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A combined 

approach of 

deductive and 

inductive reasoning 

can leverage the 

clear separation 

between the evolving 

(streaming) and 

static parts of 

online knowledge 

at conceptual and 

technological levels.

required to answer these queries is becom-
ing available on the Web. This trend is of-
ten referred to as the Twitter phenomenon. 
These feeds exist in a stream, a continuous 
flow of information where recent items are 
typically more relevant than older ones. 
However, their interpretation requires rich 
background knowledge to fulfill meaningful 
reasoning tasks, beyond standard stream-
processing capabilities.

Both the database1 and data mining com-
munities have studied stream processing. 
Specialized data stream management sys-
tems (DSMSs) are on the market, and DSMS  

features are appearing in major database 
products, such as Oracle and DB2. Online 
stream mining applies in many contexts, 
such as in computer network traffic for in-
trusion detection, in Web searches for online 
recommendations,2 and in sensor data for 
automated real-time decision making. These 
applications represent a paradigm change in 
information processing techniques, because 
data streams are processed on the fly, with-
out being stored, and processing units pro-
duce their results without explicit invocation.

DSMSs are designed to process real-time 
parallel queries over possibly bursty data, 

What are the hottest topics discussed on Twitter? Which topics have 

my close friends discussed in the last hour? Which movie is my friend 

most likely to watch next? Which Tuscan red wine should I recommend? With 

many popular social networks publishing microblogs and feeds, the information 
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but they cannot perform reasoning 
tasks as complex as those required 
to answer our sample queries. Under-
standing and interpreting the Twitter 
phenomenon (and many other data 
streams) requires connecting quick 
and concise real-world streams to 
rich background knowledge bases. 
This combination is crucial for sev-
eral reasons. It enables

• understanding the topics discussed 
in the streams with the help of 
topic taxonomies,

• recommending the most attractive 
movies to particular user profiles, 
and

• predicting future behaviors based 
on the analysis of past behaviors 
(such as movie attendance).

These few examples show the need  
for connecting data-stream-processing  
techniques with both inductive and 
deductive reasoning methods to sup-
port social media analytics. We be-
lieve that this is a good example 
of how the stream reasoning3 re-
search area enables the merging of 
data streams and rich background 
knowledge.

Extending reasoning methods to 
support changing knowledge is a 
known challenge for the reasoning 
community. In deductive reasoning, 
various methods exist to revise beliefs 
based on recent information. In in-
ductive reasoning, a body of research 
in data mining and machine learning 
already supports online data analy-
sis. However, little work has been 
done on applying machine learning 
to streams as rich and structured as 
those we consider here. We believe 
that data streams are an ideal model 
for changes occurring in the real 
world, as well as a suitable means to 
delimit the source and the nature of 
change, clearly separating the static 
and dynamic parts of knowledge.

This separation, both conceptual 
and technological, lets us use exist-
ing systems for data-stream manage-
ment and for inductive or deductive 
reasoning. In our approach, RDF 
streams, together with an extension 
of the SPARQL language for contin-
uous queries, are the “glue” that in-
terconnect deductive and inductive 
reasoning.

Stream Reasoning
The combination of deductive and 
inductive stream reasoning extends 
the notion of pure stream reason-
ing, which involves reasoning in real 
time on huge and possibly noisy data 
streams to support numerous concur-
rent decision processes.

We can characterize stream reason-
ing with respect to three key concepts 
in stream processing:4 

• Streams. Data streams are un-
bounded sequences of time-varying 
data elements that form a continu-
ous flow of information. Recent 
updates are more relevant because 
they describe the current state of 
a dynamic system. Because RDF 
is the data interchange format for 
reasoners, we start with the no-
tion that RDF streams are the fuel 
for stream reasoning. We define 
RDF streams as ordered sequences 
of pairs, made of RDF triples and 
their timestamps Ti:

	 (<subji , predi , obji>, Ti)
	 (<subji+1 , predi+1 , obji+1>,	Ti+1)

 Timestamps are annotations of 
RDF triples. They are monotoni-
cally nondecreasing in the stream 
(Ti	≤ Ti+1), and adjacent triples can 
have the same timestamp if they 
occur at the same time.

• Windows. Traditional reasoning 
problems assume that we should con-
sider all the available information  

when trying to solve a problem. 
Stream reasoning, instead, restricts 
processing to a certain window of 
concern, focusing on a subset of 
recent statements in the stream, 
while ignoring previous statements. 
However, the cumulative effect 
of past windows (processed in the 
past) and present windows can be 
taken into account.

• Continuous processing. Traditional 
reasoning approaches have well-
defined beginnings and endings for 
reasoning tasks indicating when 
tasks are presented to the reasoner 
and when results are delivered, re-
spectively. Stream reasoning moves 
from this processing model to a 
continuous model, where tasks are 
registered and continuously evalu-
ated against flowing data.

We are pursuing our stream rea-
soning vision within the LarKC proj-
ect (www.larkc.eu),5 with the goal of 
developing a platform for reasoning 
on massive heterogeneous informa-
tion such as social media data. The 
platform has a pluggable architecture 
to exploit techniques and heuristics 
from diverse areas such as databases, 
machine learning, and the Semantic 
Web.

In previous research,6,7 we speci-
fied a general, flexible architecture 
for reasoning over data streams 
and rich background knowledge, 
within the LarKC conceptual archi-
tecture,5 to leverage existing DSMS 
and SPARQL engines. We introduced 
continuous SPARQL (C-SPARQL) as 
a SPARQL extension for expressing 
continuous queries over RDF graphs 
and RDF streams.6,8 We elaborated 
on the deductive reasoning support 
to C-SPARQL, proposing an efficient 
incremental technique that exploits 
the transient nature of streams for 
maintaining the materialization of 
their ontological entailments.7 
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The challenges of inductive stream 
reasoning are

• the large amount of information 
that must be processed in a given 
time window,

• the structured multirelational na-
ture of the data,

• the sparsity of the typically high-
dimensional data, and

• the fact that the data is often 
incomplete.

Researchers have described a ma-
chine learning approach suitable for 
this challenging data situation called 
the Statistical Unit Node Set (SUNS) 
learning approach.9 Later work then 
extended the approach for online in-
ductive reasoning.10 

Figure 1 shows the architecture of 
a simple stream reasoner that con-
sists of a set of specialized plug-ins 
within the LarKC platform. A selec-
tion plug-in extracts the relevant data 
in each input stream by exploiting the 
DSMS’s window-processing ability. 
The window content is fed into a sec-
ond plug-in that abstracts from fine-
grained data streams into aggregated 
events and produces RDF streams as 
output. A SPARQL engine that can 
operate under different entailment  
regimes constitutes the deductive  
reasoner plug-in. C-SPARQL queries 

are directly registered in the deduc-
tive reasoner. The results can be used 
immediately or by two more sub-
workflows, both consisting of an ab-
stracter and an inductive reasoner. As 
we explained earlier, the inferences 
of the two inductive reasoners can be 
queried using an extended version of 
SPARQL that supports probabilities.9

We can extend this simple setup by 
arbitrarily combining and iterating 
the deductive and inductive reason-
ers. For example, it might be helpful 
to feed the findings of the inductive 
reasoner back to the deductive rea-
soner to deduce further knowledge.

Experimental Data
We based our experiments on Glue 
(http://getglue.com), a social network 
that lets users connect to each other 
and share Web navigation experi-
ences. In addition, Glue uses seman-
tic recognition techniques to identify 
books, movies, and other similar top-
ics and publishes them in the form 
of data streams. Users can observe 
the streams and receive recommen-
dations on interesting findings from 
their friends. 

Both the social network data and 
the real-time streams are accessible 
via Web APIs. Our experiments built 
on adapters11 that export Glue data 
as RDF streams. Figure 2 gives UML 

descriptions of the entities and rela-
tionships in the experiments. 

Users have online names, and they 
know and follow other users us-
ing well-known Semantic Web vo-
cabularies,12 such as the Friend of a 
Friend (FOAF) vocabulary for user 
names and the knows relationship, 
and the Semantically Interlinked 
Online Communities (SIOC) for the 
follows relationship. Objects rep-
resent real-world entities (such as 
movies or books) with a name and 
category. Resources represent infor-
mation sources that describe the ac-
tual objects, such as webpages about 
a particular movie or book. For vo-
cabularies, we used rdfs:label for the 
names and skos:subject to link an ob-
ject to its category, by means of the 
subject attribute. Moreover, we used 
categories identifiers from the YAGO 
knowledge base.

The information we have described 
so far is static background knowledge— 
that is, in the experiments we assumed 
that the background knowledge is sta-
ble in a period comparable with the 
size of a window. Of course, we al-
low updates to this information that 
do not interfere with window pro-
cessing. We also have streaming in-
formation, namely the notifications 
of the users’ behaviors with respect to  
resources (and, transitively, to objects).  

Figure 1. Architecture of a simple stream reasoned as a set of specialized plug-ins within the LarKC platform. We applied the 
reasoner to social media analysis.
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The accesses, likes, and dislikes re-
lationships represent the events oc-
curring when users access resources 
or express opinions about them. We 
refer to this vocabulary with the pre-
fix sd. Quite straightforwardly, each 
interaction of a generic user U with 
a resource R generates a triple of the 
form <U,	sd:accesses,	R>, and se-
lected interactions generate triples of 
the form <U,	sd:likes,	R> and <U,	
sd:dislikes,	R	>. Figure 3a shows 
examples of possible triples.

Stream Reasoning at Work
To demonstrate stream reasoning, we 
start with an example of social media 
analysis performed by a C-SPARQL 
query under simple RDF entailment. 
Then, we explain how we express 
complex conditions using the rule 
profile of OWL2 (OWL2-RL) and 
we explain how our deductive stream 
reasoner can efficiently answer C-
SPARQL queries under OWL2-RL 
entailment.

c-SPArQL under Simple rDF 
Entailment
Like SPARQL, C-SPARQL can be 
executed under multiple entailment  
regimes (see www.w3.org/TR/sparql11- 
entailment). Under simple RDF entail-
ment, C-SPARQL does not require  
reasoning, but it is already useful. For 
instance, we can use it to discover 
causal relationships between different 
users’ actions in Glue (see Figure 3b).

In Figure 3b, lines 1 and 3 tell the 
C-SPARQL engine to register the 
stream of interactions Glue gener-
ates. They also tell the C-SPARQL 
engine to observe the stream through 
a 30-minute window that slides every  
five minutes. Line 2 tells the engine 
to generate an RDF stream as output. 
The basic triple pattern (BTP) at line 
5 matches interactions of potential 
opinion makers with resources. Line 6 
matches the opinion makers’ followers,  

and line 7 matches their interac-
tions with resources. The FILTER 
clause uses the custom value testing 
function cs:timestamp, which re-
turns the timestamp of the RDF triple 
producing the binding. (If the vari-
able gets bound multiple times, the 

function returns the most recent time-
stamp value relative to the query eval-
uation time.) It checks whether the  
interactions of the followers occur on 
the same resource after those of the 
opinion maker. Timestamps are taken 
from variables that occur only once in 

(<:Giulia,	sd:accesses,	:	Avatar>,	2010-02-12T13:18:05)	
(<:John,	sd:accesses,	:	Twilight>,	 2010-02-12T13:36:23)
(<:Giulia,	sd:likes,	:	Avatar>,			2010-02-12T13:42:07)

(a)

1.	REGISTER	STREAM	OpinionMakers	COMPUTED	EVERY	5m	AS
2.	CONSTRUCT	{	?opinionMaker	sd:about	?resource	}
3.	FROM	STREAM	<http://streamingsocialdata.org/	
	 interactions>		[RANGE	30m	STEP	5m]
4.	WHERE	{	
5.								?opinionMaker	?opinion	?resource	.
6.								?follower	sioc:follows	?opinionMaker.
7.								?follower	?opinion	?resource.
8.									FILTER	(	cs:timestamp(?follower)	>	

cs:timestamp(?opinionMaker)
9.																	&&	?opinion	!=	sd:accesses	)	
10.	}	
11.	HAVING	(	COUNT(DISTINCT	?follower)	>	3	)

(b)

Figure 3. C-SPARQL samples. (a) The example triples are generated when users 
interact with resources. (b) The query example identifies users who are opinion 
makers (that is, who are likely to influence the behavior of their followers).

Figure 2. Entities and relationships in our experiments. The UML descriptions show 
that objects represent real-world entities and resources represent information 
sources.
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patterns applied to streaming triples 
to avoid ambiguity. Also, the query 
filters out actions of type “accesses” 
that are normally required before ex-
pressing an opinion such as “like” 
or “dislike.” Finally, the HAVING 
clause distinguishes potential opinion 
makers from actual opinion makers, 
checking that at least three followers 
imitated their behavior.

As an alternative to C-SPARQL, 
two additional approaches are stream-
ing SPARQL13 and time-annotated 
SPARQL.14 Both languages intro-
duce windows, but only C-SPARQL 
brings the notion of continuous  
processing, typical of stream pro-
cessing, into the language. All other 

proposals rely on permanently stor-
ing the stream and processing it with 
one-shot queries. Moreover, only C-
SPARQL proposes an extension to 
SPARQL to support aggregates. This 
extension permits optimizations that 
push, whenever possible, aggregate 
computations as close as possible to 
the raw data streams.6

c-SPArQL and Deductive  
Stream reasoning
Running C-SPARQL queries under 
expressive OWL reasoning regimes 
widens the spectrum of analysis that 
the stream reasoner can perform. For 
instance, we might define a “movie 
opinion maker” as an opinion maker 

who recently liked only movies.  
Figure 4a shows the OWL definition 
of users who like only movies.

This ontological definition can be 
used in the C-SPARQL query in Fig-
ure 4b. For instance, if a window 
contains the triples in Figure 4c, then 
Giulia is an instance of UserOnly-
InterestInMovies, while John is 
not (he also liked a book).

Evaluating the query in Figure 4 re-
quires reasoning both on the triples in 
the window and on the background 
knowledge about objects described 
in Glue. In particular, the rea-
soner must check if users match the  
ontological definition before check-
ing if they are opinion makers. The 

Class(	sd:UserOnlyInterestInMovies	complete	
			intersectionOf(
						sd:User
						restriction(sd:likes	allValuesFrom(yago:Movie))
			)
)

(a)

1.	REGISTER	STREAM	MovieOpinionMakers	COMPUTED	EVERY	5m	AS
2.	CONSTRUCT	{	?opinionMaker	sd:about	?resource	}
3.	FROM	STREAM	<http://streamingsocialdata.org/interactions>		[RANGE	30m	STEP	5m]
4.	WHERE	{	
5.								?opinionMaker a sd:UserOnlyInterestInMovies	.
6.								?opinionMaker	?opinion	?resource	.
7.								?follower	sioc:follows	?opinionMaker.
8.								?follower	?opinion	?resource.
9.								FILTER	(	cs:timestamp(?follower)	>	cs:timestamp(?opinionMaker)
10.																	&&	?opinion	!=	sd:accesses	)	
11.	}	
12.	HAVING	(COUNT(DISTINCT	?follower)	>	3)

(b)

(<:Giulia,	sd:likes,	:Avatar>,														2010-02-12T13:18:05)
(<:John,	sd:likes,	:StarWars>,														2010-02-12T13:36:23)
(<:John,	sd:likes,	:WutheringHeights>,						2010-02-12T13:38:07)
(<:Giulia,	sd:likes,	:AliceInWonderland>,			2010-02-12T13:42:07)

(c)

Figure 4. Example query. (a) A stream reasoner can identify users who are movie opinion makers leveraging the ontological 
definition (b) within the C-SPARQL query. For instance, (c) if the window on Glue RDF stream contains the triples, Giulia can  
be a movie opinion maker.
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deductive stream reasoner must know 
the ontological definition and com-
bine the RDF stream with relevant 
background knowledge about mov-
ies and books—that is, it must know 
that Wuthering Heights is a book 
while the other items are movies.

Existing techniques for perform-
ing this reasoning task include incre-
mental maintenance of materialized 
views in logic,15 graph databases,16 
extensions of the RETE algorithm 
for incremental rule-based reason-
ing,17 and recent attempts to apply 
incremental reasoning in description 
logics.18 All these methods operate 
incrementally, but none are explic-
itly dedicated to data stream pro-
cessing. In a previous work,7 we 
proposed a technique for efficiently 
computing this class of C-SPARQL 
queries that incrementally maintains 
a materialization of ontological en-
tailments exploiting the transient 
nature of streaming data. By add-
ing expiration time information to 
each RDF triple, we show that it is 
possible to compute a new complete, 
correct materialization whenever the 
window slides by dropping expired 
statements and entailments and then 
only adding the deductions that de-
pend on the new triples that entered 
the window.

Inductive Stream reasoning 
using c-SPArQL
Still wondering about Giulia, we can 
query which movies Giulia will like 
the most, even if she has not seen 
them yet. The answer is built for an 
ad hoc query; the system uses the 
last window in the stream to deter-
mine such predicted probability (see  
Figure 5a).

At line 3 in Figure 5a, the construct 
WITH	 PROB extends SPARQL by let-
ting it query an inducted model. The 
variable ?prob assumes the value 1 
for the movies she has watched and 

assumes the estimated probabilities 
between 0 and 1 for the next movies 
she would like to watch. The clause 
ORDER	 BY is used to return movies 
sorted by decreasing the probabili-
ties. The query answer includes pairs 
of movie title and predicted likelihood 
(see Figure 5b).

To run inductive reasoning on  
semantic data, we use the SUNS learn-
ing approach. First, we define the sta-
tistical unit, population, sampling pro-
cedure, and features. A statistical unit 
is an object of a certain type, such as a 
user. The population is the set of statis-
tical units under consideration. For in-
stance, in the experiments we describe 
here, we define population as Glue so-
cial network users. For training models 
we sample a subset from the population. 
Then, based on the sample, the SUNS 
constructs data matrices by transform-
ing the set of RDF triples related to sta-
tistical units into matrices. The rows in 
the matrix stand for instances of a sta-
tistic unit and columns represent their 
features derived from the associated 
RDF graph. The binary entries one and 
zero represent the truth values “true” 
and “unknown” of the corresponding 
triples. Suppose that rows are users and 
columns are movies. A 1 in the (i, j) en-
try in the matrix indicates that the i-th 
user rates the j-th movie as liked; other-
wise, it is unknown whether that user 
likes that movie. 

After the transformation, we per-
form a multivariate analysis of the 
data matrices. Multivariate predic-
tion methods are especially suited 
for challenging data situations: large 
scale, multirelational, high dimen-
sional, and highly sparse. The multi-
variate modeling problem can be 
solved via singular value decomposi-
tion (SVD), nonnegative matrix fac-
torization (NNMF),19 and latent 
Dirichlet allocation (LDA).20 All 
three approaches estimate unknown 
matrix entries via a low-rank matrix 
approximation. NNMF is a decom-
position under the constraints that 
all terms in the factoring matrices are 
nonnegative, while LDA is based on 
a Bayesian treatment of a generative 
topic model. (Recently, we developed 
a regularized SVD that is rather in-
sensitive on the rank used in the ma-
trix factorization step.) After matrix  
completion, the 0 entries are re-
placed with certainty values repre-
senting the likelihood that the cor-
responding triples are true. We have 
investigated the performance of 
these methods in offline and online 
settings, following different sam-
pling strategies.10 In this context, 
online setting means that the trained 
model is applied to predict relation-
ships between entities at query time, 
including the new entities unseen in 
the training data set.

1.	SELECT	?movie	?prob
2.		FROM	STREAM	<http://streamingsocialdata.org/	

interactions>	[RANGE	30m	STEP	5m]
3.		WHERE	{	:Giulia	sd:likes	?movie	.	WITH PROB ?prob
4.										?movie	a	yago_Movie	.
5.										FILTER	(	?prob	>	0	&&	?prob	<	1	)
6.	}	ORDER	BY	?prob

(a)

(:WutheringHeightsTvMovie,				0.8347)
(:StarWars,																				0.5693)

(b)

Figure 5. Additional C-SPARQL example. This code shows (a) the C-SPARQL query 
and (b) its results.
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In our example, the user is the 
main entity of interest (and the rea-
soner’s statistical unit). Each user is 
involved in a number of relationships, 
such as interests in movies, books, 
and other items; the friendship rela-
tionships; and the follows relation-
ship. All data is referred to users and 
is described by RDF triples, express-
ing that users “relate” to objects.  
C-SPARQL continuously delivers new 
windows of (aggregated) features to 
the inductive reasoning, and the re-
sults of C-SPARQL are transformed 
into a data matrix, which becomes 
the input for the inductive reasoner. At 
predefined time intervals, a learning 
module applies a multivariate analysis 
to the data matrices. A second learn-
ing module, called the hype model,  
monitors rapid changes. Two data  
matrices—a hype matrix and a long-
term matrix—contain short-term trends 
and long-term information, respec-
tively. The hype matrix is simply popu-
lated with the current window content, 
whereas the long-term matrix is contin-
uously updated and evolves over time.

Evaluation
To evaluate our approach, we first 
used a stress test to show its scalability 
and then evaluated its applicability 

to a real case. We show that each ar-
chitectural component separately ap-
plies orthogonal optimizations, yield-
ing an efficient solution when one 
system’s output is fed as input to the 
next system.

Performance and Scalability 
Evaluation
As in earlier work,11 we compared a 
C-SPARQL query’s execution time 
in our deductive stream reasoner to 
the execution time of an equivalent 
SPARQL query on ARQ (http://jena.
sourceforge.net/ARQ) with infer-
ence support. We ran the tests for the 
query on a Pentium Core 2 Quad 2.0 
GHz with a 2-GBbyte RAM.

A little change to the schema to 
represent interactions allows writ-
ing an equivalent SPARQL query 
(see Figure 6). The code in bold adds 
two BTPs (lines 4 and 8) that match 
the creation date of the interaction 
and four filter conditions (lines 10 
through 13) that select the same time 
interval of the C-SPARQL query. No-
tably, the C-SPARQL syntax is more 
handy and terse.

We registered the C-SPARQL query 
in our engine, fed RDF triples into 
our engine at a rate of 200 triples per 
second (t/s), and measured the time 

required to compute the answer. Us-
ing ARQ, we executed the equivalent 
SPARQL query six times against re-
positories containing a growing num-
ber of triples and again measured 
the time required to compute each 
answer. 

Figure 7 shows the results. By com-
paring the linear regressions of the 
two experiments—Linear(SPARQL) 
and Linear(C-SPARQL 200 t/s)—we 
see that the C-SPARQL window-based 
selection performs significantly better 
than the FILTER-based selection of 
SPARQL in Jena. 

Evaluation on a real  
case Scenario
To prove the effectiveness of stream 
reasoning for social media analyt-
ics, we evaluated the accuracy of top-
N movie recommendations. First, we 
compared diverse inductive reasoning 
approaches with common recommen-
dation methods, some of which were 
realized by deductive stream reasoning. 
Second, we examined the performance 
of the combination of both inductive 
and deductive streaming reasoning.

To gather a data set for the evalua-
tion, we used a predefined C-SPARQL 
query and then transcoded and 
stored the output RDF streams into 

1.	CONSTRUCT	{?opinionMaker	sd:about	?resource}
2.	FROM	<http://streamingsocialdata.org/interactions>	
3.	WHERE	{?opinionMaker	?opinion	[:about	?resource	;
4.																																dc:created ?dateOpinionM .]
5.								?opinionMaker a sd:UserOnlyInterestInMovies .
6.								?follower	sioc:follows	?opinionMaker	.
7.								?follower	?opinion					[:about	?resource	;
8.																																dc:created ?dateOpinionF .]
9.								FILTER	(?opinion	!=	sd:accesses)	&&
10.																?dateOpinionM > “2010-02-12T13:00:00Z”^^xsd:dateTime &&
11.																?dateOpinionM < “2010-02-12T13:30:00Z”^^xsd:dateTime &&
12.																?dateOpinionF > “2010-02-12T13:00:00Z”^^xsd:dateTime &&
13.																?dateOpinionF < “2010-02-12T13:30:00Z”^^xsd:dateTime &&
14.																?dateOpinionF	>	?dateOpinionM)
15.	}	
16.	HAVING	(COUNT(DISTINCT	?follower)	>	3)

Figure 6. The SPARQL query equivalent to the C-SPARQL query shown in Figure 4b. Notably, the C-SPARQL syntax is more handy 
and terse.
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a data matrix. The matrix was con-
tinuously updated between 19 Feb-
ruary to 22 April 2010. Finally, we 
selected 245,860 interactions made 
by 2,457 users. In particular, we ex-
amined the interactions of the “liked 
movies” relationship. The trans-
formed data matrix was extremely  
sparse with only 0.002 percent non-
zero elements. To make statistically 
significant evaluations, we removed 
all users with almost no interactions 
and items that were evaluated less 
than five times.

After pruning, the resulting subset 
consisted of 1,455 users and 7,724 fea-
tures, with a sparsity of 0.02 percent.  
The item most specified by users 
was the “liked movies” relation with 
2,467 movies. “Liked music,” “liked  
recording_artists,” “liked movie-stars,”  
“liked tv_shows,” and “liked video_
games” were specified 1,378, 1,241, 
592, 592 and 579 times, respectively. 
The remaining 18 features were men-
tioned less than 250 times.

Since they are the most easily 
adaptable to the dynamic setting, we 
applied SVD and regularized SVD for 
movie recommendations. As baseline 
methods, we first used a global “liked 
movie” list carried out by a simple 
registered C-SPARQL query (see  
Figure 8).

Second, we extracted the “most 
liked” movies of a person’s friends, 
also calculated via a correspond-
ing registered C-SPARQL query 
(not shown). Third, we applied the  
k-nearest neighbour (kNN) regres-
sion, using the same user-based and 
movie-based similarity measures.21 
We carefully tuned parameters of 
each method using cross validation.

Figure 9a shows the evaluation  
results—the percentage of truly liked 
movies in the top N recommendations 
where N = 10, 20, 30, 40, and 50. 
First, SVD and regularized SVD out-
performed all baseline methods. In 

particular, the regularized SVD per-
formed much better than any other 
method and was robust and insensi-
tive on its parameters, as expected. 
Second, both kNN lines are above 
the baselines, meaning that the users 
and the items collected share some 
common regularity. For example, us-
ers who like the same actors are likely 
to watch movies that feature them. 
Taking such additional features into 
account significantly improves the ac-
curacy of movie recommendations. 
Of course, SVD and regularized SVD 
exploit the data regularity as well. 
Third, the two baseline methods al-
most completely overlapped. The rea-
son might be that most users would 
like to watch movies from the same 
global list of the most-popular movies 

rather than considering their friends’ 
preferences.

In the second part of our empirical 
study, we experimented with combin-
ing the output of the deductive and 
the inductive reasoning module. In 
this scenario, the inductive module 
models long-term user preferences, 
which in this experiment, is trained 
only on data more than 30 days old. 
It is quite reasonable to assume that 
the long-term preference model is up-
dated only at larger intervals because 
the required computations can be 
quite costly if we avoid subsampling. 
The deductive reasoning module con-
tributes predictions in the form of 
“most liked,” which simply aggre-
gates recent recommendations to cap-
ture the short-term trends of “hype.” 

1.	REGISTER	STREAM	MostLiked	COMPUTED	EVERY	1d	AS
2.	SELECT	?movie	(COUNT(?user)	AS	?noOfUser)
3.		FROM	STREAM	<http://streamingsocialdata.org/	

interactions>	[RANGE		XX	STEP	XX]
4.	WHERE	{?movie	a	yago_Movie	.
5.								?user	sd:likes	?movie	.}	
6.	GROUP	BY	?movie
7.	ORDER	BY	DESC(?nrOfUser)

Figure 8. A simple registered C-SPARQL query. This query returns a global “liked 
movie” list.

Figure 7. Stress test results. The window-based selection of C-SPARQL outperforms 
the FILTER-based selection of SPARQL.
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Strictly speaking, the latter is also an 
inductive process, but the deductive 
component inherently supports ag-
gregation as well.

The short-term trend could have 
been predicted by a multivariate anal-
ysis similar to the long-term module 
and combined in a comparable way to 
the deductive module’s output. How-
ever, Figure 9b clearly shows that the 
combination of the long-term induc-
tive model and the “most liked” de-
ductive model outperforms both sep-
arated methods. Experiments with 
more sophisticated hype modules and 
the exploration of different combina-
tion schemes are part of future work.

This article illustrates a sequen-
tial integration between two 

existing stream reasoning environ-
ments within the LarKC platform. 
However, the LarKC pluggable ar-
chitecture also allows for other forms 
of integration with reasoners sharing 
the same RDF resources, freely react-
ing to RDF streams, and mutually 
interacting.

Interesting future work would 
be applying the integrated reason-
ing framework to other social net-
works, such as Twitter and Facebook.  

Temporal aspects of relational learn-
ing are currently finding increas-
ing interest. Ongoing work concerns 
novel extensions of the SUNS ap-
proach to handle time-dependent se-
mantic data sets and the C-SPARQL 
approach to support more expressive 
entailment regimes.
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