting process. In particular simple 
heuristics were implemented, which helped improving 
performance by enforcing reasonable constraints of walking 
[43]. Throughout the various stages of the step validation 
process, the SC status was determined based on the values of 
two parameters: the total number of steps counted since the 
beginning of the current counting process (Nstep), and the 
number of peaks that were recognized as valid, up to the 
current time (Contstep) since last stop. A block scheme of the 
proposed algorithm is reported in figure 6.  

 The set of rules and the related parameters as implemented 
in the block scheme are illustrated in Table II and briefly 
explained in the following. In particular, on a sample-by-
sample basis, Rule #1 was applied to avoid false positives that 
were likely to occur due to arm swinging during the last step 
before a walk stop: Ax,min, Ay,min, Az,min, Az,max were the values of 
thresholds applied to single acceleration data channels, tuned 
to discard signals that were not compatible with the walking-
related arm swing. A second group of rules (#2 and #3) was 
applied in the case when dynamic thresholding indicated an 
“armed” condition, i.e. the threshold was crossed upwards, but 
it was not yet crossed in the opposite direction. Rule #2 reset 
the Contstep value to zero in case of long time intervals elapsed 
from the last valid step, based on the threshold Tstmax. Rule #3 
detected sudden stops of walking and was designed to reject 
false positives related to arm swinging occurring in the course 
of the last step before a walk stop. In order to detect such 
conditiona joint check was carried on the RMSH of the signal 
by means of the StRMS threshold, on the time elapsed from the 
last step (threshold Tstmax as in Rule #2), on the value of 
Contstep (this had to be greater than its minimum value Stmin) 
and on the value of Nstep.  

Rules from #4 to #9 acted at the time instant of step 
detection, which occurred when the dynamic threshold was 
crossed downwards (“falling” state, see figure 7). Depending 
on the outcome of rules from #4 to #9, we were in the position 
to accept the step or not. Rule #4 was related to the 
assumption that a steady walking activity required at least 
some consecutive steps to occur [41]. In particular, the update 
of the Nstep value was inhibited until Contstep value reached the 
threshold value Stmin. Rules #5 and #6 coded the intuitive 
notion that a gait step cannot have abnormal durations (neither 
too long nor too short), and must be characterized by a 
significant acceleration footprint  [43]. These rules were 
driven by the parameters Tstmax, Tstmin (maximum and 

 
Fig. 5. The time functions of AmL (blue) and λD (red) are reported for the 
same walking bout from activity Walk-turn-walk in Fig. 4. 
 

(a) 

(b) 

Fig. 4. The time functions of AmL (blue) and λD (red) are reported 
for a representative walking bout from activity Walk-turn-walk. (a) 
τw = 1 s; (b) τw = 0.08 s. Red and green triangular markers indicate 
the samples within which the dynamic threshold is crossed in rising 
and falling directions, respectively. 
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minimum step time), Stfmax (maximum cadence), Accmax 
(maximum value of AmL), Accmin (minimum value of AmL) and 
∆T (minimum duration of a step-related acceleration burst). 

D. Algorithm training  

As explained in the Experimental Protocol section, two 
datasets (with different subjects involved in each) were 
considered for the purpose of training and testing the 
algorithm. In addition to the activities prescribed by the 
protocol in Table I, we performed several other tests with the 
subjects wearing the smartwatch; they were asked to freely 

perform sedentary activities (i.e., answering phone calls, 
drinking, typing a keyboard, gesticulating while speaking) and 
exercise breaks (i.e., outstretching the arms in different spatial 
orientations) – total recording time: 30 min per subject.  

The training procedure was then implemented in two steps. 
First, the parameters, whose actual setting was verified to 
significantly affect the algorithm performance, namely λM, Kd, 
Amin and Stmin, were identified. The remaining parameters were 
given default values that were found acceptable in the current 
scenario. In the second step, the parameters λM, Kd, Amin and 

TABLE II 
 STEP VALIDATION RULES 

Rule ID Description SC state 
1 Suspend thresholding if Contstep ≥ 2 Stmin, or the 

step counter is armed or one of the following 
four conditions is satisfied: 
axL ≥ Ax, min 
ayL ≤ Ay, min 
azL ≥ Az, min 
azL ≤ Az, max 

Sample 
by 
sample 

2 If the time elapsed from last valid step 
(ElapsedTimeFromLastStep) exceeds Tstmax, 
then Contstep = 0 

Not 
armed 

3 If the following conditions are satisfied: 
1. RMSH ≥ StRMS 
2. ElapsedTimeFromLastStep ≥ Tstmax 
3. Contstep ≥ Stmin 
4. Nstep > 0 

then Nstep = Nstep – 1, and Contstep = 0 

Not 
armed 

4 Wait updating Nstep until Contstep ≥ Stmin Falling 

5 If step time ≤ Tstmin or step time ≥ Tstmax, then 
Contstep = 0 

Falling 

6 If cadence ≥ Stfmax, then Contstep = 0 (cadence is 
computed from the last Stmin steps) 

Falling 

7 If max(AmL) ≥ Accmax, then Contstep = 0 Falling 

8 If max(AmL) ≤ Accmin, then Contstep = 0 Falling 

9 If AmL exceeds λD for a time less than ∆T,  
then Contstep = 0 

Falling 

 
Fig. 7. Schematic description of parameters used in the step validation 
rules that were applied in the “falling” state (green marker). In 
particular, rules #5 and #6 of Table II were applied to stride time and 
cadence evaluated starting from peaks (black markers), rules #7 and #8 
referred to the amplitude of the signal (Accmin, black dashed line), 
Accmax is not reported (2.5 g). Rule #9 was applied to the time interval 
in which AmL exceeded the dynamic threshold λD (red dashed line). In 
orange, the dynamic threshold that will be applied to the Kd samples of 
the AmL signal following the current sample.  

 

 
Fig. 6. Block diagram showing the algorithm of step validation in 
action. Blocks colored in blue refer to dynamic thresholding, blocks 
colored in orange refer to different stages of the step validation 
procedure. The numbers reported within the orange blocks correspond 
to the IDs of the rules described in Table II. 
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Stmin were tuned offline by implementing a grid search for 
determining their optimal value. Empirically, we verified that 
they were important in determining the algorithm 
performance, especially the time delay Kd, which turned out to 
be the essential element of the proposed WPD method. 
Compared with the case when Kd = 4, a too small value tended 
to increase the detection sensitivity at the expense of the 
specificity; conversely, a too high value (say, Kd > 8) tended to 
improve the detection specificity, at the expense of the 
sensitivity. Overall, the parameter setting we choose (Table 
III) turned into 100% specificity, including analysis of data 
from sedentary activities and exercise breaks. It goes without 
saying that the native Samsung SC accumulated several counts 
in the same situation where ADAM was not affected by false 
positives. 

E. Metric of Performance  

The Count Error (CE) was defined as follows (i-th activity, 
j-th subject): 

����, �� � � !"#��, �� − �%"&��, ��,  � = 1, … ,10;  � = 1, … ,8. 
(3) 

The Mean Absolute Relative Error (MARE) was also 
considered as performance metric: 

,�-���� = 100 ∙ 1
8 / 0 ����, ��

�%"&��, ��0
1

234
, � = 1, … ,10. (4) 

CE and MARE are the metrics to investigate the accuracy of 
the three SCs. Henceforth, the term complete failure will be 
used to denote when one method was 100% inaccurate, in the 
sense that it could not register any valid step in a particular 
activity. 

III.  RESULTS AND  DISCUSSION 

ADAM was trained using the CE-statistics generated from 
the training dataset. Table III shows the resulting setting of the 
input parameters needed by the algorithm. Table IV reports 
the data concerning the complete failures of each SC. Not 
surprisingly, the Geonaute SC performed worse in conditions 
when the number of consecutive steps walked before any stop 
was not high enough for step validation (Walk-turn-walk and 
In-home task); moreover, it suffered from some difficulties 
even during the activity Very slow walk. The explanation is 
that the factory calibration of the Geonaute SC was likely 
tailored to continuous walking at free selected walking speeds. 
The Samsung SC performed better than the Geonaute SC in 

our experiments, with the exception of the Very slow walk 
activity. The same comment concerning the factory calibration 
is pertinent to explain the behavior of the Samsung SC.  

Limiting the statistical analysis to the trials in which the 
methods did not undergo complete failure, Table V reports the 
CE statistics for each activity, averaged across subjects (mean 
value, standard deviation, minimum value, maximum value). 
The two commercial devices, particularly the Samsung SC, 
tended to undercount steps, especially when the walking 
conditions differed to some extent from those assumed for the 
factory calibration. Conversely, ADAM performed acceptably. 
Due to an outlying subject performing the Variable-speed 
walk activity, namely one subject for which ADAM heavily 
undercounted steps, the mean error and the standard deviation 
were slightly greater than those achieved by the two other 
methods.  

TABLE V 
 STATISTICS OF THE PERFORMANCE METRIC CE. 

Activity ADAM Gear SC Geonaute SC 

 Mean Max Min Std Mean Max Min Std Mean Max Min Std 
Walk-turn-walk (slow) 0.7 4 –1 1.5 –3.0 –2 –4 1.0 NA NA NA NA 
Walk-turn-walk (normal) 0.6 3 –1 1.4 –1.8 1 –4 2.1 NA NA NA NA 
Walk-turn-walk (fast) 1.0 4 –2 2.0 –1.0 –1 –1 0.0 NA NA NA NA 
Walk-turn-walk (jogging) 2.7 7 –3 3.2 2.3 7 –7 8.1 4.0 4 4 0.0 
Slow and steady walk –4.9 3 –20 7.1 –4.5 0 –17 5.5 –4.8 3 –18 8.3 
Variable-speed walk –11.1 18 –84 30.9 –4.6 23 –50 20.8 4.4 36 –10 14.1 
Very slow walk –2.9 8 –17 7.1 –21.5 0 –76 36.4 –30.0 1 –82 38.5 
Jog 0.0 5 –3 2.8 –5.5 15 –63 24.0 4.0 17 –4 6.4 
Going up-and-down stairs –0.1 3 –2 1.6 –1.3 1 –4 2.1 0.8 3 0 1.0 
In-home task –5.5 1 –26 9.0 –10.5 10 –42 19.0 –61.0 2 –103 55.6 

 

TABLE III 
 INPUT PARAMETERS OF ADAM. 

Processing 
λM, g 0.017 

Dynamic thresholding 
Kd 4 
Amin, g 1.033 

Step validation 
Stmin 6 
Tstmin, s 0.30 
Tstmax, s 1.50 
Stfmax, Hz 3.00 
Ax,min, g 0.25 
Ay,min, g 0.15 
Az,min, g     -0.36 
Az,max, g 0.80 
Accmax, g 2.50 
Accmin, g 1.04 
∆T, s 0.12 
τs, s 3.00 
StRMS, g 0.08 

 
TABLE IV 

 NUMBER OF COMPLETE FAILURES FOR EACH METHOD. 
Activity ADAM Samsung SC Geonaute SC 

Walk-turn-walk (slow) 0 3 8 
Walk-turn-walk (normal) 0 3 8 
Walk-turn-walk (fast) 0 6 8 
Walk-turn-walk (jogging) 0 5 7 
Slow and steady walk 0 0 0 
Variable-speed walk 0 0 0 
Very slow walk 0 4 2 
Jog 0 0 0 
Going up-and-down stairs 0 0 0 
In-home task 0 0 5 
Total 0/80 21/80 38/80 
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Finally, Table VI reports the MARE values scored by the 
three SCs. The three tested SCs performed similarly during the 
extended walks of Slow and steady walk, Variable-speed walk 
and during Going up-and-down stairs; conversely, ADAM 
outperformed the two other step counters in all conditions 
when the movement was very slow (i.e., during Very slow 
walk) and more intermittent [Walk-turn-walk (except jogging) 
and In-home task]. Walk-turn-walk (jogging) was the only 
activity where the three methods performed poorly, although 
ADAM was better even in this case (no complete failures and 
lower MARE values).  

The complete failures and the errors incurred by the three 
methods, and especially by the Geonaute SC, during the 
activity Walk-turn-walk, in all conditions of walking speed, 
can be partly explained as the consequence of the built-in 
assumption of registering a step only after that a certain 
number of consecutive steps have been observed. This 
assumption is common to all tested methods. In the absence of 
documented information about the behavior of the two 
commercial devices, we can only conjecture which value of 
the parameter Stmin they have (Stmin = 10, we believe). The 
approach we propose to dynamic thresholding allowed 
reducing Stmin without substantial performance degradation, 
provided that the time delay Kd was suitably chosen.  

From inspecting the performance data reported in Tables 
IV-VI, the Samsung SC outperformed the Geonaute SC; 
ADAM outperformed both during Walk-turn-walk (in all 
variants) and In-home task. Moreover, the two wrist-worn SCs 
tended to perform better than the waist-worn SC when the 
walking speed was slower than normal, with the preference to 
be given to ADAM. We can conclude that the two commercial 
SCs were not probably designed to perform accurate step 
counting in those situations (slow and intermittent walking) 
where ADAM suited better. The data reported in Table 6 
indicate MARE values incurred by ADAM lower than 5% 
during continuous walking across a range of speeds, which 
increased to 5%-18% when short walking bouts were 
considered. We consider the results of this paper in connection 
with the results reported by Cheng et al, who analyzed step 
counts using a custom smartphone algorithm and a 
commercial waist-band SC when two healthy subjects walked 
500 consecutive steps, [44]. The custom smartphone algorithm 
outperformed the waist-band SC, showing performance 
comparable to ours (activities Slow and steady walk and 
Variable-speed walk). However, they taped together the 

smartphone and the waist-band SC and fixed them at the L3 
level (lower trunk). In these conditions, trunk accelerometry is 
widely regarded as a feasible technique to accurately measure 
spatio-temporal parameters of gait, including step time and 
cadence [45, 46]; however, serious concerns exist for its 
suitability when gait is pathologic, the gait speed is low, or 
both [47]. This same difficulty was recognized by Cheng et 
al., in experiments involving COPD (Chronic Obstructive 
Pulmonary Disease) patients that performed the Six Minutes 
Walking Test (6MWT),  [44]; a discussion on the trend of 
state-of-the-art SCs to undercount steps in conditions of slow 
walking is also reported by Turner et al., [48]. We verified the 
same behavior for either the Samsung or the Geonaute SC, 
which sometimes also completely failed to count at slow 
walking speeds. On the other hand, the undercount bias of 
ADAM was generally small. We consider therefore the 
ADAM error rate, particularly during the activity Very slow 
walk, a very promising result.  

It is noted that ADAM and the Samsung SCs are two apps 
that run on the smartwatch, sharing the same raw 
accelerometer data. The ADAM step counting loop works at 
the rate of 25 samples per second; in the absence of any 
further information, we believe that the sampling rate is the 
same for the Samsung SC. In terms of power consumption, we 
verified that the time from full charge to complete discharge 
of the battery system is approximately 72 hours (low-power 
screen-off mode) and 5 hours (screen-on mode), irrespective 
of whether the Samsung SC runs alone or ADAM works in 
conjunction with it (the Samsung SC is a permanent 
application that cannot be aborted). The computational load of 
ADAM is therefore similar to that of the Samsung SC, and 
both apps drain only a limited amount of battery power, 
compared with the battery draining due to, e.g., the screen 
condition. Of course, any further consideration about the 
battery life must consider that smartwatches are devices that 
can be used for fulfilling many functions, including, e.g., 
telephony, e-mailing, Bluetooth connectivity, which all are 
known to be greedy of battery power. In this sense, the power 
requirements and the battery charging policies of a smartwatch 
would not be too dissimilar from those of a smartphone. 

IV. CONCLUSIONS AND OUTLOOK  

This paper was concerned with the development and the 
preliminary validation of a step counter that was designed for 
applications when ambulation can be slow and intermittent. 
The step counter was based on processing the accelerometer 
data measured by a commercial smartwatch using a custom 
wearable app (ADAM). Compared with either the native SC 
running in the smartwatch or a waist-worn SC, ADAM 
exhibited similar accuracy levels in conditions of normal 
walking, and was superior in conditions of slow and 
intermittent ambulation. The WPD algorithm developed in this 
paper for step counting can be ported to any wrist-worn 
mobile device that embeds a tri-axial accelerometer to 
measure wrist acceleration. Our novel approach to dynamic 
thresholding might be useful even in the implementation of 
WPDs for step counting using other accelerometer placement 

TABLE VI 
. VALUES OF THE PERFORMANCE METRIC MARE. 
Activity ADAM Samsung SC Geonaute SC 

Walk-turn-walk (slow) 5 15 NA 
Walk-turn-walk (normal) 6 11 NA 
Walk-turn-walk (fast) 9 5 NA 
Walk-turn-walk (jogging) 18 35 20 
Slow and steady walk 1 1 1 
Variable-speed walk 3 2 2 
Very slow walk 5 21 30 
Jog 2 12 5 
Going up-and-down stairs 2 3 2 
In-home task 6 17 61 
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sites, although we have not tested it yet. As for the wrist, the 
experimental results shown in the paper offer promise for a 
robust solution to the problem of step counting in the difficult 
conditions of slow and intermittent walking. 

The availability of a step counter that can detect slow and 
intermittent walking allows to overcome the limitations of 
currently available commercial devices. As a consequence, the 
proposed ADAM app has the potential to improve the 
reliability of the objective quantification of mobility, physical 
activity level and fall risk in the elderly. 
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