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Abstract. The super long fjord crossings in E39 Norwegian project pose new challenges to long 
span bridge design and construction technology. Proposed solutions should consider the adoption 
of bridge deck with super long spans or floating solutions for at least one of the towers, due to 
the relevant fjord depth. At the same time, the exposed fjord environment, possibly facing the 
open ocean, calls for higher aerodynamic stability performances. In relation to this scenario, the 
present paper addresses two topics: 1) the aerodynamic advantages of multi-box deck sections 
in terms of aeroelastic stability, and 2) an experimental setup in a wind tunnel able to simulate 
the aeroelastic bridge response including the wave forcing on the floating. 

1.  Introduction 
The super long fjord crossings in E39 Norwegian project pose new challenges to large span bridge 
design and construction technology. Proposed solutions should consider the adoption of super long 
spans for the deck or floating solutions for at least one of the towers, due to the relevant fjord depth. At 
the same time, the exposed fjord environment, possibly facing the open ocean, calls for higher 
aerodynamic stability performances, compared to the existing long-span bridges further inland.  

The choice of the multi-box deck section concept has reached nowadays a proven technological 
development and reliability, offering its superior aerodynamic performances as possible key solution 
for a high aerodynamic stability request [1][2][3]. At the same time the closed box girder streamlined 
solution with higher aerodynamic performances is also offering the great advantage of limited mass of 
the deck per unit length, playing therefore a key role in case of floating tower solution. However, multi-
box decks may show complex vortex shedding excitation phenomena and they should be thoroughly 
studied in wind tunnel [4][5][6]. 

Assessment of a considered suspension bridge solution with one or two towers on a floating support 
is posing non-trivial challenges in terms of experimental validation of the numerically simulated 
structure dynamics, based on hybrid codes accounting both for the aero- and the hydro-dynamic loads 
effect. The new technology of Hardware-In-the-Loop (HIL) testing recently developed at POLIMI in 
the field of floating offshore wind turbines is proposed as a reliable tool for the experimental validation 
of the complex numerical approach. A 6 degree of freedom platform driven by linear actuators is 
available at POLIMI at the purpose of simulating the motion of the floater due to the combined action 
of the hydrodynamic loads on the floater (numerically simulated in real time) and of the aerodynamic 
and inertial loads transmitted by the tower (measured by a 6 components dynamometer at the tower-

http://creativecommons.org/licenses/by/3.0
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platform interface). The opportunities offered by the mentioned HIL technology are discussed with 
reference to a possible wind tunnel test experiment on a bridge aeroelastic model focused on the 
validation of the numerical hybrid tools needed for the floating bridge solution assessment. 

2.  The aero-hydro-elastic problem 
Adopting the modal approach, the dynamics of a bridge can be written as: 

 
[ ] [ ]* * * T T

s s s aero hydroM q C q K q F F     + + = Φ Φ      +     (1) 
 
where q  is the vector of  the modal coordinates; [ ]Φ  the mode shape matrix, *

sM 
  , *

sC 
   and *

sK 
   

are the structural inertial, damping, and stiffness modal matrices of the system; aeroF  the external 
aerodynamic forces that depends on the motion of the deck and on the incoming wind velocity; hydroF  
the external hydrodynamic forces acting on the floating structure, if present. Linearized and non-linear 
approaches differ in the modelling of both aeroF  and hydroF . 

2.1.  The aeroelastic forces 
The simulation framework for aeroelastic analyses of long-span bridges is rather well established, and 
it consists of the following points [7][8][9]: 

• The bridge structural dynamics is represented by means of a modal approach, starting from a 
FEM of the structure. 

• The deck is divided into several sections to which aerodynamic forces are applied. Each section, 
from an aerodynamic point of view, is independent from the other (sectional approach).  Cables 
and towers may be analysed in the same way. 

• For each deck section, the turbulent wind field is simulated starting from its stochastic 
characteristics (e.g. PSD, spatial coherence, turbulence intensity, integral length scale, etc.). 

• The dynamic response of the bridge is computed, applying the aerodynamic forces to the deck 
sections and to other components. The aerodynamic forces depend on the deck state (position 
and velocity) and on the incoming turbulence. 

The standard approach for buffeting response is based on a linearized model of the fluid-structure 
interaction around a steady configuration of the bridge, which depends on the mean wind speed field. 
The external aerodynamic forces ( aeroF ) are computed as the sum of three different effects, namely: 

 STa se b fr ue foF F F F+ +=                       (2) 
where STF  are the stationary aerodynamic forces, seF the self-excited, and buffF  the buffeting forces. 

The steady aerodynamic drag, lift and moment forces acting on each deck section are defined through 
the steady coefficients as a function of the angle of attack: 

 21
2

D

L

M

ST

C
F V B C

BC
ρ

 
 =  
  

                          (3) 

where B is the deck chord, V the mean wind velocity, and ρ  the air density.  
The self-excited unsteady aerodynamic terms of drag, lift and moment acting on each deck section   

( D , L , and M ) are modeled using the flutter derivatives coefficients, measured with dedicated forced 
motion tests on rigid sectional model. The self-excited forces acting on the generic j-th section are 
defined as: 
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              

 

 

 

                  (4) 

 
where jy , jz  and jθ  are respectively the lateral, vertical and torsional displacements of the j-th  section, 

*
,aero jm 

  , *
,aero jc 

   and *
,aero jk 

   are the aerodynamic matrices related to the j-th section, expressed as a 

function of the 18 flutter derivatives coefficients *
ia , *

ih  and *
ip  with {1: 6}i = . 

*
ia , *

ih  and *
ip  are proportional to the slopes of the static coefficients ( / ; /L L M MK dC d K dC dα α= =

) and they  are function both of the reduced velocity ( * / ( )V V fB= , being f  the motion frequency), and 
of the mean angle of attack. 

Buffeting forces are due to the incoming turbulent wind. They are defined through the so-called 
aerodynamic admittance functions as:  

            

( ) ( )
( ) ( )
( ) ( )

* *

2 * *

* *

1
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, ,

, ,
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j
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            =    
             

   (5) 

where χ are the 6 aerodynamic admittance functions (asymptotic to quasi-steady values at large V*), 
proportional to the slopes of the static coefficients (dependent upon both of the reduced velocity and of 
the angle of attack α ), while u  and w  are the turbulent horizontal and vertical components of the 
turbulent wind field. Admittance functions can be measured with dedicated wind tunnel tests using an 
active turbulence generator. 

2.2.  The hydrodynamic forces 
Collecting the independent coordinates of motion of the floating towers in the x vector, the equations of 
motion of the global system can be written as 

(1) (2)[ ] [ ] [ ]hydro s s rad visc moor diff diffF A x R x K x F F F F F∞− − − + + + + +=     (6) 
where [A ͚] is the wave frequency-independent or ”infinite frequency” hydrodynamic added mass matrix 
due to the radiation of the semisubmersible platform [10], given as output by the panel code WAMIT, 
[Rs] a diagonal viscous linear damping matrix added to tune the numerical model compared to the results 
from free decay tests in the ocean basin [10] and [Ks] is the system stiffness matrix containing both the 
terms related to the hydrostatic as well as gravitation restoring computed with respect to the Sea Water 
Level (SWL), upon which the x axis lays. The contributions to Fhydro are summarized in the following 
paragraphs. 

2.2.1.  Radiation forces Frad:  
The radiation force partially accounted for by the term [A ͚] in Equation 6 is also due to a convolution 
term (Equation 7) between the platform velocity and the retardation matrix [K(t)] (impulse response), 
describing the dissipation of energy of the platform motion due to the radiated waves generated by the 
platform itself. The matrix [K(t)] can be expressed in the wave frequency domain [K(ω)], as in Equation 
10 as a function of the frequency dependent added mass and damping matrices [A(ω)] and [B(ω)] 
computed with the inviscid and irrotational panel codes such as, WAMIT. 

 
0

( ) ( ) ( )
t

radF t K t x dµ τ τ τ= = −∫                                   (7) 
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[ ] [ ]

ˆ [ ]
r r r r

r r

q A q B x

C qµ


= −


 =

     (8) 

 ˆ( ) ( )radF t tµ µ= ≈      (9) 
 [ ( )] [ ( )] ([ ( )] [ ])K B j A Aω ω ω ω ∞= + −                    (10) 

Due the time-consuming computation of a convolution term for control or real-time application like 
the one presented, the matrix [K(ω)] was identified in the frequency domain [12] by means of another 
equivalent matrix [ K (ω)] leading to the corresponding memory effect term µ̂  m through a state space 
approximation, Equation 8-10, more effectively implemented in the HIL control, Figure 7. 

2.2.2.  Viscous forces Fvisc  
The viscous forces considered are due to the Morison’s contribution derived by the integration along the 
possible platform’s columns of the drag forces depending quadratically on the relative velocities vrel 
between the platform and the wave particles, either along tangential t or axial ax direction by the drag 
coefficients Cd and Cax, respectively 

 , ,
1( ) | |
2t d z rel t rel t

z
F t C D v v dz= ∫      (11) 

 
2

, ,
1( ) | |
2 4

z
ax ax rel ax rel ax

z z

DF t C v v dz
L

π= ∫      (12) 

The forces are collected into the Fvisc of the Equation 6 with a simple 2D rotation in the z-x plane. 
The particle velocities (along x and z directions) accounted in Vrel , along with the platform’s velocities, 
are computed in the real time model, according the linear Airy theory of wave kinematics. Moreover, 
the Wheeler wave stretching is implemented along with the linear wave kinematics, to model also the 
contribution above the free surface  

2.2.3.  First order diffraction forces F(1)
diff. 

The first-order wave excitation loads (diffraction) were obtained based on complex frequency dependent 
wave exciting force vector X(ωk) computed by WAMIT (i.e. output file *.3) and for a unitary wave 
amplitude h, for each i-th degree of freedom, under the assumption of a linear wave surface 
approximation. Therefore, the linear diffraction force is computed, as in Eq. 13, considering the random 
phased wave amplitudes spectrum Ak, consistent with a JONSWAP spectrum for a given sea state. 

 (1)
,

1

( ){ }k

N
j t

k i kdiff i
k

F A X e ωω
=

= ℜ ∑     (13) 

2.2.4.  Second order diffraction forces F(2)
diff 

The second-order difference-frequency potential-flow terms are also taken into account. Similarly to F(1) 
diff , ”sum” and ”difference” frequency normalized complex force matrices, X+(ωk ; ωl) and X(ωk;ωl), 
also known as Quadratic Transfer Functions QTF, are taken from WAMIT’s output (i.e. .12s/.12d file), 
which is the state-of-the-art in 3D panel code for offshore hydrodynamics, as function of each 
combination of incoming wave frequencies ωk and ωl . More specifically, full QTF loads taken as 
reference account for quadratic interaction of first order quantities plus second-order potential derived 
by the direct method (the formulation of the Boundary Integral Equation - BIE involves integrating the 
potential itself over the surface). However, the second order diffraction forces, sum (+) or difference     
(-) frequency forces, Equation 14, are taken into consideration for their importance in the modelling of 
floating systems, since they excite the rigid natural frequencies typically in the low frequency spectrum 
range   (-) for semisubmersible and spar buoys platforms, as assessed in [13], or in the high frequency 
range (+) for Tension Leg Platforms (+). Analogously to Equation 8, this contribution can be written as 
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 ( )(2) * /
,

1 1

( , ){ }k l

N N
j t

k l i k ldiff i
k l

F A A X e ω ωω ω −+ −

= =

= ℜ ∑∑    (14) 

where the complex vector Al is the same as Ak but transposed and evaluated at the l-th frequency of the 
JONSWAP spectrum. Also, a second-order correction to the linear sea surface elevation h is applied to 
take into account low-frequency range non-linearities (difference) of Ai, [14].  

2.3.  Validation of the hydrodynamic model 
The hydrodynamic model, which is implemented on the real-time HIL controller, is designed to be fast 
but comprehensive of the complex hydrodynamics of a floating system. For this reason, a preliminary 
code-to-code comparison is carried against a fully non-linear hydro-elastic code (e.g. 
NREL/HydroDyn). More specifically, free decays along the principal degrees-of-freedom being 
investigated, the response of the platform due to regular waves (i.e. Response Amplitude Operators, 
RAO) and irregular random sea, are compared against the reference code. These tests are carried out 
considering no-wind conditions. On top of this, the corresponding tests might have been carried out also 
in ocean basin, so that the fine tuning of the model (e.g. linear and quadratic added damping) can be 
finalized relying also on the experimental data. An example of this procedure can be found in [13] where 
a two degrees of freedom (2-dof) HIL system (surge and pitch) has been developed for simulating the 
motion of a 5MW floating wind turbine, showing excellent agreement of the hydrodynamic modelling 
approach compared either with the reference numerical code and the ocean basin data. 

2.4.  Aeroelastic stability improvement  
The aerodynamic performances of streamlined multi box decks have been extensively studied for many 
super long span bridges (e.g. [1][2][3]) . Figure 1 shows a comparison of a single-box deck (Storebaelt 
Bridge), a two-box deck (Stonecutters bridge) and a 3-box deck (Messina bridge). 

 

 

Figure 1. Cross-sections of decks: a) Storebaelt Bridge, b) Stonecutters bridge, c) Messina bridge 
(from [15]) 

From an aerodynamic point of view, the multi-box decks have better performances in terms of 
stability and buffeting responses, because of their smaller aerodynamic coefficients. As an example, 
Table 1 shows the derivatives of the lift and moment coefficients (KL and KM) for the 3 previous sections, 
having considered for each section its own chord width in the definition of the coefficients. If one 
compares the effects of these three different aerodynamic behaviors on the same bridge (Storebeaelt) 
with a very simplified approach, keeping unchanged the structural parameters and changing only the 
values of KL and KM, the results for stability shown in Figure 2 are obtained: predicted flutter speed goes 
from 70 to 120 to 240 m/s. 
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2.5.  Issues in multi-box sections  
However, multi-box section must be carefully investigated in wind tunnel for complex vortex shedding 
phenomena and subsequent vortex-induced vibration, and for the strong non-linear effects that may be 
relevant. 

For vortex shedding, the presence of multiple boxes often introduces multiple lock-in ranges. As an 
example, the VIVs amplitude for the Messina bridge, which is a 3-box deck, are reported as a function 
of the reduced wind speed in Figure 3 (see [4]): two lock-in regions are present. 

As far as the nonlinear effects are concerned, the most relevant characteristics can be found in the 
double nonlinear dependence of the aerodynamic forces on the amplitude of the angle of attack and on 
the reduced velocity (e.g. see Figure 4, where it is shown the nonlinear dependence of the lift coefficient 
upon the amplitude on the angle of attack and reduced velocity during forced motion tests). This 
nonlinearity may lead to an underestimation of the buffeting response and should be taken into account 
during the design of the bridge (e.g. [18]) 

 
Table 1. Aerodynamic derivatives KL and KM 

 

Deck KM [1/rad] KL [1/rad] 
Storebeaelt (1 box) 1.2 4.4 
Stonecuttesrs (2 boxes) 0.55 2.3 
Messina (3 Boxes) 0.2 0.7 

 

 

Figure 2. Stability performances of the three different cross-sections: trend of total damping ratio as a 
function of the mean wind speed 
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Figure 3.  VIV of Messina. Steady state response: non dimensional oscillation amplitude, vertical 
motion as function of the reduced velocity varying the Scruton number (Sc). r0 corresponds to Sc = 

0.1, r2 to Sc = 0.25, r4 to Sc = 0.44 (from [4]) 

 

 

Figure 4. Nonlinear dependence of lift coefficient upon reduced velocity for large variations of the 
angles of attack (from -4 deg to 6 deg), from [8] 
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3.   The HIL for the simulation of hydrodynamic forces in Wind Tunnel 
At present, an experimental laboratory in which both wind and the waves effects on a floating structure 
can be reproduced is not available. If the numerical design of a floating bridge is required, a feasible 
option for its validation is to perform wind tunnel tests on a full bridge aeroelastic model, physically 
modelling only the part of the bridge above the water, and simulating the submerged part with a 
hardware in the loop (HIL) approach. This approach is currently used for floating wind turbines and 
could be extended to floating bridges. 

3.1.  The HIL approach for wind turbines 
The Hardware-In-The-Loop (HIL) experimental approach allows to perform hybrid tests in which 
measurements, computations and actuations are performed in real time. In the specific case of the 
assessment of the global dynamics of a floating wind turbine through wind tunnel tests, the physical 
aerodynamic loads on the rotor are measured by means of a 6-components balance, which is mounted 
on a 2-DoF system (surge and pitch) and bears the whole wind turbine scale model (Rotor-Nacelle-
Assembly and tower), see Figure 5.  

 

  

Figure 5. Picture of wind turbine model (top) and sketck of actuation and forces 

 
The measured loads, properly conditioned, contain the aerodynamic loads which are added to 

computed hydrodynamic loads in order to give the physical displacements at the base of the scale 
model’s tower to be actuated in real time. An example of control scheme is shown in Figure 7. 

Both aerodynamic and hydrodynamic forces are clearly dependent on the dynamic state of the 
system. The combination of such forces need to be performed under specific constraints (real time) and 
precautions (synchronization), to obtain respectively a stable and consistent motion of the system being 
analyzed.  

Reaching these goals within a target tolerance is possible thanks to a fast but comprehensive 
numerical model and an efficient real-time signal management.  

3.2.  Application to aeroelastic model of the bridge 
The same actuation system at the base of the turbine tower could be applied at the base of the floating 
towers, eventually adding additional degrees of freedom. Looking at some preliminary modal simulation 
of the Bjørnafjorden floating bridge, obtained linearizing the hydrodynamic forces (see Master thesis 



9

1234567890

First Conference of Computational Methods in Offshore Technology (COTech2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 276 (2017) 012008 doi:10.1088/1757-899X/276/1/012008

 
 
 
 
 
 

from NTNU [19]), the floating towers influence mainly the first 20 vibration modes, from 0.0125 Hz to 
0.16 Hz. 

Considering a Froude scaling for wind tunnel tests, using a geometrical scale of 1:330 for the full 
bridge, the frequency that should be simulated by the HIL would be between 0.2 and 3, that is in the 
range of operation of the actuators. 

The expected full-scale root mean square lateral amplitude is about 2 m which in model scale would 
be 6 mm (so about 20 mm peak dynamic displacement), that again is in the range of the actuators. These 
data are consistent with the capability of the 2DoF [13] and 6DoF [14] HIL systems already available 
at Politecnico di Milano designed for simulating the motion of a 10MW floating wind turbine [15] with 
a length scale factor of 75 and a frequency scale factor of 1/25, which makes the motion of the scaled 
model working the sample displacement and frequency range of a possible floating bridge with the scale 
factors considered in the paper. For more details about the scaling procedure adopted for floating wind 
turbines, the reader is referred to [15]. For the sake of completeness in Table 2 surge natural frequencies 
of Tension Leg and Semisubmersible platform are reported on a model scale.  

 

Figure 6. First vibration mode of the Bjørnafjorden floating bridge, natural frequency 0.0125 Hz, 
from [19] 

Table 2. Frequencies of rigid modes for two platforms  
 

Motion Natural frequency [Hz] 
Surge (TLP) 0.75 
Surge (Semisub)  0.13 

 

 

Figure 7. Control scheme for HIL implementation 
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4.  Conclusions 
To cross large and deep fjords, very long bridges are being currently studied. Amongst the feasible 
solutions, very long spans with multi-box sections or shorter spans with floating towers are proposed in 
several studies.  

While the multi-box technology has already been studied and it is rather well established, the floating 
bridge solution needs more understanding and validation. The HIL approach in wind tunnel could be an 
efficient tool to validate the combined effects of turbulent winds and ocean waves acting on the structure. 
So far it has been applied on wind turbines with success and it could be applied analogously to floating 
bridges. 
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