
32	 	 1541-1672/10/$26.00 © 2010 IEEE	 IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

S o c i a l M e d i a a n a l y t i c S
a n d i n t e l l i g e n c e

Deductive and
Inductive Stream
Reasoning for
Semantic Social
Media Analytics
Davide Barbieri, Daniele Braga, Stefano Ceri, and Emanuele Della Valle,
Polytechnic of Milan

Yi Huang and Volker Tresp, Siemens

Achim Rettinger, Karlsruhe Institute of Technology

Hendrik Wermser, Technical University of Munich

A combined

approach of

deductive and

inductive reasoning

can leverage the

clear separation

between the evolving

(streaming) and

static parts of

online knowledge

at conceptual and

technological levels.

required to answer these queries is becom-
ing available on the Web. This trend is of-
ten referred to as the Twitter phenomenon.
These feeds exist in a stream, a continuous
flow of information where recent items are
typically more relevant than older ones.
However, their interpretation requires rich
background knowledge to fulfill meaningful
reasoning tasks, beyond standard stream-
processing capabilities.

Both the database1 and data mining com-
munities have studied stream processing.
Specialized data stream management sys-
tems (DSMSs) are on the market, and DSMS

features are appearing in major database
products, such as Oracle and DB2. Online
stream mining applies in many contexts,
such as in computer network traffic for in-
trusion detection, in Web searches for online
recommendations,2 and in sensor data for
automated real-time decision making. These
applications represent a paradigm change in
information processing techniques, because
data streams are processed on the fly, with-
out being stored, and processing units pro-
duce their results without explicit invocation.

DSMSs are designed to process real-time
parallel queries over possibly bursty data,

What are the hottest topics discussed on Twitter? Which topics have

my close friends discussed in the last hour? Which movie is my friend

most likely to watch next? Which Tuscan red wine should I recommend? With

many popular social networks publishing microblogs and feeds, the information

IS-25-06-della.indd 32 11/11/10 11:43 AM

NovEMbEr/DEcEMbEr 2010 www.computer.org/intelligent 33

but they cannot perform reasoning
tasks as complex as those required
to answer our sample queries. Under-
standing and interpreting the Twitter
phenomenon (and many other data
streams) requires connecting quick
and concise real-world streams to
rich background knowledge bases.
This combination is crucial for sev-
eral reasons. It enables

• understanding the topics discussed
in the streams with the help of
topic taxonomies,

• recommending the most attractive
movies to particular user profiles,
and

• predicting future behaviors based
on the analysis of past behaviors
(such as movie attendance).

These few examples show the need
for connecting data-stream-processing
techniques with both inductive and
deductive reasoning methods to sup-
port social media analytics. We be-
lieve that this is a good example
of how the stream reasoning3 re-
search area enables the merging of
data streams and rich background
knowledge.

Extending reasoning methods to
support changing knowledge is a
known challenge for the reasoning
community. In deductive reasoning,
various methods exist to revise beliefs
based on recent information. In in-
ductive reasoning, a body of research
in data mining and machine learning
already supports online data analy-
sis. However, little work has been
done on applying machine learning
to streams as rich and structured as
those we consider here. We believe
that data streams are an ideal model
for changes occurring in the real
world, as well as a suitable means to
delimit the source and the nature of
change, clearly separating the static
and dynamic parts of knowledge.

This separation, both conceptual
and technological, lets us use exist-
ing systems for data-stream manage-
ment and for inductive or deductive
reasoning. In our approach, RDF
streams, together with an extension
of the SPARQL language for contin-
uous queries, are the “glue” that in-
terconnect deductive and inductive
reasoning.

Stream Reasoning
The combination of deductive and
inductive stream reasoning extends
the notion of pure stream reason-
ing, which involves reasoning in real
time on huge and possibly noisy data
streams to support numerous concur-
rent decision processes.

We can characterize stream reason-
ing with respect to three key concepts
in stream processing:4

• Streams. Data streams are un-
bounded sequences of time-varying
data elements that form a continu-
ous flow of information. Recent
updates are more relevant because
they describe the current state of
a dynamic system. Because RDF
is the data interchange format for
reasoners, we start with the no-
tion that RDF streams are the fuel
for stream reasoning. We define
RDF streams as ordered sequences
of pairs, made of RDF triples and
their timestamps Ti:

	 (<subji , predi , obji>, Ti)
	 (<subji+1 , predi+1 , obji+1>,	Ti+1)

 Timestamps are annotations of
RDF triples. They are monotoni-
cally nondecreasing in the stream
(Ti	≤ Ti+1), and adjacent triples can
have the same timestamp if they
occur at the same time.

• Windows. Traditional reasoning
problems assume that we should con-
sider all the available information

when trying to solve a problem.
Stream reasoning, instead, restricts
processing to a certain window of
concern, focusing on a subset of
recent statements in the stream,
while ignoring previous statements.
However, the cumulative effect
of past windows (processed in the
past) and present windows can be
taken into account.

• Continuous processing. Traditional
reasoning approaches have well-
defined beginnings and endings for
reasoning tasks indicating when
tasks are presented to the reasoner
and when results are delivered, re-
spectively. Stream reasoning moves
from this processing model to a
continuous model, where tasks are
registered and continuously evalu-
ated against flowing data.

We are pursuing our stream rea-
soning vision within the LarKC proj-
ect (www.larkc.eu),5 with the goal of
developing a platform for reasoning
on massive heterogeneous informa-
tion such as social media data. The
platform has a pluggable architecture
to exploit techniques and heuristics
from diverse areas such as databases,
machine learning, and the Semantic
Web.

In previous research,6,7 we speci-
fied a general, flexible architecture
for reasoning over data streams
and rich background knowledge,
within the LarKC conceptual archi-
tecture,5 to leverage existing DSMS
and SPARQL engines. We introduced
continuous SPARQL (C-SPARQL) as
a SPARQL extension for expressing
continuous queries over RDF graphs
and RDF streams.6,8 We elaborated
on the deductive reasoning support
to C-SPARQL, proposing an efficient
incremental technique that exploits
the transient nature of streams for
maintaining the materialization of
their ontological entailments.7

IS-25-06-della.indd 33 11/11/10 11:43 AM

34	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o c i a l M e d i a a n a l y t i c S a n d i n t e l l i g e n c e

The challenges of inductive stream
reasoning are

• the large amount of information
that must be processed in a given
time window,

• the structured multirelational na-
ture of the data,

• the sparsity of the typically high-
dimensional data, and

• the fact that the data is often
incomplete.

Researchers have described a ma-
chine learning approach suitable for
this challenging data situation called
the Statistical Unit Node Set (SUNS)
learning approach.9 Later work then
extended the approach for online in-
ductive reasoning.10

Figure 1 shows the architecture of
a simple stream reasoner that con-
sists of a set of specialized plug-ins
within the LarKC platform. A selec-
tion plug-in extracts the relevant data
in each input stream by exploiting the
DSMS’s window-processing ability.
The window content is fed into a sec-
ond plug-in that abstracts from fine-
grained data streams into aggregated
events and produces RDF streams as
output. A SPARQL engine that can
operate under different entailment
regimes constitutes the deductive
reasoner plug-in. C-SPARQL queries

are directly registered in the deduc-
tive reasoner. The results can be used
immediately or by two more sub-
workflows, both consisting of an ab-
stracter and an inductive reasoner. As
we explained earlier, the inferences
of the two inductive reasoners can be
queried using an extended version of
SPARQL that supports probabilities.9

We can extend this simple setup by
arbitrarily combining and iterating
the deductive and inductive reason-
ers. For example, it might be helpful
to feed the findings of the inductive
reasoner back to the deductive rea-
soner to deduce further knowledge.

Experimental Data
We based our experiments on Glue
(http://getglue.com), a social network
that lets users connect to each other
and share Web navigation experi-
ences. In addition, Glue uses seman-
tic recognition techniques to identify
books, movies, and other similar top-
ics and publishes them in the form
of data streams. Users can observe
the streams and receive recommen-
dations on interesting findings from
their friends.

Both the social network data and
the real-time streams are accessible
via Web APIs. Our experiments built
on adapters11 that export Glue data
as RDF streams. Figure 2 gives UML

descriptions of the entities and rela-
tionships in the experiments.

Users have online names, and they
know and follow other users us-
ing well-known Semantic Web vo-
cabularies,12 such as the Friend of a
Friend (FOAF) vocabulary for user
names and the knows relationship,
and the Semantically Interlinked
Online Communities (SIOC) for the
follows relationship. Objects rep-
resent real-world entities (such as
movies or books) with a name and
category. Resources represent infor-
mation sources that describe the ac-
tual objects, such as webpages about
a particular movie or book. For vo-
cabularies, we used rdfs:label for the
names and skos:subject to link an ob-
ject to its category, by means of the
subject attribute. Moreover, we used
categories identifiers from the YAGO
knowledge base.

The information we have described
so far is static background knowledge—
that is, in the experiments we assumed
that the background knowledge is sta-
ble in a period comparable with the
size of a window. Of course, we al-
low updates to this information that
do not interfere with window pro-
cessing. We also have streaming in-
formation, namely the notifications
of the users’ behaviors with respect to
resources (and, transitively, to objects).

Figure 1. Architecture of a simple stream reasoned as a set of specialized plug-ins within the LarKC platform. We applied the
reasoner to social media analysis.

Deductive
reasoner

Abstracter
Long-term

matrix

Selector
DSMS

Abstracter
DSMS

C-SPARQL query

Inductive
reasoner

So
ci

al
 m

ed
ia

 a
na

ly
tic

s

Inductive
reasoner

Abstracter
Hype

matrix

SPARQL with probability

Legend

Window

Data stream

RDF stream

RDF graph

C

CC

C

P

P

P

IS-25-06-della.indd 34 11/11/10 11:43 AM

NovEMbEr/DEcEMbEr 2010 www.computer.org/intelligent 35

The accesses, likes, and dislikes re-
lationships represent the events oc-
curring when users access resources
or express opinions about them. We
refer to this vocabulary with the pre-
fix sd. Quite straightforwardly, each
interaction of a generic user U with
a resource R generates a triple of the
form <U,	sd:accesses,	R>, and se-
lected interactions generate triples of
the form <U,	sd:likes,	R> and <U,	
sd:dislikes,	R	>. Figure 3a shows
examples of possible triples.

Stream Reasoning at Work
To demonstrate stream reasoning, we
start with an example of social media
analysis performed by a C-SPARQL
query under simple RDF entailment.
Then, we explain how we express
complex conditions using the rule
profile of OWL2 (OWL2-RL) and
we explain how our deductive stream
reasoner can efficiently answer C-
SPARQL queries under OWL2-RL
entailment.

c-SPArQL under Simple rDF
Entailment
Like SPARQL, C-SPARQL can be
executed under multiple entailment
regimes (see www.w3.org/TR/sparql11-
entailment). Under simple RDF entail-
ment, C-SPARQL does not require
reasoning, but it is already useful. For
instance, we can use it to discover
causal relationships between different
users’ actions in Glue (see Figure 3b).

In Figure 3b, lines 1 and 3 tell the
C-SPARQL engine to register the
stream of interactions Glue gener-
ates. They also tell the C-SPARQL
engine to observe the stream through
a 30-minute window that slides every
five minutes. Line 2 tells the engine
to generate an RDF stream as output.
The basic triple pattern (BTP) at line
5 matches interactions of potential
opinion makers with resources. Line 6
matches the opinion makers’ followers,

and line 7 matches their interac-
tions with resources. The FILTER
clause uses the custom value testing
function cs:timestamp, which re-
turns the timestamp of the RDF triple
producing the binding. (If the vari-
able gets bound multiple times, the

function returns the most recent time-
stamp value relative to the query eval-
uation time.) It checks whether the
interactions of the followers occur on
the same resource after those of the
opinion maker. Timestamps are taken
from variables that occur only once in

(<:Giulia,	sd:accesses,	:	Avatar>,	2010-02-12T13:18:05)	
(<:John,	sd:accesses,	:	Twilight>,	 2010-02-12T13:36:23)
(<:Giulia,	sd:likes,	:	Avatar>,			2010-02-12T13:42:07)

(a)

1.	REGISTER	STREAM	OpinionMakers	COMPUTED	EVERY	5m	AS
2.	CONSTRUCT	{	?opinionMaker	sd:about	?resource	}
3.	FROM	STREAM	<http://streamingsocialdata.org/	
	 interactions>		[RANGE	30m	STEP	5m]
4.	WHERE	{	
5.								?opinionMaker	?opinion	?resource	.
6.								?follower	sioc:follows	?opinionMaker.
7.								?follower	?opinion	?resource.
8.									FILTER	(cs:timestamp(?follower)	>	

cs:timestamp(?opinionMaker)
9.																	&&	?opinion	!=	sd:accesses)	
10.	}	
11.	HAVING	(COUNT(DISTINCT	?follower)	>	3)

(b)

Figure 3. C-SPARQL samples. (a) The example triples are generated when users
interact with resources. (b) The query example identifies users who are opinion
makers (that is, who are likely to influence the behavior of their followers).

Figure 2. Entities and relationships in our experiments. The UML descriptions show
that objects represent real-world entities and resources represent information
sources.

roaf:name

foaf:knows
User

ObjectResource

URL
rdfs:label

URL

URL
rdfs:label
skos:subject
owl:sameAs

Background knowledge

likes

links

dislikes

describes

accesses

Data strean

sioc:followsfoaf:name

IS-25-06-della.indd 35 11/11/10 11:43 AM

36	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o c i a l M e d i a a n a l y t i c S a n d i n t e l l i g e n c e

patterns applied to streaming triples
to avoid ambiguity. Also, the query
filters out actions of type “accesses”
that are normally required before ex-
pressing an opinion such as “like”
or “dislike.” Finally, the HAVING
clause distinguishes potential opinion
makers from actual opinion makers,
checking that at least three followers
imitated their behavior.

As an alternative to C-SPARQL,
two additional approaches are stream-
ing SPARQL13 and time-annotated
SPARQL.14 Both languages intro-
duce windows, but only C-SPARQL
brings the notion of continuous
processing, typical of stream pro-
cessing, into the language. All other

proposals rely on permanently stor-
ing the stream and processing it with
one-shot queries. Moreover, only C-
SPARQL proposes an extension to
SPARQL to support aggregates. This
extension permits optimizations that
push, whenever possible, aggregate
computations as close as possible to
the raw data streams.6

c-SPArQL and Deductive
Stream reasoning
Running C-SPARQL queries under
expressive OWL reasoning regimes
widens the spectrum of analysis that
the stream reasoner can perform. For
instance, we might define a “movie
opinion maker” as an opinion maker

who recently liked only movies.
Figure 4a shows the OWL definition
of users who like only movies.

This ontological definition can be
used in the C-SPARQL query in Fig-
ure 4b. For instance, if a window
contains the triples in Figure 4c, then
Giulia is an instance of UserOnly-
InterestInMovies, while John is
not (he also liked a book).

Evaluating the query in Figure 4 re-
quires reasoning both on the triples in
the window and on the background
knowledge about objects described
in Glue. In particular, the rea-
soner must check if users match the
ontological definition before check-
ing if they are opinion makers. The

Class(sd:UserOnlyInterestInMovies	complete	
			intersectionOf(
						sd:User
						restriction(sd:likes	allValuesFrom(yago:Movie))
)
)

(a)

1.	REGISTER	STREAM	MovieOpinionMakers	COMPUTED	EVERY	5m	AS
2.	CONSTRUCT	{	?opinionMaker	sd:about	?resource	}
3.	FROM	STREAM	<http://streamingsocialdata.org/interactions>		[RANGE	30m	STEP	5m]
4.	WHERE	{	
5.								?opinionMaker a sd:UserOnlyInterestInMovies	.
6.								?opinionMaker	?opinion	?resource	.
7.								?follower	sioc:follows	?opinionMaker.
8.								?follower	?opinion	?resource.
9.								FILTER	(cs:timestamp(?follower)	>	cs:timestamp(?opinionMaker)
10.																	&&	?opinion	!=	sd:accesses)	
11.	}	
12.	HAVING	(COUNT(DISTINCT	?follower)	>	3)

(b)

(<:Giulia,	sd:likes,	:Avatar>,														2010-02-12T13:18:05)
(<:John,	sd:likes,	:StarWars>,														2010-02-12T13:36:23)
(<:John,	sd:likes,	:WutheringHeights>,						2010-02-12T13:38:07)
(<:Giulia,	sd:likes,	:AliceInWonderland>,			2010-02-12T13:42:07)

(c)

Figure 4. Example query. (a) A stream reasoner can identify users who are movie opinion makers leveraging the ontological
definition (b) within the C-SPARQL query. For instance, (c) if the window on Glue RDF stream contains the triples, Giulia can
be a movie opinion maker.

IS-25-06-della.indd 36 11/11/10 11:43 AM

NovEMbEr/DEcEMbEr 2010 www.computer.org/intelligent 37

deductive stream reasoner must know
the ontological definition and com-
bine the RDF stream with relevant
background knowledge about mov-
ies and books—that is, it must know
that Wuthering Heights is a book
while the other items are movies.

Existing techniques for perform-
ing this reasoning task include incre-
mental maintenance of materialized
views in logic,15 graph databases,16
extensions of the RETE algorithm
for incremental rule-based reason-
ing,17 and recent attempts to apply
incremental reasoning in description
logics.18 All these methods operate
incrementally, but none are explic-
itly dedicated to data stream pro-
cessing. In a previous work,7 we
proposed a technique for efficiently
computing this class of C-SPARQL
queries that incrementally maintains
a materialization of ontological en-
tailments exploiting the transient
nature of streaming data. By add-
ing expiration time information to
each RDF triple, we show that it is
possible to compute a new complete,
correct materialization whenever the
window slides by dropping expired
statements and entailments and then
only adding the deductions that de-
pend on the new triples that entered
the window.

Inductive Stream reasoning
using c-SPArQL
Still wondering about Giulia, we can
query which movies Giulia will like
the most, even if she has not seen
them yet. The answer is built for an
ad hoc query; the system uses the
last window in the stream to deter-
mine such predicted probability (see
Figure 5a).

At line 3 in Figure 5a, the construct
WITH	 PROB extends SPARQL by let-
ting it query an inducted model. The
variable ?prob assumes the value 1
for the movies she has watched and

assumes the estimated probabilities
between 0 and 1 for the next movies
she would like to watch. The clause
ORDER	 BY is used to return movies
sorted by decreasing the probabili-
ties. The query answer includes pairs
of movie title and predicted likelihood
(see Figure 5b).

To run inductive reasoning on
semantic data, we use the SUNS learn-
ing approach. First, we define the sta-
tistical unit, population, sampling pro-
cedure, and features. A statistical unit
is an object of a certain type, such as a
user. The population is the set of statis-
tical units under consideration. For in-
stance, in the experiments we describe
here, we define population as Glue so-
cial network users. For training models
we sample a subset from the population.
Then, based on the sample, the SUNS
constructs data matrices by transform-
ing the set of RDF triples related to sta-
tistical units into matrices. The rows in
the matrix stand for instances of a sta-
tistic unit and columns represent their
features derived from the associated
RDF graph. The binary entries one and
zero represent the truth values “true”
and “unknown” of the corresponding
triples. Suppose that rows are users and
columns are movies. A 1 in the (i, j) en-
try in the matrix indicates that the i-th
user rates the j-th movie as liked; other-
wise, it is unknown whether that user
likes that movie.

After the transformation, we per-
form a multivariate analysis of the
data matrices. Multivariate predic-
tion methods are especially suited
for challenging data situations: large
scale, multirelational, high dimen-
sional, and highly sparse. The multi-
variate modeling problem can be
solved via singular value decomposi-
tion (SVD), nonnegative matrix fac-
torization (NNMF),19 and latent
Dirichlet allocation (LDA).20 All
three approaches estimate unknown
matrix entries via a low-rank matrix
approximation. NNMF is a decom-
position under the constraints that
all terms in the factoring matrices are
nonnegative, while LDA is based on
a Bayesian treatment of a generative
topic model. (Recently, we developed
a regularized SVD that is rather in-
sensitive on the rank used in the ma-
trix factorization step.) After matrix
completion, the 0 entries are re-
placed with certainty values repre-
senting the likelihood that the cor-
responding triples are true. We have
investigated the performance of
these methods in offline and online
settings, following different sam-
pling strategies.10 In this context,
online setting means that the trained
model is applied to predict relation-
ships between entities at query time,
including the new entities unseen in
the training data set.

1.	SELECT	?movie	?prob
2.		FROM	STREAM	<http://streamingsocialdata.org/	

interactions>	[RANGE	30m	STEP	5m]
3.		WHERE	{	:Giulia	sd:likes	?movie	.	WITH PROB ?prob
4.										?movie	a	yago_Movie	.
5.										FILTER	(?prob	>	0	&&	?prob	<	1)
6.	}	ORDER	BY	?prob

(a)

(:WutheringHeightsTvMovie,				0.8347)
(:StarWars,																				0.5693)

(b)

Figure 5. Additional C-SPARQL example. This code shows (a) the C-SPARQL query
and (b) its results.

IS-25-06-della.indd 37 11/11/10 11:43 AM

38	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o c i a l M e d i a a n a l y t i c S a n d i n t e l l i g e n c e

In our example, the user is the
main entity of interest (and the rea-
soner’s statistical unit). Each user is
involved in a number of relationships,
such as interests in movies, books,
and other items; the friendship rela-
tionships; and the follows relation-
ship. All data is referred to users and
is described by RDF triples, express-
ing that users “relate” to objects.
C-SPARQL continuously delivers new
windows of (aggregated) features to
the inductive reasoning, and the re-
sults of C-SPARQL are transformed
into a data matrix, which becomes
the input for the inductive reasoner. At
predefined time intervals, a learning
module applies a multivariate analysis
to the data matrices. A second learn-
ing module, called the hype model,
monitors rapid changes. Two data
matrices—a hype matrix and a long-
term matrix—contain short-term trends
and long-term information, respec-
tively. The hype matrix is simply popu-
lated with the current window content,
whereas the long-term matrix is contin-
uously updated and evolves over time.

Evaluation
To evaluate our approach, we first
used a stress test to show its scalability
and then evaluated its applicability

to a real case. We show that each ar-
chitectural component separately ap-
plies orthogonal optimizations, yield-
ing an efficient solution when one
system’s output is fed as input to the
next system.

Performance and Scalability
Evaluation
As in earlier work,11 we compared a
C-SPARQL query’s execution time
in our deductive stream reasoner to
the execution time of an equivalent
SPARQL query on ARQ (http://jena.
sourceforge.net/ARQ) with infer-
ence support. We ran the tests for the
query on a Pentium Core 2 Quad 2.0
GHz with a 2-GBbyte RAM.

A little change to the schema to
represent interactions allows writ-
ing an equivalent SPARQL query
(see Figure 6). The code in bold adds
two BTPs (lines 4 and 8) that match
the creation date of the interaction
and four filter conditions (lines 10
through 13) that select the same time
interval of the C-SPARQL query. No-
tably, the C-SPARQL syntax is more
handy and terse.

We registered the C-SPARQL query
in our engine, fed RDF triples into
our engine at a rate of 200 triples per
second (t/s), and measured the time

required to compute the answer. Us-
ing ARQ, we executed the equivalent
SPARQL query six times against re-
positories containing a growing num-
ber of triples and again measured
the time required to compute each
answer.

Figure 7 shows the results. By com-
paring the linear regressions of the
two experiments—Linear(SPARQL)
and Linear(C-SPARQL 200 t/s)—we
see that the C-SPARQL window-based
selection performs significantly better
than the FILTER-based selection of
SPARQL in Jena.

Evaluation on a real
case Scenario
To prove the effectiveness of stream
reasoning for social media analyt-
ics, we evaluated the accuracy of top-
N movie recommendations. First, we
compared diverse inductive reasoning
approaches with common recommen-
dation methods, some of which were
realized by deductive stream reasoning.
Second, we examined the performance
of the combination of both inductive
and deductive streaming reasoning.

To gather a data set for the evalua-
tion, we used a predefined C-SPARQL
query and then transcoded and
stored the output RDF streams into

1.	CONSTRUCT	{?opinionMaker	sd:about	?resource}
2.	FROM	<http://streamingsocialdata.org/interactions>	
3.	WHERE	{?opinionMaker	?opinion	[:about	?resource	;
4.																																dc:created ?dateOpinionM .]
5.								?opinionMaker a sd:UserOnlyInterestInMovies .
6.								?follower	sioc:follows	?opinionMaker	.
7.								?follower	?opinion					[:about	?resource	;
8.																																dc:created ?dateOpinionF .]
9.								FILTER	(?opinion	!=	sd:accesses)	&&
10.																?dateOpinionM > “2010-02-12T13:00:00Z”^^xsd:dateTime &&
11.																?dateOpinionM < “2010-02-12T13:30:00Z”^^xsd:dateTime &&
12.																?dateOpinionF > “2010-02-12T13:00:00Z”^^xsd:dateTime &&
13.																?dateOpinionF < “2010-02-12T13:30:00Z”^^xsd:dateTime &&
14.																?dateOpinionF	>	?dateOpinionM)
15.	}	
16.	HAVING	(COUNT(DISTINCT	?follower)	>	3)

Figure 6. The SPARQL query equivalent to the C-SPARQL query shown in Figure 4b. Notably, the C-SPARQL syntax is more handy
and terse.

IS-25-06-della.indd 38 11/11/10 11:43 AM

NovEMbEr/DEcEMbEr 2010 www.computer.org/intelligent 39

a data matrix. The matrix was con-
tinuously updated between 19 Feb-
ruary to 22 April 2010. Finally, we
selected 245,860 interactions made
by 2,457 users. In particular, we ex-
amined the interactions of the “liked
movies” relationship. The trans-
formed data matrix was extremely
sparse with only 0.002 percent non-
zero elements. To make statistically
significant evaluations, we removed
all users with almost no interactions
and items that were evaluated less
than five times.

After pruning, the resulting subset
consisted of 1,455 users and 7,724 fea-
tures, with a sparsity of 0.02 percent.
The item most specified by users
was the “liked movies” relation with
2,467 movies. “Liked music,” “liked
recording_artists,” “liked movie-stars,”
“liked tv_shows,” and “liked video_
games” were specified 1,378, 1,241,
592, 592 and 579 times, respectively.
The remaining 18 features were men-
tioned less than 250 times.

Since they are the most easily
adaptable to the dynamic setting, we
applied SVD and regularized SVD for
movie recommendations. As baseline
methods, we first used a global “liked
movie” list carried out by a simple
registered C-SPARQL query (see
Figure 8).

Second, we extracted the “most
liked” movies of a person’s friends,
also calculated via a correspond-
ing registered C-SPARQL query
(not shown). Third, we applied the
k-nearest neighbour (kNN) regres-
sion, using the same user-based and
movie-based similarity measures.21
We carefully tuned parameters of
each method using cross validation.

Figure 9a shows the evaluation
results—the percentage of truly liked
movies in the top N recommendations
where N = 10, 20, 30, 40, and 50.
First, SVD and regularized SVD out-
performed all baseline methods. In

particular, the regularized SVD per-
formed much better than any other
method and was robust and insensi-
tive on its parameters, as expected.
Second, both kNN lines are above
the baselines, meaning that the users
and the items collected share some
common regularity. For example, us-
ers who like the same actors are likely
to watch movies that feature them.
Taking such additional features into
account significantly improves the ac-
curacy of movie recommendations.
Of course, SVD and regularized SVD
exploit the data regularity as well.
Third, the two baseline methods al-
most completely overlapped. The rea-
son might be that most users would
like to watch movies from the same
global list of the most-popular movies

rather than considering their friends’
preferences.

In the second part of our empirical
study, we experimented with combin-
ing the output of the deductive and
the inductive reasoning module. In
this scenario, the inductive module
models long-term user preferences,
which in this experiment, is trained
only on data more than 30 days old.
It is quite reasonable to assume that
the long-term preference model is up-
dated only at larger intervals because
the required computations can be
quite costly if we avoid subsampling.
The deductive reasoning module con-
tributes predictions in the form of
“most liked,” which simply aggre-
gates recent recommendations to cap-
ture the short-term trends of “hype.”

1.	REGISTER	STREAM	MostLiked	COMPUTED	EVERY	1d	AS
2.	SELECT	?movie	(COUNT(?user)	AS	?noOfUser)
3.		FROM	STREAM	<http://streamingsocialdata.org/	

interactions>	[RANGE		XX	STEP	XX]
4.	WHERE	{?movie	a	yago_Movie	.
5.								?user	sd:likes	?movie	.}	
6.	GROUP	BY	?movie
7.	ORDER	BY	DESC(?nrOfUser)

Figure 8. A simple registered C-SPARQL query. This query returns a global “liked
movie” list.

Figure 7. Stress test results. The window-based selection of C-SPARQL outperforms
the FILTER-based selection of SPARQL.

0

20

10

30

40

50

0 500
No. of triples in window (C-SPARQL) or repository (SPARQL)

M
ill

is
ec

on
ds

1000 1500 2000 2500

SPARQL
Linear (SPARQL)

Linear (C-SPARQL 200t/s)
C-SPARQL 200t/s

IS-25-06-della.indd 39 11/11/10 11:43 AM

40	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o c i a l M e d i a a n a l y t i c S a n d i n t e l l i g e n c e

Strictly speaking, the latter is also an
inductive process, but the deductive
component inherently supports ag-
gregation as well.

The short-term trend could have
been predicted by a multivariate anal-
ysis similar to the long-term module
and combined in a comparable way to
the deductive module’s output. How-
ever, Figure 9b clearly shows that the
combination of the long-term induc-
tive model and the “most liked” de-
ductive model outperforms both sep-
arated methods. Experiments with
more sophisticated hype modules and
the exploration of different combina-
tion schemes are part of future work.

This article illustrates a sequen-
tial integration between two

existing stream reasoning environ-
ments within the LarKC platform.
However, the LarKC pluggable ar-
chitecture also allows for other forms
of integration with reasoners sharing
the same RDF resources, freely react-
ing to RDF streams, and mutually
interacting.

Interesting future work would
be applying the integrated reason-
ing framework to other social net-
works, such as Twitter and Facebook.

Temporal aspects of relational learn-
ing are currently finding increas-
ing interest. Ongoing work concerns
novel extensions of the SUNS ap-
proach to handle time-dependent se-
mantic data sets and the C-SPARQL
approach to support more expressive
entailment regimes.

Acknowledgments
This work was partially supported by the
European project LarKC (FP7-215535).

References
1. M. Garofalakis et al., Data Stream

Management: Processing High-Speed

Data Streams (Data-Centric Systems

and Applications), Springer-Verlag,

2007.

2. J.H. Su et al., “Music Recommendation

Using Content and Context Information

Mining,” IEEE Intelligent Systems,

vol. 25, no. 1, 2010, pp. 16–26.

3. E. Della Valle et al., “It’s a Streaming

World! Reasoning upon Rapidly Changing

Information,” IEEE Intelligent Sys-

tems, vol. 24, no. 6, 2009, pp. 83–89.

4. S. Babu and J. Widom, “Continuous

Queries over Data Streams,” Sigmod

Record, vol. 30, no. 3, 2001,

pp. 109–120.

5. D. Fensel et al., “Towards LarKC: A

Platform for Web-Scale Reasoning,”

Proc. IEEE Int’l Conf. Semantic

Computing (ICSC 08), IEEE Press, 2008,

pp. 224–229.

6. D. Barbieri et al., “An Execution

Environment for C-SPARQL Queries,”

Proc. Int’l Conf. Extending Database

Technology (EDBT 2010), ACM Press,

2010, pp. 441–452.

7. D. Barbieri et al., “Incremental Reason-

ing on Streams and Rich Background

Knowledge,” Proc. Extended Semantic

Web Conf. (ESWC 2010), 2010.

8. D.F. Barbieri et al., “C-SPARQL:

SPARQL for Continuous Querying,”

Proc. 18th Int’l World Wide Web Conf.

(WWW 09), ACM Press, 2009,

pp. 1061–1062.

9. V. Tresp et al., “Materializing and

Querying Learned Knowledge,” Proc.

1st ESWC Workshop on Inductive Rea-

soning and Machine Learning on the

Semantic Web (IRMLeS 2009), 2009;

doi=10.1.1.149.6151.

10. Y. Huang et al., “Multivariate Predic-

tion for Learning on the Semantic

Web,” Proc. 20th Int’l Conf. Inductive

Logic Programming (ILP 2010), pre-

print, 2010, doi:10.1109/MIS.2010.111.

11. D.F. Barbieri et al., “Continuous Que-

ries and Real-Time Analysis of Social

Semantic Data with C-SPARQL,” Proc.

Social Data on the Web Workshop,

2009.

Figure 9. Accuracy of top-N movie recommendations. (a) Inductive stream reasoning and deductive stream reasoning separately.
(b) Inductive and deductive stream reasoning combined.

10 20 4030

Top N(a)
50

10

5

Ac
cu

ra
cy

15

20

25

30

35

10 20 4030

Top N(b)
50

5

0

Ac
cu

ra
cy

10

15

20

25
SVD

Regularized SVD plus most liked
Most liked

Singular value decomposition (SVD)
Regularized SVD
Item k-nearest neighbor (kNN)
User kNN
Most liked
Friend liked

IS-25-06-della.indd 40 11/11/10 11:43 AM

NovEMbEr/DEcEMbEr 2010 www.computer.org/intelligent 41

12. U. Boja-rs et al., “Interlinking the So-

cial Web with Semantics,” IEEE Intel-

ligent Systems, vol. 23, no. 3, 2008,

pp. 29–40.

13. A. Bolles et al., “Streaming SPARQL:

Extending SPARQL to Process Data

Streams,” Proc. European Semantic

Web Conf. (ESWC 2008), Springer-

Verlag, 2008, pp. 448–462.

14. A. Rodriguez et al., “Semantic Manage-

ment of Streaming Data,” Proc. Intl.

Workshop on Semantic Sensor Networks

(SSN), 2009; http://cet.ncsa.uiuc.edu/

publications/SemanticSN2009streaming.

pdf.

15. R. Volz et al., “Incrementally Main-

taining Materializations of Ontologies

Stored in Logic Databases,” J. Data

Semantics II, vol. 3360, 2005, pp. 1–34.

16. Y. Zhuge and H. Garcia-Molina,

“Graph Structured Views and their

Incremental Maintenance,” Proc. 14th

Int’l Conf. Data Eng., IEEE Press,

1998, pp. 116–125.

17. F. Fabret et al., “An Adaptive Algorithm

for Incremental Evaluation of Produc-

tion Rules in Databases,” Proc. 19th

Int’l Conf. Very Large Data Bases

(VLDB 1993), Morgan Kaufmann,

1993, pp. 455–466.

18. B. Cuenca-Grau et al., “History Mat-

ters: Incremental Ontology Reasoning

using Modules,” Proc. 6th Int’l Seman-

tic Web Conf. (ISWC 2007), Springer-

Verlag, 2007, pp. 183–196.

19. D.D. Lee and H.S. Seung, “Learning

the Parts of Objects by Non-negative

Matrix Factorization,” Nature,

vol. 401, 21 Oct. 1999, pp. 788–791.

20. D.M. Blei et al., “Latent Dirichlet Allo-

cation,” J. Machine Learning Research,

vol. 3, Jan. 2003, pp. 993–1022.

21. G. Linden et al., “Amazon.com Recom-

mendations: Item-to-Item Collaborative

Filtering,” IEEE Internet Computing,

vol. 7, no. 1, 2003, pp. 76–80.

 t h e a u t h o r S
Davide barbieri is a PhD student in the Department of Electronics and Information
(DEI) at the Polytechnic of Milan, Italy. His research interests address issues related to
stream processing, especially C-SPARQL, which will be the main topic of his doctoral
dissertation. Barbieri has a MSc in computer science from Polytechnic of Milan. Contact
him at davide.barbieri@polimi.it.

Daniele braga is an assistant professor in the Department of Electronics and Informa-
tion (DEI) at the Polytechnic of Milan. His research interests include issues related to
the manipulation of semistructured data (visual languages and advanced processing for
XML data), service integration (with specific reference to complex queries over heteroge-
neous Web data sources), and stream reasoning (C-SPARQL and reasoning over stream-
ing data). Braga has a PhD in computer science from the Polytechnic of Milan. Contact
him at daniele.braga@polimi.it.

Stefano ceri is a professor of database systems in the Department of Electronics and
Information (DEI) at the Polytechnic of Milan. His research work covers extending da-
tabase technologies to incorporate new features (distribution, object orientation, rules,
and streaming data) as well as the engineering of Web-based applications and complex
search systems. Ceri has a PhD in electronics from Polytechnic of Milan. Contact him at
stefano.ceri@polimi.it.

Emanuele Della valle is an assistant professor of software project management in the
Department of Electronics and Information (DEI) at the Polytechnic of Milan. His re-
search interests include scalable processing of information at the semantic level and
stream reasoning. Della Valle has a MSc in computer science from Polytechnic of Milan.
Contact him at emanuele.dellavalle@polimi.it.

Yi Huang is a staff scientist at Siemens Corporate Research and Technology and is fin-
ishing his PhD at Ludwig Maximilian University of Munich, Germany. His research
interests focus on statistical machine learning, text mining, information retrieval, and
the Semantic Web. Huang has a Diploma in computer science from Ludwig Maximilian
University of Munich. Contact him at yihuang@siemens.com.

volker Tresp is the head of a research team in machine learning at Siemens Corporate
Research and Technology. His research interests include machine learning, data mining,
information extraction, and the Semantic Web. Tresp has a PhD from Yale University.
Contact him at volker.tresp@siemens.com.

Achim rettinger is a project manager and assistant professor at the Institute of Ap-
plied Informatics and Formal Description Methods (AIFB) at the Karlsruhe Institute of
Technology (KIT, Germany). His research interests include combining machine learn-
ing, knowledge discovery, and human computer systems with semantic technologies. Ret-
tinger has a PhD in computer science from the Technische Universtät München. Contact
him at rettinger@kit.edu.

Hendrik Wermser is pursuing his master’s at the Technical University of Munich. His re-
search interests are in information retrieval, recommender systems, and machine learn-
ing. Wermser has a BS in computer science from the Technical University of Munich.
Contact him at wermser@cs.tum.edu.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

IS-25-06-della.indd 41 11/11/10 11:43 AM

