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Homeostatic plasticity is thought to stabilize neural activity around a set point within a physiologically
reasonable dynamic range. Over the last ten years, a wide range of non-invasive transcranial brain
stimulation (NTBS) techniques have been used to probe homeostatic control of cortical plasticity in the
intact human brain. Here, we review different NTBS approaches to study homeostatic plasticity on a
systems level and relate the findings to both, physiological evidence from in vitro studies and to a
theoretical framework of homeostatic function. We highlight differences between homeostatic and other
non-homeostatic forms of plasticity and we examine the contribution of sleep in restoring synaptic
homeostasis. Finally, we discuss the growing number of studies showing that abnormal homeostatic
plasticity may be associated to a range of neuropsychiatric diseases.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Throughout life the brain flexibly and quickly adapts to envi-
ronmental changes while at the same time maintaining a relatively
stable equilibrium of neural activity over time. At the neural level,
synapses can dynamically express lasting changes in synaptic effi-
cacy, long-term potentiation (LTP) or long-term depression (LTD), in
response to a change in presynaptic activity [1]. The threshold for
induction of LTP and LTD is flexibly adjusted to the level of post-
synaptic activity by homeostatic mechanisms [2]. These adjust-
ments of plasticity prevent excessive expression of LTP or LTD and
keep neural activity within a useful dynamic range [3,4].
0.1016/j.brs.2015.06.016.
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In humans, a range of non-invasive transcranial brain stimula-
tion (NTBS) techniques has been successfully used to induce cortical
plasticity [5e8]. Research has mainly focused on the motor hand
area (M1-Hand) and its fast-conducting descending projections to
the contralateral hand because M1-Hand can be easily targeted
with NTBS due to its relatively superficial position close to the
surface of the convexity of the cerebral hemisphere. Moreover,
NTBS-induced corticomotor plasticity can be readily probed by
measuring the amplitude of motor evoked potentials (MEP) in
contralateral hand muscles, although the mechanism of activating
corticospinal neurons is complex and not yet fully understood [9].
Several NTBS protocols have been shown to be capable of inducing
shifts in corticomotor excitability as indexed by changes in mean
MEP amplitude. These changes can outlast the stimulation period
for minutes to hours [10], yet both, the magnitude and direction of
these excitability changes, display substantial inter-individual
variability [11e17]. Depending on the direction of the amplitude
changes, these lasting excitability changes have been labeled as
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Definition Box

Metaplasticity: ‘plasticity of synaptic plasticity’
Metaplasticity is a higher-order form of synaptic

plasticity. The term was originally introduced by W.C.

Abraham and M.F. Bear [27]. It refers to synaptic or

cellular activity that primes the ability to induce

subsequent synaptic plasticity, such as long-term

potentiation (LTP) or depression (LTD). The priming

event does not necessarily cause a change in the ef-

ficacy of normal synaptic transmission.Metaplasticity

can be homeostatic or non-homeostatic.

Homeostatic plasticity: ‘plasticity stabilizing synaptic
plasticity’

The term homeostatic plasticity refers to a range

of plasticity mechanisms that stabilize neuronal ac-

tivity [24]. Homeostatic plasticity counteracts the

destabilizing influence of synaptic plasticity and thus,

stabilizes neural activity within a physiologically

meaningful range. Homeostatic mechanisms can be

metaplastic or non-metaplastic.
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LTP-like or LTD-like effects [8]. In analogy to homeostatic meta-
plasticity at the neuronal level, it has been shown that the LTP- and
LTD-like changes are subject to homeostatic control. Here, we re-
view the use of NTBS to non-invasively investigate the homeostatic
regulation of regional cortical excitability and relate this line of
research to homeostatic plasticity described at the neuronal level in
invasive non-human animal studies.

Basic principles of synaptic plasticity

The mammalian cortex expresses a wealth of functional and
structural mechanisms to change its function in response to expe-
rience and use [18]. Functional mechanisms often involve the
modification of existing synapses and multiple forms of synaptic
plasticity have been demonstrated in vitro and in vivo in excitatory
and inhibitory cortical synapses [19e21]. Synapses can strengthen
(LTP) or weaken (LTD) their efficacy (i.e., synaptic strength) in
response to increases or decreases in their activity and in accor-
dance with Hebb’s famous principle of cell assembly [22e25].
Synaptic plasticity is complemented by other forms of plasticity,
including plasticity of intrinsic cellular excitability [2,26,27]. These
functional mechanisms go hand in hand with structural plasticity,
including the formation, removal, and remodeling of synapses and
dendritic spines [28]. The abundance of plasticity mechanisms in
the mammalian neocortex highlights the changeability of cortical
neurons. A critical question is how these multiple processes are
integrated at the level of a synapse, a single neuron, intracortical
microcircuits, and interacting brain systems. The complexity of
mechanisms causing synaptic and cellular plasticity renders it
difficult to link plasticity-induced change at the regional or system
level to specific synaptic or cellular mechanisms. Yet it is likely that
plastic processes at the regional or systems level nevertheless
follow the same general principles.

Synaptic plasticity provides a mechanism for learning and en-
ables neurons to dynamically modulate their synaptic strength by
relating it to other inputs the cell receives at the same time [29].
Synaptic plasticity provides an efficient positive feedback mecha-
nism, which enforces (LTP) or weakens (LTD) synaptic transmission
[30]. At many glutamatergic synapses, the magnitude and temporal
dynamics of activity-induced Ca2þ influx in the post-synaptic
neuron determines whether a given level of presynaptic activity
induces LTP or LTD. A fast and large increase in Ca2þ triggers LTP,
whereas amoderate butmore sustained Ca2þ influx gives rise to LTD
[1,31e34]. The existence of distinct thresholds for LTP and LTD in-
duction that are determined by the dynamics of Ca2þ concentrations
in the post-synaptic neuron has been nicely illustrated by experi-
ments in rat visual cortex: Artola and coworkers pharmacologically
manipulated the level of post-synaptic depolarization by local
application of the gamma-aminobutyric acid A (GABAa) receptor
antagonist bicuculline. The pharmacological manipulation revealed
that the same tetanic stimulation protocol induced either LTP or LTD
depending on the level of post-synaptic depolarization: LTD was
induced when depolarization exceeded a critical level, but still
stayedbelowthe threshold for LTP induction [35]. This studyshowed
that the induction anddirectionof synaptic plasticitydependson the
excitability of the post-synaptic neuron at the time of stimulation.

Homeostatic plasticity

The positive feedback nature of synaptic plasticity that allows
the ‘rich to get continuously richer’ in the case of LTP and ‘the poor
to get poorer’ in the case of LTD [30] challenges the stability of
neural networks [1e3,24]: “Unsupervised” synaptic plasticity has
the inherent risk to induce extreme neural states, causing excessive
firing (in the case of uncontrolled LTP) or complete silencing of
neural activity (in the case of uncontrolled LTD). An extensive body
of research has demonstrated that a multitude of regulatory cellular
mechanisms counteracts the ‘runaway’ effect of synaptic plasticity.
Like LTP and LTD inductionmany of thesemechanisms are triggered
by an activity dependent change in intra-cellular Ca2þ levels
[2,3,24,30,36]. This form of plasticity, commonly referred to as
homeostatic plasticity, complements synaptic plasticity and plays a
role in stabilizing mean neural activity around a set point within a
physiologically reasonable dynamic range.

Net neuronal excitability depends on the interaction between
intrinsic firing properties of the neuron and synaptic inputs.
Therefore, homeostatic plasticity can be achieved by two funda-
mentally different mechanisms: synaptic homeostasis regulates
excitability by up- or down-regulating synaptic strength, whereas
intrinsic homeostasis shifts the relationship between synaptic
input and firing by controlling intrinsic excitability [30] (Fig. 1).
Even though there is ample evidence that bothmechanisms coexist,
it is not completely clear to what extent they serve different func-
tions in stabilizing neural circuits and how particular firing patterns
or activity levels call the appropriate homeostatic mechanism into
action [37e39].

A theoretical model for homeostatic plasticity

Over 30 years ago Bienenstock, Cooper and Munro proposed a
theory of how Hebbian plasticity is homeostatically regulated
depending on experience-dependent modifications in post-
synaptic neuronal activity. The BienenstockeCoopereMunro
(BCM) theory postulates a “sliding threshold” for bidirectional
synaptic plasticity [40,41], predicting that the thresholds for in-
duction of LTP and LTD are dynamically adjusted to the integrated
level of previous post-synaptic activity. According to the BCM the-
ory, a history of low post-synaptic activity will lower the synaptic
modification threshold for future LTP induction and increase the
threshold for LTD. Conversely, a history of high synaptic activity will
shift the modification threshold favoring the induction of LTD and
increase the threshold for LTP (Fig. 2). The BCM theory has become
the most influential model of heterosynaptic homeostatic plasticity
and has guided experimental work throughout the last three de-
cades. Even though the BCM theory was first introduced to account
for experimental observations in the visual cortex, evidence for a
‘sliding threshold’ regulating the range of synaptic modification has



Figure 1. Shows two essentially different mechanisms for the homeostatic regulation. (A) Neuronal activity is governed by both the balance of voltage-gated sodium (Naþ) and
potassium (Kþ) channels regulating intrinsic excitability and the weight of excitatory and inhibitory synapses. Neurons react to prolonged sensory deprivation either by increasing
the weight of excitatory inputs synaptic homeostasis) (B) or by increasing the amount of inward voltage-dependent currents (intrinsic homeostasis) (C) whereas they react to
prolonged sensory activity by increasing the weight of inhibitory inputs (synaptic homeostasis) (D) or by increasing the amount of outward voltage-dependent currents (intrinsic
homeostasis) (E).
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been obtained in numerous animal and human experiments
[42e45] and the rule of a ‘sliding threshold’ has been established as
a key feature of homeostatic plasticity in many brain regions [40].

The threshold for LTP and LTD induction is also modulated under
physiological conditions [46,47]. A seminal study by Rioult-Pedotti
et al. showed that motor skill learning shares commonmechanisms
with LTP in the primary motor cortex (M1): when rats had been
trained for 5 days on a skilled reaching task, the trained M1
expressed less LTP andmore LTD as opposed to the untrained M1 of
control rats [48]. This finding shows that the ability to induce LTP
and LTD is adjusted by previous learning experience, rendering the
induction of LTP more difficult after intensive training.

Approaches to study plasticity in the intact human cortex

The basic mechanisms of plasticity have been primarily inves-
tigated in vitro. In slice preparations, LTD or LTP are commonly
induced by repeated tetanic stimulation of the presynaptic neuron:
at many sites, low-frequency stimulation (1e3 Hz) leads to LTD [49]
whereas trains of high-frequency stimulation elicits LTP (�20 Hz)
[50]. However, these in vitro studies need to be complemented by
in vivo studies in animals and humans to probe the functional
relevance of synaptic and homeostatic plasticity. This motivates the
use of non-invasive transcranial brain stimulation to study plas-
ticity in the intact human cortex.
A range of NTBS protocols have been established over the years
to study cortical plasticity [7]. Using stimulation parameters similar
to those found effective in slice preparations, both effects remi-
niscent of early stage LTP and LTD can be observed in the intact
human brain [6,51]. Induced plasticity is commonly tested in the
fast-conducting corticospinal projections by applying to the M1-
Hand. The plasticity is usually probed by measuring the mean
amplitude of the motor evoked potential (MEP) with single-pulse
transcranial magnetic stimulation (TMS) at constant stimulus in-
tensity before and several times after application of the plasticity-
inducing NTBS protocol. Serial measurements of mean MEP
amplitude offer a feasible and quantitative way to test changes in
excitability levels of the corticomotor output pathway. However, it
should be noted that the MEP represents a complex composite
measure and its amplitude is influenced by multiple physiological
factors including the excitability of neural circuits at both the
cortical and spinal level [9]. Finally, MEP measurements before and
after a plasticity-inducing NTBS protocol restrict the investigation
of cortical plasticity to the M1 and any extrapolation of the
observed plasticity patterns to other cortical areas need to be made
with great caution.

When applying regular trains of repetitive TMS (rTMS), high-
frequency rTMS using frequencies of 5 Hz or higher [52] increase
excitability in the stimulated M1 [7,53,54], while low-frequency
rTMS at a frequency of around 1 Hz [55] decrease corticomotor



Figure 2. Shows the basic concept of metaplasticity following the BCM theory. The modification threshold (qM), the crossover point from LTD to LTP, is not fixed but varies as a
function of post-synaptic activity. Using an LTP-like prime will shift the modification threshold (qM00) to the right along the x-axis, while using an LTD-like prime will shift the
modification threshold (qM0) to the left on the x-axis. On the color bar, red codes an LTD response while blue codes an LTP response. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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excitability. Patterned rTMS protocols consist of short high-
frequency bursts separated by longer inter-burst intervals. They
are inspired by patterned burst stimulation protocols applied in
cortical slices to induce LTP or LTD [12,46]. Several patterned rTMS
protocols have been established, such as patterned paired-pulse
protocols [56,57], theta-burst stimulation (TBS) [12,15,58] and
quadripulse stimulation [12,15]. The most commonly used TBS
protocol applies 50 Hz bursts consisting of three TMS pulses at a
burst repetition rate of 5 Hz. TBS of M1 induces generally a lasting
increase in MEP amplitude when given intermittently (referred to
as intermittent TBS or iTBS), while continuous theta-burst stimu-
lation (cTBS) induced a lasting reduction in MEP amplitude.
Quadripulse stimulation (QPS) applies four-pulse bursts at a lower
repetition rate than TBS, namely at 0.2 Hz. QPS of M1 at very short
inter-stimulus intervals (1.5e10 ms, QPSshort) has been shown to
increase mean MEP amplitude while QPS of M1 at inter-stimulus
intervals of �30 ms (QPSlong) decreases MEP amplitude [59].

Other repetitive TMS protocols employ associative stimulation
of two neural substrates in a temporally coordinatedmanner. These
paired association stimulation (PAS) protocols use a temporal
learning rule in analogy to spike-timing dependent plasticity
(STDP). For STDP, the direction of plasticity (LTP or LTD induction)
depends on the precise timing of pre- and post-synaptic stimula-
tion. The classic PAS protocol pairs peripheral electrical stimulation
with single-pulse TMS of contralateral M1 and repeats these
stimulus pairs at a low frequency of 0.1 Hz [14,60e62]. More recent
cortico-cortical PAS protocols use dual-site TMS targeting two
cortical areas [61e64]. Corticomotor excitability increases after
classical PAS, if the afferent stimulus reaches M1 before or at the
same time as TMS-induced M1 stimulation. Conversely, cortico-
motor excitability is reduced, if the afferent stimulation reaches M1
after excitation by TMS.

Also, transcranial direct current stimulation (TDCS) can be used
to induce lasting bidirectional excitability changes in the human
cortex. By applying a constant low current via small electrodes
TDCS can either de- or hyperpolarize a neuron’s resting membrane
potential: anodal TDCS (aTDCS) is thought to depolarize neurons
and thereby increases corticomotor excitability, whereas cathodal
TDCS (cTDCS) hyperpolarizes the resting membrane, causing a
decreased corticomotor excitability [16].
For some but not all of these protocols, it has been shown that
changes in MEP amplitude after NTBS of M1 display some features
that are reminiscent of LTP or LTD at the synaptic level. The mod-
ulation of excitability outlasts stimulation time by at least 30 min,
depends on NMDA receptor activity, and originates not from
subcortical or spinal excitability changes but from a cortical level
[7,53,54]. Therefore the lasting increases or decreases in cortico-
motor excitability are often called ‘LTP-like’ or ‘LTD-like’ plasticity. It
is important to note though that despite the resemblance between
NTBS-induced ‘LTP-like’ or ‘LTD-like’ effects and synaptic LTP or
LTD, there are apparent differences: TMS activates a substantial
number of axons and leads to a massive stimulation of both
inhibitory and excitatory cells, whereas synaptic activity is limited
to a very small number of connections in classical in vitro studies of
LTP and LTD [65,66]. Therefore, NTBS-induced plasticity is likely a
mixture of plasticity induction in a number of different sets of
excitatory and inhibitory synapses. Indeed, a simple equalization of
synaptic effects and the NTBS induced after effects is certainly an
oversimplification [67]. This is why, in the following text, the terms
“inhibitory” (LTD-like) or “facilitatory” (LTP-like) are only
describing the final outcome of a protocol on cortical excitability. In
fact, a “facilitatory” protocol could be caused by a decrease in in-
hibition instead of up-regulated excitation. Another important
point to note is that the knowledge about LTP- and LTD-like effects
is nearly exclusively based on NTBS studies targeting M1 and these
effects can not be easily extrapolated to other cortical areas.

Testing homeostatic plasticity with NTBS targeting human M1

The BCM theory predicts that high levels of prior activity favor
the induction of LTD, while low levels of prior activity favor LTP [68].
In the human M1, homeostatic patterns have been tested using a
priming test design, which consists of a “priming” NTBS protocol
that triggers a homeostatic response and a “test”NTBS protocol that
captures the homeostatic response (for recent review, [69]). The
first study that showed bidirectional homeostatic-like plasticity in
M1 combined a TDCS protocol to prime the subsequent response of
M1 to a 1 Hz rTMS test protocol: In separate sessions, facilitatory
aTDCS, inhibitory cTDCS, or sham stimulation were applied prior to
a 15 min treatment session of low-intensity 1 Hz TMS. After a



Figure 3. Shows the bidirectional shift of the LTP-LTD induction curve predicted by the
BCM theory (A) and induced by a priming QPS session (B). (A) The LTDeLTP crossover
point (qM) slides to the right on the x-axis if the preceding neuronal activity is high
(qM0), and to the left if preceding activity is low (qM00). (B) QPS with priming over M1.
The normalized amplitudes of MEP at 30 min post conditioning as a function of the
reciprocal of ISI of QPS (in Hertz) with and without priming overM1. QPS-5 ms priming
overM1 resulted in a rightward shift, whereas QPS-50 ms priming produced a leftward
shift of the “LTP-LTD induction curve”. The x-axis is logarithmically scaled. (Reprinted
from Hamada, M. and Ugawa, Y., Restor. Neurol. Neurosci., 28, 419, 2010. With
permission from IOS Press and the original authors.)
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facilitatory aTDCS priming session, the subsequent 1 Hz rTMS test
session had a marked LTD-like effect, causing a reduction in corti-
comotor excitability. Conversely, inhibitory priming with cTDCS
flipped the effect of the very same 1 Hz rTMS test session, which
now produced an increase in corticomotor excitability. When pre-
conditioned by sham TDCS, the 1 Hz protocol did not have an effect
on corticomotor excitability [70]. This bidirectional modulation of
the subsequent 1 Hz rTMS session by the polarity of TDCS strongly
suggests that TDCS triggered a homeostatic mechanism in the
primed M1 according to the BCM theory. The observation that in
the same individual the same NTBS protocol caused either LTP- or
LTD-like effects depending on the history of neural activity
(manipulated by TDCS priming) questions the validity of a rigid
distinction in “facilitatory” or “inhibitory” NTBS protocols, as if
these attributes were stable for a given NTBS protocol and robust
against the physiological context.

Many other studies have reported similar homeostatic ‘priming’
effects on the plasticity-inducing properties of various NTBS pro-
tocols [71e76]. The homeostatic pattern that emerged in these
studies showed that the priming NTBS would boost the effect of
subsequent test NTBS protocol only if the priming NTBS induced the
opposite effect on excitability as the test NTBS. Conversely, the
priming NTBS would weaken or reverse the effect of subsequent
test NTBS, if it had the same effect on excitability as the test NTBS
(Fig. 2). A homeostatic reversal of the excitability effect has also
been observed when the same NTBS protocol was applied consec-
utively [73], when two NTBS protocols were applied simultaneously
[74], when doubeling the duration of stimulation [77,78] or when
omitting breaks in the stimulation [79].

These experiments point to the importance of the interval
between priming and test NTBS. Within the framework of the
BCM theory, this implies that the temporal dynamics of the
primed change in post-synaptic neural activity is critical to shift
the sliding threshold in a homeostatic fashion. Yet only one study
has tried to systematically investigate the time dependency of
homeostatic plasticity by systematically varying the interval be-
tween priming and test NTBS and assess the impact of this
manipulation on the induction of a homeostatic response [80].
Fricke and coworkers paired two identical 5 min sessions of TDCS.
Priming and test TDCS sessions were separated by 0, 3 or 30 min.
When priming and test TDCS were given without a break, the
TDCS effect was simply prolonged. If the two TDCS sessions were
separated by 30 min, there was no priming effect on the
plasticity-inducing effect of the test TDCS. Only when the test
TDCS started 3 min after the end of priming TDCS, did the two
TDCS protocols interact in a homeostatic fashion [80]. This study
stresses that there might be a critical time window during which
a homeostatic response pattern emerges after priming NTBS. The
importance of the interval between NIBS protocols has also been
highlighted by several studies showing a (non-homeostatic) pro-
longation of the inhibitory effects of cTBS when the cTBS protocol
is repeated after a 10e15 min break [58,81]. The studies cited
above show that the interval between repeated NIBS protocols
could have versatile effects on NIBS-induced plasticity. It is,
however, important to keep in mind that critical time windows
are likely to differ among different priming NIBS protocols [58,81].
A closely related factor that has never been systematically
investigated is the “integration time” for the record of prior ac-
tivity. This has important implications for both the duration of the
prime and the interval between prime and test protocol: Am
infinite integration of prior activity would prohibit effects caused
by short-term priming protocols, whereas a very short integration
time would allow extremely short priming interventions to be
effective. A better understanding of the homeostatic integration
time might be relevant to understand why some priming-test
protocols do not cause homeostatic effects (in these cases the
integration time might have been too long).

A relatively new TMS protocol that has proven to be especially
helpful for investigating homeostatic effects in M1 is quadruple-
pulse stimulation (QPS). QPS induces changes in corticomotor
excitability by applying trains of four-pulse bursts with an inter-
burst interval of 5 s [59]. Depending on the ISI that separates the
four pulses, QPS induces either an LTP-like increase in corticomotor
excitability or an LTD-like decrease in corticomotor excitability. An
“LTP-LTD induction curve” can be derived by plotting the LTP- or
LTD-like effects of the QPS (x-axis) against the frequency of the four-
pulse burst [15]. Hamada et al. (2008) showed that this LTP-LTD in-
duction curve can be bi-directionally shifted by a priming QPS pro-
tocol (Fig. 3B): A priming QPS with an LTP-inducing high-frequency
burst (i.e., QPS with a short ISI of 5 ms) switches the “normal” LTP-
like effect of most QPS protocols with short ISIs into an LTD-like ef-
fect. An LTP-like effect only persisted for the test QPS protocols with
the shortest ISIs. In other words, the priming QPS caused a homeo-
static rightward shift of the LTD/LTP induction curve. The opposite
effect was produced when an LTD-inducing QPS prime with a low-
frequency burst (i.e., QPS with a long ISI of 50 ms) was used. In this
case, primingQPS switched the “normal” LTD-like effect ofmost QPS
protocolswith long ISIs into an LTP-like effect, causing ahomeostatic



Table 1
Summarizes the results of different studies of homeostatic and non-homeostatic plasticity.

Study Priming/Test Main findings

Homeostatic plasticity Primary motor cortex Siebner et al. (2004) [70] aTDSC/1 Hz rTMS
cTDCS/1 Hz rTMS

Shows a full homeostatic i raction between priming and an inhibitory test
protocol.

Iyer et al. (2003) [71] 6 Hz rTMS/1 Hz rTMS The facilitatory priming in ases the LTD-like effect of the 1 Hz test protocol.
Lang et al. (2004) [72] aTDCS/5 Hz rTMS

cTDCS/5 Hz rTMS
One of the first studies to s w a full homeostatic interaction between priming

and an facilitatory test p tocol.
Muller et al. (2007) [73] PASLTPePASLTP

PASLTDePASLTP
A PASLTD prime increases t LTP-like effect of the test PASLTP, an PASLTP prime

decreases the LTP-like e ct of the test PASLTP.
Nitsche et al. (2007) [74] aTDCS/PASLTP

cTDCS/PASLTP
either as prime/test or
concurrently

A homestatic effect was on observed when the protocols where given
concurrently when give s a prime/test prtococol bith TDCS
protocols did increase th facilitatory PAS effect.

Todd et al. (2009) [75] 2 Hz or 6 Hz rTMS/cTBS
iTBS/cTBS

The rTMS priming did not fect the cTBS effect, but the iTBS prime did increase
the ingibitory effect of c S.

Ni et al. (2014) [76] cTBS(short)/PASLTP
cTBS(short)/PASLTD

The cTBS prime enhanced e PASLTP facilitation and led to reduced SICI and LICI
and abolished the PASLT nhibition without change to intracortical circuits.

Gentner et al. (2008) [77] Muscle activity/cTBS (20 s)
cTBS (40 s)

Short cTBS did only induce n LTD-like effect when primed by muscle activity,
when the protocol is pro nged, no activity prime is needed to induce an LTD.
like effect.

Gamboa et al. (2010) [78] cTBS (double duration)
iTBS (double duration)

Both iTBS and cTBS reverse heir effect when given for double the standart
duration.

Rothkegel et al. (2010) [79] 5 Hz rTMS protocol with or
without breaks

When omitting breaks in a andart 5 Hz protocol the facilitation effect is turned
to an inhibition.

Fricke et al. (2011) [80] aTDCS/aTDCS
cTDCS/cTDCS
at different intervals

When the protocols are giv without a break (doubling their length) a
prolongation of the ‘test ffect is seen, when the break is 20 min the protocols
do not interact but whe iven with a 3 min break between test and prime there
is a homeostatic interac n.

Hamada et al. (2008) [59] QPS/QPS High-freq. QPS priming cau s a homeostatic rightward shift of the LTD/LTP
induction curve. Low-fre . QPS priming induces the opposite effect
(homeostatic leftward s t of the LTP-LTD induction curve).

Intracortical networks Doeltgen et al. (2011) [86] iTBS/cTBS No effect of priming on SIC nd SICF.
Fricke et al. (2011) [80] aTDCS/aTDCS

cTDCS/cTDCS
at different intervals

No effect of priming on SIC nd SICF.

Siebner et al. (2004) [70] aTDCS or cTDCS/1 Hz rTMS No effect of priming on SIC nd SICF.
Murakami et al. (2012) [88] cTBS/cTBS

iTBS/iTBS
cTBS/iTBS
iTBS/cTBS

SICI is only altered when p e and test protocol are identical.

Interregional cortical
networks and outside M1

Potter-Nerger et al. (2009) [89] 1 Hz rTMS/PASLTD
5 Hz rTMS/PASLTP

1 Hz rTMS to the dPMC pr to a PASLTD protocol over M1 increases M1
excitability.

5 Hz rTMS to the dPMC pr to a PASLTP protocol over M1 suppressed M1
excitability.

Hamada et al. (2009) [44] QPS/QPS
1 Hz rTMS/

Homeostatic modulation o 1 excitability when a priming QPS prime is given
to the SMA

Ragert et al. (2009) [90] 1 Hz rTMS/iTBS Homeostatic modulation o 1 excitability when a priming rTMS prime is given
to the contralateral M1.

Bliem et al. (2008) [91] PAS/20 Hz HFS Homeostatic plasticity in p ary sensorimotor cortex.
Gartica Tossi et al. (2014) [92] 5 Hz rTMS/20 Hz HFS Homeostatic plasticity in p ary sensorimotor cortex.
Bocci et al. (2014) [93] TDCS/rTMS Homeostatic plasticity in p ary visual cortex.
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Interaction of motor
learning and
homeostatic plasticity

Ziehmann et al. (2004) [8] Thumb abduction/PASLTP
Thumb abduction/PASLTD

Motor learning can act as a priming intervention for subsequent NIBS and
induce homeostatic effects.

Lepage et al. (2012) [95] Motor observation/PASLTP Observation of a motor training task is sufficient to prevent subsequent
induction of LTP-like PAS effects.

Rosenkranz et al. (2007) [85] Novel vs. well-practiced
thumb abduction/PAS

The effect of motor learning as a ‘primer’ depends on the learning phase:
homeostatic effects only observed when ‘priming’ involved a novel motor task.

Elahi et al. (2014) [98] PAS/thumb abduction NIBS can act as a primer on motor learning.
Jung et al. (2009) [99] PASLTD/thumb abduction task

PASLTP/thumb abduction task
PAS given 90 min before the learning task shows a “classic” homeostatic

interaction, when given directly before the task both PASLTP and PASLTD
facilitate learning.

Teo et al. (2011) [100] iBTS/thumb abduction Priming with iTBS boosts performance in a subsequent ballistic motor learning
task. The effect of priming iBTS can be blocked by nicotine administration.

Kuo et al. (2008) [101] TDCS/serial reaction time task No homeostatic effect between TDCS and motor learning found.
Rosenkranz et al. (2014) [111] Hand immobilization/PAS Eight hours of hand immobilization significantly reduce the inhibitory effects of

PAS-10 ms while enhancing the facilitatory effects of PAS-25ms.
Non-homeostatic plasticity Nitsche et al. (2003) [102] Concurrent motor learning

and TDCS
‘Gating’: studies have reported reinforcing effects between voluntary motor

activity and TDCS when applied concurrently.Anatal et al. (2004) [103]
Reis and Fritsch (2011) [105]
Stagg et al. (2011) [107]
Devendahl et al. (2010) [114] 0.1 Hz rTMS/PAS ‘Anti-gating’: a very low-frequency prime abolished the ability to induce LTP-

and LTD-like with subsequent PAS
Huang et al. (2010) [119] iTBS/cTBS

cTBS/iTBS
The LTP-like effect induced by iTBS is abolished (de-potentiated), when a short

train of cTBS followed the protocol.
The LTD-like effect induced by cTBS is abolished (de-depressed), if followed by a
short train of iTBS.

Ni et al. (2014) [76] PASLTP/cTBS (short)
PASLTD/cTBS (short)

De-potentiating effect of a short inhibitory follow-up.

Goldsworthy et al. (2014) [120] cTBS/voluntary contraction De-depressing effect on a short facilitatory follow up on an inhibitory protocol.
Cantarero et al. (2013) [96] Motor learning task/cTBS Occlusion of LTP-like effect and motor skill retention after short inhibitory

protocol.Cantarero et al. (2013) [97]
Lepage et al. (2012) [95] Motor observation/PASLTP Observation of a motor training task is sufficient to prevent subsequent

induction of LTP-like PAS effects.
Homeostatic Plasticity

in pathological states
Focal hand dystonia Quartarone et al. (2005) [138] TDCS/1 Hz rTMS The ‘homeostatic’ response pattern of healthy controls is absent in the affected

hand of writer’s cramp patients.
Kang et al. (2011) [139] PASLTPethumb abduction

PASLTDethumb abduction
In contrast to healthy controls the writer’s cramp patients do not show any

modulation of learning-dependent plasticity.
Parkinson’s disease Huang et al. (2011) [148] TBS Patients with levodopa-induced dyskinesia showed normal potentiation but

were unresponsive to the de-potentiation protocol.
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leftward shift of the LTP-LTD induction curve. Thebidirectional shifts
in the LTP-LTD induction curve nicely demonstrated the existence of
a “sliding modification threshold” as predicted by the BCM theory
[45]. Table 1 summarizes the results of different studies of homeo-
static plasticity and other forms of metaplasticity.

Homeostatic plasticity in cortical networks

Intra-cortical homeostatic plasticity in the motor cortex

TheMEP is a complexmeasure of corticospinal excitability and is
influenced by spinal excitability as well as by various intracortical
circuits projecting onto the corticospinal motor neurons [9,81,82].
This means that homeostatic plasticity might not only affect corti-
cospinal neurons directly but might also act on intracortical circuits
within M1.

Intracortical excitability can be measured by using paired-pulse
TMS paradigms, which apply a conditioning (CS) and test stimulus
(TS) through the same coil [83]. While several studies have shown
motor-training induced plasticity of these intracortical inhibitory
circuits [84,85], very few studies have investigated homeostatic
effects in intracortical circuits. The results of these studies are not
yet fully conclusive: Several studies using facilitatory and inhibitory
TDCS primed 1-Hz rTMS [70], facilitatoryefacilitatory TDCS and
inhibitoryeinhibitory TDCS [80] and iTBS primed cTBS [86] found
no consistent homeostatic changes in intracortical inhibitory
GABAAergic circuits in M1 underlying short interval intracortical
inhibition (SICI) [87]. A more systematic investigation of
homeostatic effects in intracortical inhibitory circuits demonstrated
homeostatic plasticity-like effects on SICI: Murakami and col-
leagues [88] applied ‘facilitatory’ intermittent theta-burst stimula-
tion (iTBS) or ‘inhibitory’ continuous theta-burst stimulation (cTBS)
to induce a homeostatic response in intracortical inhibitory circuits.
They found that a priming TBS protocol altered the responsiveness
of the inhibitory SICI circuits to a test TBS only when the second TBS
protocol was identical to the priming protocol (iTBS / iTBS or
cTBS / cTBS). The normal direction of TBS-induced SICI after-
effects was reversed by priming with identical TBS, suggesting
homeostatic regulation of excitability in inhibitory circuits. How-
ever, even in that study homeostatic metaplasticity was less
consistently expressed in the intracortical inhibitory circuits than in
the excitatory corticospinal pathway. In contrast to homeostasis in
the corticospinal pathway alternating TBS protocols (the
iTBS / cTBS or cTBS / iTBS) failed to trigger a homeostatic
response in inhibitory circuits.

Facilitatory circuits within M1 have been even more sparsely
studied than intracortical inhibition and no consistent homeostatic
effects have been demonstrated so far on intracortical facilitation
[80,86]. The few data presently available suggest that homeostatic
plasticity is less consistently expressed. Alternatively, homeostatic
plasticity in intracortical circuits upstream to the corticospinal
motor neuron may simply be more difficult to capture with MEP
measurements. Subtle homeostatic changes may have an effect size
that remains within the noise level of normal fluctuations in MEP
amplitude. More robust homeostatic effects in intracortical circuits
are likely to be paralleled by concurrent homeostatic changes in the
corticospinal neurons. In that case, the presence of homeostatic
changes in MEP amplitude evoked by single-pulse TMS may mask
homeostatic effects in upstream intracortical circuits as probed
with double-pulse TMS.

Inter-cortical homeostatic plasticity

Homeostatic interactions can also occur in interregional net-
works. Several studies have shown that a homeostatic response can
be elicited in M1 when the priming protocol is given over a sec-
ondary motor area to activate cortico-cortical projections to M1.
Potter-Nerger and coworkers demonstrated homeostatic priming
on PAS to left M1 after rTMS priming was applied to ipsilateral
dorsal premotor cortex (dPMC). Thus, inhibitory 1 Hz rTMS of dPMC
prior to an inhibitory PAS protocol over M1 increased M1 excit-
ability, whereas facilitatory 5 Hz rTMS of dPMC prior to a facilitatory
PAS protocol over M1 suppressed M1 excitability [89]. Homeostatic
modulation of M1 excitability was also demonstrated when a
priming QPS session was given to the supplementary motor area
[44] or when a priming 1 Hz rTMSwas given to the contralateral M1
[90]. Taken together, these findings indicate that homeostatic in-
teractions can be elicited through different input channels in the
human M1.

Studies using other measures of cortical excitability, such as
somatosensory evoked potentials (SSEP) or visual evoked potentials
(VEP), have shown that homeostatic metaplasticity can also be
expressed in other cortical areas. SSEP recordings provided evi-
dence for homeostatic plasticity in primary somatosensory cortex
[91,92]. Both SSEP applied NIBS before high-frequency (20-Hz)
tactile electrical stimulation of the contralateral median nerve in
order to demonstrate a homeostatic response in the somatosensory
cortex. In primary visual cortex, the VEP revealed a homeostatic
reaction to a combined TDCS-rTMS protocol [93]. Identifying
additional neurophysiological markers of brain plasticity such as
recordings of TMS-evoked cortical potentials with combined TMS-
EEG [94] might facilitate investigations into homeostatic effects
expressed in other cortical areas.

Homeostatic plasticity and motor learning

Motor learning can induce plasticity under physiological con-
ditions and many studies have shown that brain stimulation and
motor learning can interact homeostatically. Early studies showed
that a simple motor learning task could act as a ‘primer’ for sub-
sequent PAS protocols. Ziemann and coworkers [8] showed that
motor learning prevented the induction of subsequent LTP-like PAS
effects while enhancing subsequent LTD-like effects. More recent
work suggests that observation of a motor training task is sufficient
to prevent subsequent induction of LTP-like PAS effects [95] and
that the temporary occlusion of LTP-like plasticity after motor
learning is likely to be a mechanism necessary for successful skill
retention. Retention for a simple motor task after learning was
proportional to themagnitude of LTP occlusion during a subsequent
NTBS protocol and that the amount of occlusion was predictive of
resilience against interference of subsequent learning [96,97].
Interestingly, the effect of motor learning as a ‘primer’ depends on
the learning phase: the observed homeostatic effects on subse-
quent PAS protocols were only observed when ‘priming’ involved
training a novel motor task, while ‘priming’ with a well-practiced
task did not significantly modulate subsequent PAS [85]. Homeo-
static interactions between a facilitatory PAS response and a motor
learning task can also be seen if the learning task follows the PAS
intervention [98].

While these studies clearly demonstrate that learning may have
a homeostatic impact on plasticity induced by NTBS, the evidence
for a reverse interaction, a homeostatic effect of NTBS on plasticity
induced by subsequent motor learning is less consistent. According
to the BCM theory, one might expect an inhibitory NTBS protocol to
facilitate a subsequent motor leaning task. Jung and Ziemann [99]
studied motor learning of rapid thumb abduction movements.
The training session was primed with a PAS protocol which ended
0min or 90min before training began.When PASwas given directly
before training, both the inhibitory and excitatory PAS
protocol enhanced motor learning, indicating a non-homeostatic



A. Karabanov et al. / Brain Stimulation 8 (2015) 993e1006 1001
interaction. However, the same PAS protocols given 90 min before
learning gave rise to a “classic” homeostatic interaction. In that
condition, excitability-decreasing PAS still had a beneficial effect on
motor learning, but excitability-increasing PAS impaired motor
learning. These results once again stress the importance of timing
between priming and test protocols and suggest that non-
homeostatic mechanisms may play a role, especially when the in-
terval between priming stimulation and motor training is short.

Studying homeostatic plasticity in the context of motor learning
is difficult, since synaptic strengthening is likely not the only factor
influencing the learning rate. A more recent study found that
priming with iTBS boosted performance in a subsequent ballistic
motor learning task [100]. In that study, the beneficial effect of
priming iTBS was blocked by the administration of nicotine.
Behavioral analysis and modeling suggested that the iTBS prime
facilitated performance by increasing motor output variability. The
hypothesis was that the motor system could then explore the task
workspace more quickly to find the optimal way to perform the
task. The authors hypothesized that nicotine blocked this effect,
presumably by reducing the signal-to-noise ratio in cerebral cortex
[100]. This and other mechanisms may explain why other studies,
which assessed the priming effects of brain stimulation on motor
learning, failed to reveal homeostatic effects [101].

Many studies consistently show that NTBS protocols that are
sub-threshold for inducing action potentials in the cortex, in
particular TDCS, can enhance motor learning when the NTBS pro-
tocol is given concurrently with the learning task [102e107].
Although most NTBS protocols that were applied during motor
training enhanced motor learning in a non-homeostatic fashion,
homeostatic interaction might well occur. However, this should not
be called “metaplasticity,” because priming and test intervention
are not separated in time [3]. An optimal exploitation of homeo-
static mechanisms to boost motor learning will require a better
understanding of the mechanisms by which the various NTBS
protocols modulate motor learning.

It is worth mentioning, that homeostatic interactions between
voluntary movement and NTBS are not restricted tomotor learning.
Several studies have demonstrated plasticity interactions (homeo-
static and non-homeostatic) when simple voluntary muscle con-
tractions where performed prior, during or after an NTBS protocol
[77,108e110]. Also restricting movement can have a homeostatic
influence on NTBS-induced plasticity: 8-h of hand immobilization
did significantly reduce the inhibitory effects of PAS-10 while
enhancing the facilitatory effects of PAS-25 [111].

Gating vs. homeostatic plasticity

The interactions between motor training and concurrent NTBS
often follow non-homeostatic rules (i.e., the priming intervention
does not have a homeostatic effect on the test procedure). A com-
plementary mechanism by which NTBS might increase the bene-
ficial effects of motor learning is ‘gating’. Many studies have
reported gating interactions between voluntary motor activity and
NTBS when NTBS was applied concurrently with a motor task
[102,103,105,107].

Gating mechanisms may also increase the efficacy of NTBS of
the M1 to produce LTP-like or LTD-like effects. Gating may be
provoked by several mechanisms such as increasing net calcium
influx into the targeted cortical neurons, shifting intrinsic excit-
ability of the targeted neurons (e.g. sub-threshold depolarization
during anodal TDCS), or transiently suppressing the efficacy of
intracortical inhibitory circuits. It has been shown that NTBS can
induce acute disinhibition, thereby potentially gate the plasticity-
inducing effects of NTBS. For instance, a short period of
sub-threshold 5 Hz rTMS can cause a transient suppression of
short-latency intracortical inhibition in the stimulated M1-HAND
along with a increase in regional cerebral blood flow [52].
Further, a temporary ischemic nerve block of the distal upper limb
caused acute disinhibition in the contralateral sensorimotor cortex
and boosted training-induced learning of ballistic elbow flexion
movements [112]. Together, these studies suggest that “gating”
might play a role in determining the efficacy of a given NTBS
protocol, but studies are lacking which systematically study the
relationship between acute NTBS-induced disinhibition and the
efficacy to induce LTP- or LTD-like effects. It is important to point
out that gating is a non-homeostatic mechanism, because it does
not alter the threshold for expressing LTP or LTD [7]. Yet gating
may promote the induction of LTP-like effects in neural circuits
targeted by NTBS or learning and indirectly facilitate a homeostatic
response.

It is also important to note that not all interactions between
consecutively paired protocols depend on homeostatic effects and
that several forms of non-homeostatic metaplasticity have been
observed using brain stimulation: A very low frequency (0.1 Hz)
rTMS prime given to M1 abolished the ability to induce LTP- and
LTD-like effects in the primed M1 with subsequent PAS [113,114].
The prime alone did not alter corticospinal excitability as measured
by MEP amplitude, but increased short-interval and long-interval
intracortical inhibition in the stimulated M1. Increased excitability
of intracortical inhibitory circuits caused by the priming protocol
might have prevented the PAS protocol from inducing LTP- or LTD-
like changes by reducing the ability of afferent volleys, evoked by
the peripheral stimulus, to interact with the TMS pulse given over
M1-HAND in a Hebbian fashion. If the afferent volley has less
“access” to the corticospinal excitability, potentially by reducing the
output neurons due to excessive intracortical inhibition, the cal-
cium influx in the corticospinal neurons during PAS [113,114]may
drop below the threshold for inducing LTP or LTD-like plasticity. A
reduction of the calcium influx caused by increased activity of
intracortical inhibitory circuits does not invoke homeostatic regu-
lation because the threshold for LTP and LTD induction is not
principally shifted. Such a mechanism rather represents an ‘anti-
gating’ effect that reduces the efficacy of NTBS without shifting the
threshold for expressing LTP and LTD [113,114]. However, the notion
of ‘gating’ and ‘anti-gating’ remains to be thoroughly tested in
future studies.

Another non-homeostatic form of metaplasticity is de-
potentiation (or de-depression). De-potentiation erases previously
induced LTP (or LTD) and may be the key mechanism for retrograde
inference with learning. There is ample evidence for de-
potentiation and de-depression in the animal literature, which
implicates this form of metaplasticity as a factor in learning reversal
and forgetting [115e117]. Metaplasticity patterns resembling de-
potentiation and de-depression were observed in an experiment
that combined iTBS and cTBS [118]: The normal LTP-like effect
induced by facilitatory iTBS was abolished (de-potentiated), when a
short train of inhibitory cTBS followed the iTBS protocol. Vice versa,
the LTD-like effect normally induced by a cTBS protocol was abol-
ished (de-depressed), if followed by a short train of facilitatory iTBS.
When given alone, the short TBS trains did not change corticomotor
excitability. This shows that the de-potentiating (or de-depressing)
protocol itself does not need to have any discernable effect when
applied alone. Only when given within a certain time window after
an LTP- or LTD-inducing protocol are these effects visible. The early
phases of LTP and LTD induction are more vulnerable to the effect of
interfering stimuli than later phases, when synaptic changes in
synaptic efficacy have been stabilized [118]. Other recent studies
have confirmed the de-potentiating effect of an inhibitory follow-
up on facilitatory NTBS protocols [76] and the de-depressing
effect on a facilitatory follow up on an inhibitory protocol [119].
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This study also suggests that repeated cTBS application also seems
to protect against de-depression: When pairing two cTBS protocols,
separated by a 10 min-break, the induced LTD-like effect was
resistant against de-depression.

These examples show that there are many non-homeostatic
forms of cortical plasticity and metaplasticity that might shape
the efficacy of NTBS to induce LTP- or LTD-like effects. Hence, re-
searchers investigating metaplasticity need to be careful when
labeling a modulation of NTBS-induced plasticity as “homeostatic.”
An effect is only likely to be homeostatic, if the priming interven-
tion alters the LTP-LTD induction curve in a way that the changes in
LTD-LTP induction threshold favor the induction of plasticity
opposite to the priming protocol (Figs. 2 and 3). As mentioned
earlier, the temporal relationship between the priming and test
protocols is crucial for the induction of both homeostatic and non-
homeostatic metaplasticity. Future studies need to explore the
interplay between these non-homeostatic and homeostatic forms
of cortical plasticity. Currently, there is a growing interest in ther-
apeutic multi-session NTBS applications aiming to extend the
duration of excitability changes. When designing such therapeutic
protocols it is especially important to better understand possible
homeostatic interactions in order to avoid creating an excitability
effect in opposition to the therapeutic goal.

Mechanisms regulating metaplasticity

One of the key predictions of the original BCM theory is that the
activity dependent threshold is calculated from a running time-
average of post-synaptic action potential activity. More recent
BCM models have, however, started to question the role of post-
synaptic action potentials and focused on the time-averaged free
calcium concentration as the biological signal controlling homeo-
static metaplasticity [29,120]. Recent in vitro experiments
confirmed that homeostatic plasticity in the hippocampus did not
depend on somatic action potentials, but was determined by cal-
cium release from intra-cellular stores, triggered by muscarinic
acetylcholine receptors [121]. In addition to intra-cellular Ca2þ

stores, Ca2þ can also enter the cell via NMDA receptors or via L-type
voltage-gated Ca2þ channels. Homeostatic modulation of high-
frequency tetanic stimulation was also observed when pharmaco-
logically reducing Ca2þ via those routes [122e124].

A study combining an acute pharmacological intervention with
cTBS showed that the magnitude of Ca2þ signaling is also highly
relevant for the induction of LTP- and LTD-like phenomena in
humans [125]. When the duration of cTBS was shortened from 40 s
to 20 s, cTBS was shown to induce a facilitatory effect on cortico-
motor excitability. These LTP-like effects of short cTBS on cortico-
motor excitability were reversed when healthy volunteers were
treated with nimodipine, an L-type voltage-gated Ca2þ channel
antagonist. Pharmacological blockade of the NMDA receptor by
dextromethorphan did not cause a homeostatic effect, but dextro-
methorphan abolished both the LTD-like effect of cTBS produced by
nimodipine and the normal LTP-like effect of cTBS alone in M1. This
study also suggested that the homeostatic effects induced by
voluntary activity might be mediated by L-type voltage-gated cal-
cium channels. It is likely that the effects of other interventional
NTBS protocols are also strongly influenced by Ca2þ dynamics, but
might be sensitive to manipulation of Ca2þ influx via different
routes. This remains a relevant topic for future research.

At the cellular level, a complex machinery of transcriptional as
well as pre- and post-synaptic molecular signaling mechanisms can
induce and shape homeostatic mechanisms. These mechanisms
include secreted molecules such as the brain-derived neurotrophic
factor (BDNF) or the tumor necrosis factor (TNF), cell adhesion
molecules (e.g. integrins, ephrins, cadherins), different kinases
(CaMKs, CaMKII) and transcription factors such as Arg3.1 (for a
detailed review on the molecular mechanisms of homeostatic
plasticity the reader is referred to [126]).

Synaptic homeostasis and sleep

While we focused on the ability of NTBS to probe and shape
homeostatic plasticity in previous sections, this section summarizes
the contribution of sleep to homeostatic control and how this can
be studied with NTBS. Neurons can undergo specific plastic changes
during learning and behavior, they also have many ways to keep
overall synaptic weights and post-synaptic activity levels under
control. It has been proposed that irrespective of the specific
mechanism involved, achieving this control may require the alter-
nation betweenwakefulness and sleep [127]. Specifically, according
to the “synaptic homeostasis hypothesis,” the fundamental function
of sleep is the restoration of synaptic homeostasis, which is chal-
lenged by synaptic strengthening triggered by learning during
wakefulness [127]. In this framework, sleep is the price we pay for
having a plastic brain that is able to learn and adapt to the ever-
changing demands of the environment. Since neurons signal sus-
picious coincidences and salient events by increasing their firing,
learning should happen primarily through synaptic potentiation.
Moreover, synaptic potentiation should occur mainly during
wakefulness in order to be adaptive, when the brain interacts with
the external environment, not during sleep when it is disconnected.
Hence, wakefulness is associated with synaptic potentiation and
net synaptic weight increases over the wakening hours. Increased
synaptic strength during waking has obvious benefits but also
various costs at the cellular and systems level; for example, it im-
plies higher energy consumption and demand for the synthesis and
delivery of synaptic supplies; in addition, it reduces the selectivity
of neuronal responses and saturates the ability to learn. For this
reason, neurons must eventually re-normalize total synaptic
strength in order to restore cellular functions as well as selectivity.
Indeed, the other main tenet of the synaptic homeostasis hypoth-
esis is that re-normalization of synaptic strength occurs primarily
during sleep, when the brain is spontaneously active offline, not in
wake when a neuron’s inputs are biased by a particular situation.

It is important to note that homeostatic plasticity, as described
in previous sections, and synaptic sleep homeostasis are related but
separate phenomena. Whereas the primary variable regulated by
homeostatic plasticity is the level of neural activity [38], sleep ho-
meostasis primarily acts on global synaptic strength. An intriguing
hypothesis is that synaptic re-normalization during sleep may be
brought about by slow waves and by the underlying alternation
between burst firing and neuronal silence. While the relevance and
the details of this mechanism remain unknown, experimental
studies in animal models show that overall synaptic weights in-
crease during wakefulness but decrease during sleep. For example,
structural evidence demonstrates that the strength, the size and
number of synapses in the brain of Drosophila flies increase after a
period of wakefulness and decrease only when animals are allowed
to sleep [128] From a molecular point of view, the levels of GluA1-
containing AMPA receptors (a molecular marker of synaptic
potentiation) were found to be 30e40% higher after wakefulness
than after sleep in rats [129]. Electrophysiologically, the slope of the
early (monosynaptic) response evoked by electrical stimulation
delivered in the rat cerebral cortex, a classic marker of synaptic
strength in vivo, increases with time spent awake and decreases
with time spent asleep [130].

In humans, a similar shift of the excitation/inhibition balance
toward excitation was documented by two TMS-MEPs studies
[131,132] that detected a significant decrease of short-term intra-
cortical inhibition occurring, at the group level, after 24 h of sleep
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deprivation. This shift in excitatory/inhibitory balance does also
affect efficiency of NTBS-induced plasticity: A systematic compar-
ison of the effect of diurnal rhythm on facilitatory PAS showed that
the facilitatory effects of PAS were greater in the evening. This study
also confirmed that intracortical inhibition was reduced in the
evening [133]. While providing some information on the nature of
cortical plastic changes, these NTBS studies confirm the idea that in
humans, sleep may contribute to keep the overall weight of cortical
synapses under control.

An important practical implication is that synaptic sleep ho-
meostasis needs to be taken into account whenever interventional
NTBS protocols are given over consecutive days or weeks. In these
studies, the sleep quality might have substantial impact on the
emergence of cumulative NTBS effects.

Homeostatic plasticity in pathological states

Synaptic homeostasis has been demonstrated to be a funda-
mental mechanism within brain circuits, operating in different
species including humans [2,38,127,134e136], but much less is
known about the significance of dysfunctional homeostatic plas-
ticity for the pathogenesis and pathophysiology of brain diseases. In
this review, we focus on a series of experiments, which have used
NTBS to probe homeostatic plasticity in focal dystonia and discuss
the future potential of NTBS to study homeostatic plasticity in
neuropsychiatric disorders.

Focal dystonia

Using TDCS as conditioning protocol and low-frequency (1 Hz)
rTMS as test protocol, Quartarone et al. found that the ‘homeostatic’
response pattern of healthy controls was absent in the affected
hand of writer’s cramp patients [137,138]. In dystonic patients,
aTDCS to M1 increased MEP amplitude as in normal controls, but
the subsequent 1 Hz rTMS did not produce an LTD-like effect. Thus
despite producing an LTP-like effect, aTDCS failed to trigger a ho-
meostatic response that sensitized M1 to the LTD-inducing effect of
1 Hz rTMS.

A subsequent study addressed the question whether patients
with focal hand dystonia would show an enhancement of motor
learning induced plasticity after priming with an excitability-
reducing NTBS protocol as previously shown in healthy in-
dividuals [99]. While the healthy control group showed a
homeostatic enhancement of learning-dependent plasticity
following an excitability-reducing prime and a homeostatic
suppression of learning-dependent plasticity following an
excitability-increasing prime, the writer’s cramp patients did not
show any modulation of learning-dependent plasticity and the
lack of homeostatic modulation was correlated with the clinical
severity of the dystonia [139]. These results suggest that focal
hand dystonia is associated with a dysfunctional homeostatic
regulation of plasticity, which might set the frame for aberrant
sensorimotor plasticity. Several NTBS studies have shown that
patients with focal hand dystonia show excessive sensorimotor
plasticity with lack of somatotopic specificity [140,141]. However,
due to the large variability of PAS responses, both in patients and
healthy subjects, there is considerable overlap between patient
and healthy data. The questions the validity of excessive, non-
focal PAS effects as a general ‘dystonic fingerprint’ [142]. Large
multicenter studies and a stronger focus on individual plasticity
profiles will help to clarify the role of dysfunctional homeostatic
plasticity in dystonia.

Additionally, it should be noted that focal dystonia is also
characterized by deficient inhibition within intracortical circuits
[143]. This might explain that also the response to NTBS protocols
such as iTBS, which are not involving a sensorimotor component, is
abnormal in these patients. However, iTBS induced plasticity is
absent or reduced in focal dystonia, not excessive and non-focal as
for PAS [144]. Deficient intracortical inhibition might also produce
an abnormal “gating” of the LTP-inducing effects of NTBS and
hereby introduce a bias toward producing LTP-like rather than LTD-
like effects in M1.

Parkinson’s disease

There is ample evidence for altered LTP- and LTD-like plasticity
in Parkinson’s disease (PD) [145e147] and recent research suggests
that abnormalities in plasticity may depend on disease state and
l-DOPA administration [145]. Despite the relatively large number of
NTBS studies investigating synaptic plasticity in PD, homeostatic
plasticity has not been systematically investigated. Huang et al.
studied non-homeostatic metaplasticity in patients with and
without levodopa-induced dyskinesia (LID). PD patients without
LIDs had normal potentiation and de-potentiation, when they took
their full dose of levodopa. Patients with levodopa-induced LIDs
were studied while being on half their usual dose of levodopa to
prevent emergence of overt dyskinesias during testing. LID patients
showed normal potentiation but were unresponsive to the de-
potentiation protocol [148]. Given this altered non-homeostatic
metaplasticity in LID patients, it is possible that homeostatic plas-
ticity might also be affected in PD.

Psychiatric disorders

Several lines of research suggest that both the NMDA- and
GABA-ergic transmitter systems that participate in cortical plas-
ticity are also involved in the pathophysiology of various psychiatric
disorders such as schizophrenia (SCZ), major depressive disorder
(MDD) and bipolar disorder [149e153]. Except for dysfunctional
GABA and glutamatergic neurotransmission, key features of these
disorders are abnormalities in the expression of several proteins
which are important for synaptic plasticity and homeostatic plas-
ticity (e.g. BDNF, dybindin, neurexin) [154e156].

Disrupted plasticity is an established part of the pathophysi-
ology in schizophrenia (SCZ), and several neurophysiological ex-
periments using a range of plasticity-inducing NTBS protocols have
shown that LTP- and LTD-like effects are reduced in SCZ
[152,157,158]. SCZ patients also demonstrate less use-dependent
plasticity. By measuring the spontaneous direction of TMS-
induced thumb movements before and after 30-min training in
thumb abduction, Daskalakis and coworkers [159] found that M1
excitability was affected less in SCZ patients than healthy controls.
Impaired cortical plasticity has also been reported in patients with
major depressive disorder (MDD) who have reduced plasticity in
response to TMS [160] and visual evoked potentials [161].

As in PD although there is ample evidence for altered LTP- and
LTD-like plasticity in SCZ and MDD, direct examples of impaired
homeostatic plasticity are rare. On a molecular level, evidence
exists linking various psychiatric diseases such as SCZ, MDD and
other disorders to dysfunctional homeostatic synaptic plasticity
involving a wide array of genes and molecules required for ho-
meostatic synaptic plasticity [155,156]. However, even though these
molecular findings have led to a conceptual framework that places
homeostatic dysfunction at the heart of a wide array of neurologic
and psychiatric diseases there is, to the authors knowledge, no
direct investigation of homeostatic regulation in psychiatric patient
populations. Considering the links between the pathophysiology of
a variety of psychiatric disorders and synaptic processes necessary
for homeostatic control, it will be a future challenge to understand
how these mechanisms work together in the intact human brain.
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A systematic investigation of homeostatic plasticity in various
psychiatric disorders will help to start understanding how ho-
meostatic responses orchestrates systemic functions in the brain.

Dysfunctional synaptic plasticity and homeostatic plasticity in
various disorders could have an impact on the design of future
clinical trials. At the moment, treatment trials for several psychi-
atric disorders involve the application of plasticity-inducing NTBS
protocols to counteract hypo- or hyperactivity of different brain
areas. If, indeed, plasticity in these disorders is fundamentally
changed, we cannot assume that the plasticity-enhancing effect of
brain stimulation techniques, observed in healthy subjects, can be
directly translated to patient populations. Indeed Barr et al. showed
that one session of 20 Hz rTMS had opposing effects in SCZ patients
and healthy volunteers: rTMS inhibited gammaeoscillatory activity
in patients, who had a greater activity at baseline, while the same
rTMS protocol potentiated gammaeoscillatory activity in healthy
controls with relatively lower oscillations at baseline, suggesting a
homeostatic interaction [162].

Conclusions and perspectives

Homeostatic metaplasticity plays a critical role in stabilizing
neural activity around a set point and is defined by inducing a shift
in the stimuluseresponse curve of the firing neuron and is
controlled by the intra-cellular Ca2þ levels. The use of NTBS allows
homeostatic effects to be investigated on a systems level and in
interaction with physiological conditions. Since NTBS activates a
massive number of neurons, inducing action potentials in a mixture
of inhibitory and excitatory cells, NTBS-induced plasticity cannot be
equatedwith in vitro studies on synaptic plasticity. Additionally, the
traditional measure of NTBS-induced excitability, the MEP, has
confined most investigations of homeostatic effects in the intact
human brain to the primary motor cortex.

In the future a combination of NTBS with other brain mapping
techniques will allow investigation of homeostatic phenomena to
expand to cortical areas outside M1. A careful investigation of the
network effects and the combination of NTBS with neuroimaging,
pharmacologyandanimal studieswill helpto revealmore insights into
the neural mechanisms underlying homeostasis at a systems level.

Systematic investigation of individual differences in NTBS
response will, in the future, allow researchers to move toward the
use of individually adjusted protocols that take relevant neuro-
physiological state markers into consideration. These custommade
protocols may decrease inter-individual variance and make NTBS
an even more powerful tool. The study of homeostatic plasticity in
patients with neurological and psychiatric diseases is still very
limited and future research should tackle this issue since it might
give some insight into contribution of dysfunctional regulation of
cortical plasticity to these conditions.
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