
Electronic Notes in Theoretical Computer Science �� No� � ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Towards a Hierarchy of Negative Test
Operators for Generative Communication �

Gianluigi Zavattaro

Dipartimento di Scienze dell�Informazione

Universit�a di Bologna

Bologna� Italy

Abstract

Generative communication is a coordination paradigm that permits interprocess

communication via the introduction and consumption of data to and from a shared

common data space� We call negative test operators those coordination primitives

able to test the absence of data in the common data space� In this paper we inves�

tigate the expressive power of this family of operators� To this aim� we concentrate

on three possible primitives di�ering in the ability of instantaneously producing

new data after the test� tfa�a� tests the absence of data of kind a� t�e�a� in�

stantaneously produces a new occurrence of datum a after having tested that no

other occurrences are available� t�p�a� b� atomically tests the absence of data a and

produces one instance of datum b� We prove the existence of a strict hierarchy of

expressiveness among these operators�

� Introduction

Many coordination languages allow interprocess communication via a shared

data space sometimes called Tuple Space as in Linda ����� Chemical Solution

as in Gamma ���� or Blackboard as in Shared Prolog ����

The basic features common to these languages are�

� Asynchronous communication� Processes cannot directly synchronize� they

only interact by means of the shared data space�

� Anonymous data items� After their introduction in the shared data space�

data items become independent� in the sense that they are no longer related

to the process that created them�

� Associative access� Data are accessed according to their contents�

� Work partially supported by Esprit Working Group n������ COORDINA�

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Zavattaro

This communication paradigm is usually called generative communication

����� Representatives of this family of coordination languages are usually dis�

tinguished according to the type of data introduced in the shared data space�

the di	erent kind of coordination primitives� or the criteria used to realize the

associative access to the data�

For example� both in Linda and Shared Prolog data are tuples� but dif�

ferent mechanisms are used to select the data to access� Linda uses pattern

matching while Shared Prolog uni
cation� On the other hand� the main di	er�

ence between Gamma and Linda relies on the kind of coordination primitives�

Gamma allows the atomic rewriting of entire multisets of data items while in

Linda only one datum can be accessed at each computation step �see ���� for

a formal comparison between these two coordination models�

In this paper we consider a family of coordination primitives� called nega�

tive tests� that have the ability of observing the absence of data� The idea to

analize this kind of primitives has been inspired us by the non�blocking input

operator inp of Linda formally modeled in ������ inp�a�P Q activates P if at

least a message a can be consumed� otherwise it behaves like Q� This operator

has the ability of observing the absence of data as it activates Q only if no

instance of datum a is available�

The main aim of the paper is to investigate the expressiveness of this kind

of operators� in order to do this� we concentrate on three possible primitives

di	ering in the ability of instantaneously producing new data after having

performed the test for absence�

� Test�for�absence� tfa�a

A process tfa�a�P activates its continuation P only if no instance of datum

a is available� This primitive incorporates the ability of the Linda inp to

observe the absence of data� indeed�

inp�a�P Q � in�a�P � tfa�a�Q

where in�a consumes a datum a and � is a CCS�like ���� alternative choice

composition operator�

This kind of primitive has been already considered in the setting of con�

current constraint programming in ���� In that context the primitive is

called nask�a to point out that it is the negative form of the ask�a that

tests the presence of data �see also ��� for an analysis of the expressiveness

of this primitive�

� Test�and�emit� t�e�a

After having tested the absence of data of kind a� this primitive instanta�

neously produces also a new occurrence of datum a� In this way� an atomic

test for absence and consequent emission of an instance of datum a is real�

ized�

A non�blocking variant of this operator is presented in ����� t�s�a�P Q

checks the presence of datum a� if it is available P is activated� otherwise a

new datum a is instantaneously produced and Q is chosen as continuation�

�

Zavattaro

� Test�and�produce� t�p�a� b

This primitive di	ers from the above test�and�emit operator for the ability

of emitting an occurrence of a generic datum b potentially di	erent from

the one that has been tested� A test�and�emit primitive can be obtained by

imposing b equal to a�

t�e�a�P � t�p�a� a�P

We have no knowledge of other papers considering this coordination primi�

tive�

In order to compare the expressive power of these three negative test op�

erators the idea is to start by considering an asynchronous version of CCS

���� �we denote by L� without � pre
x� relabeling and alternative choice

composition operator� It comprises only two coordination primitives out�a

and in�a that produce and consume an occurrence of datum a� respectively�

Then� three languages L�� L�� and L� are obtained by extending L� with the

negative tests tfa�a� t�e�a� and t�p�a� b� respectively� Finally� we show

that there exists a strict hierarchy of expressiveness among these languages�

Li is strictly more expressive than Lj for any i � j�

From a computational point of view the four languages are equivalent

because we will show that they are all Turing�powerful� As we are interested

in the expressive power of coordination primitives� we adopt the approach

used� e�g�� in ��� and ���� to compare the relative expressiveness of concurrent

languages� The idea is to investigate the possibility of encoding one language

in the other up�to the preservation of some properties� We consider two classes

of properties� those related to the encoding and those describing the semantics

that the encoding should preserve�

In order to better understand the class of properties for the encoding� we

discuss a possible approach for checking the absence of data also in a language

with only inputs and outputs� The idea is to introduce a counter Counta for

each kind of data a� The counters� after an appropriate initialization� could be

incremented or decremented every time a new datum is produced or consumed�

respectively� In this way� to check the absence of a datum a it is su�cient

to verify if Counta is equal to zero� This approach has the disadvantage

of introducing centralized control structures� the counters� that have to be

accessed every time an operation is performed�

To prevent this� we require that no extra coordination managers or central�

ized control structures are introduced during the encoding� This requirement

is formalized by imposing that the encoding �� �� should be modular with respect

to the parallel composition operator�

��P jQ�� � ��P �� j ��Q�� program distribution preservation

In ���� the notion of uniform encoding is considered in order to discriminate the

expressive power of the synchronous ��calculus and its asynchronous fragment�

Besides program distribution preservation also modularity with respect to

renaming �P �that renames the free names of P according to function � is

�

Zavattaro

required� ���P �� � ���P ��� This kind of property is considered in that paper

in order to ensure that the encodings preserve the symmetry of networks� In

Section �� we will introduce a relation � for pairs of agents of our languages�

that we call symmetry� P � Q if and only if �P � Q for each � belonging

to a particular class of renaming functions� Instead of considering the more

general renaming preservation property of ����� we will explicitly require that

the encodings preserve the symmetry of agents�

P � Q implies ��P �� � ��Q�� symmetry preservation

It is easy to see that each encoding modular with respect to renaming preserves

also the symmetry of agents� Indeed� if P � Q then �P � Q for de
nition of

�� thus� ���P �� � ��Q�� and also ���P �� � ��Q�� by modularity w�r�t� renaming� For

this reason� we can conclude that we are dealing with a subcase of the notion

of uniform encoding of �����

The semantics that we consider only observes the deadlock and the diver�

gent behaviour of agents�

P � m i	 ��P �� � m for every agent P and m deadlock preservation

P � i	 ��P �� � for every agent P divergence preservation

where P � mmeans that there exists a computation of P that terminates�dead�

locks with the shared data space in the state denoted bym� while P � indicates

the existence of a non�terminating computation of P �

In the following we will denote with Li v Lj the possibility of encoding

Li in Lj up�to the preservation of the above four properties� With Li � Lj we

mean that Li v Lj and also Lj �v Li�

The existence of the hierarchy of expressiveness is proved by showing that

Li v Lj and Lj �v Li for every j � i��� An interesting result is that in some

of the proofs of non�encodability not all the four properties are considered� For

example� as schematized in the table below� to prove L� �v L� we do not take

care of the symmetry and deadlock preserving properties� Indeed� we prove

that there exists no program distribution preserving encoding of L� in L� that

respects the divergent behaviour� Similarly� the proof of L� �v L� does not

consider symmetry preservation�

L� �v L� L� �v L� L� �v L�

Program distribution X X X

Symmetry X

Deadlock behaviour X X

Divergent behaviour X X X

The paper is organized as follows� Section � introduces syntax and se�

mantics of L�� Sections �� �� and � contain the analysis of the three negative

�

Zavattaro

��� out�a��P
�

�� haijP �	� hai
a

��

��� in�a��P
a

�� P ���
P

�

�� P
�

P jQ
�

�� P
�
jQ

� � �a

���
P

a

�� P
�

Q
a

��Q
�

P jQ
�

�� P
�
jQ

�

���
P

�

�� P
�

Pna
�

�� P
�
na

� � a� a��a

���
P �recX�P�X�

�

�� P
�

recX�P
�

�� P
�

Table �
Operational semantics of L� �symmetric rules of ��� and ��� omitted��

test operators tfa�a� t�e�a� and t�p�a� b� respectively� Finally� Section �

reports some comparisons with related work and conclusive remarks�

� The Language L�

Language L� is essentially an asynchronous version of CCS ���� �without �

pre
x� relabeling and alternative choice� in which the standard input and

output pre
xes a and a are changed in in�a and out�a� respectively�

Let Names� ranged over by a� b� � � �� be an in
nite countable set of kinds of

data� We suppose Names partitioned in two disjoint subsets Obs and Unobs

�i�e�� Names � Obs � Unobs and Obs � Unobs � � of observable and unob�

servable names� respectively� The unobservable names are particular names

not visible to external observers� In particular� we will use these unobservable

names as auxiliary names in the encoding of L� in L� that we present in Sec�

tion �� Let V ar� ranged over by X� Y � � � �� be the set of agent variables� We

de
ne processes the terms obtained by the following grammar�

C ��� � j ��C j CjC j Cna j X j recX�C

where the possible pre
xes � are�

� ��� in�a j out�a

Term � denotes one inactive process� and it is usually omitted for the sake of

simplicity� The possible pre
xes are in�a and out�a standing for the input

and output of an instance of datum a� respectively� We consider the usual

parallel �j� restriction �n and recursion �recX�C operators� We consider

only closed terms and guarded recursion �����

Pre
x out�a produces a new occurrence of datum a� denoted by hai� The

input pre
x in�a requires the presence of hai� if it is available� then it is

removed�

Data� like hai� are not considered in the syntax of processes� we have to

�

Zavattaro

introduce states� de
ned as the terms obtained by the following grammar�

P ��� hai j C j P jP j Pna

A state is the parallel composition of processes and data� with the possibility

to de
ne local names using the restriction operator� In the following P � Q�

� � �� are used to range over states and processes �the actual meaning will be

clear by the context� and Agent denotes the set of possible states �called also

agents in the following�

We use fn�P to denote the free names of P � i�e�� those names appearing

in P not under the scope of restriction� Given a function on names � the term

�P denotes the agent obtained by renaming in P each free occurrence of a

with ��a�

The operational semantics of L� is de
ned by means of a labeled transition

system �Agent�� Label�� ��� specifying how states evolve� The index �� as

also other indexes we will introduce in the following sections� is omitted when

clear by the context� Label�
def
� f�g � fa� a j a � Namesg �ranged over by ��

�� � � � is the set of the possible labels� The labeled transition relation ��� is

the smallest one satisfying the axioms and rules in Table �� The side condition

� �� 	a of rules �� and �� has no e	ect in L� as 	a is not a legal label� The

use of this side condition will be explained in the following section� where the

labels 	a will be introduced�

Axiom �� shows that an output pre
x out�a can generate hai performing

an internal action labeled with � � then hai is able to give its contents to

some process in the environment� by performing an action labeled with a

�axiom ��� Axiom �� allows an input pre
x to consume a message in the

environment by performing one action labeled with a� the complementary of

a� The other rules are the usual ones for the parallel composition operator

�rules �� and ��� for the restriction operator �rule ��� and for recursion

�rule ���

In ��� we have proved that a language� corresponding to L� plus the pre
x �

and the alternative choice composition operator of CCS ����� is Turing powerful

by showing how to encode register machines in the language� The encoding

make no use of the pre
x � and utilizes only input guarded choices� As this

kind of choice is implementable in L� following� e�g�� the approach presented

in ����� we can conclude that also L� is Turing powerful� As an example of how

to encode an input guarded choice operator� consider the term in�a � in�b

and its encoding�

�hoki j in�a�� in�ok�out�kob j

in�koa�out�a j

in�b�� in�ok�out�koa j

in�kob�out�bnoknokanokb

�

Zavattaro

��� tfa�a��P
�a
�� P

���
P

�a
�� P � Q

a
���

P jQ
�a
�� P �

jQ
��
�

P
�a
�� P �

Pna
�
�� P �

na

Table 	

Additional axiom and rules for L� �symmetric rule of ��� omitted��

� The Test�for�Absence Primitive

In this section we analize the tfa�a negative test operator� We
rst introduce

syntax and semantics of language L� which is the extension of L� with the new

pre
x tfa�a� After� we investigate the expressive power of L� with respect

to L��

��� Syntax and Semantics of L�

The syntax of L� is obtained by extending the set of pre
xes of L�with the

new tfa�a�

� ��� in�a j out�a j tfa�a

The semantics of L� is de
ned by means of the labeled transition system

�Agent�� Label�� ���� The set Agent� comprises the new agents containing

pre
x tfa�a� the set of labels Label�
def

� Label� � f	a j a � Namesg contains

also a new label 	a indicating that the absence of hai is tested� Finally� the

labeled transition relation ��� is the smallest one satisfying the axioms and

rules in Table � plus the new axiom and rules of Table � where Q
a

��	 means

that there exists no Q� such that Q
a

��Q��

Axiom �� indicates that the execution of the test for absence is re�ected

by a transition step labeled with 	a� A process P can perform a transition

having the new label 	a when composed in parallel with an agent Q only if

Q does not o	er any hai �rule ��� Instead� if P is restricted on name a� it is

no more necessary to verify the availability in the environment of hai because
the name has become local� this is the reason why the label becomes � �rule

���� The side condition � �� 	a of rules �� and �� of Table � is necessary

in order to avoid con�icts with the new rules �� and ����

Rule �� uses a negative premise� the transition system speci
cation is

strictly strati
able ����� thus there exists a unique transition system agreeing

with it�

Notation

Before analizing the expressive power of L� with respect to L� we need some

further notation�

�

Zavattaro

The relation P �� P � and its re�exive and transitive closure P �
 P � are

used to indicate how agents can reduce when no environment is considered�

P �� P � i	 P
�

�� P � or P
�a

�� P � for some a

P �
 P � i	 P ��
� P �

We use P ��	 to indicate that there exists no P � such that P �� P �� in other

words� P cannot reduce�

Let m be the multiset of observable data fa�� a�� � � � � ang� the notation

P � m indicates that m is the multiset of observable data that P makes

available to the outside� This can be operationally characterized as follows�

P � m i	 P
a�

�� P�

a�

�� P�

a�

�� � � �
an

�� P
n
for some P�� P�� � � � Pn

such that P
n

a

��	 for any a � Obs

We will use P � m to denote the existence of a computation of P termi�

nating in the agent P � such that P � cannot reduce and P �
� m�

P � m i	 P �
 P �
��	 for some P � such that P �

� m

On the other hand� we use P � to indicate the existence of a non�terminating

computation starting from the agent P �

P � i	 there exist P
i
with i � NI such that

P� � P and P
i
�� P

i�� for every i

��� On the Expressiveness of L�

In order to prove that L� � L� we
rst observe that L� is trivially encodable

in L� �it is a sublanguage and then we show that there exists no program

distribution preserving encoding of L� in L� that respects at least the divergent

behaviour�

In order to prove the non�encodability result� we consider the following

agent of L��

P � tfa�a��recX�out�b�in�b�Xnb

Agent P tests the absence of hai� if it is not available then the divergent

computation of the agent �recX�out�b�in�b�Xnb is activated� On the other

hand� if at least one hai is present then agent P blocks� This behaviour is

formalized as follows�

P � and P jhai ��

This example re�ects the fact that in L� the addition of new data could forbid

the execution of previously available computations� This does not happen in

L�� where the addition of new agents cannot prevent the execution of some

previous available computations� This is formalized in the following Lemma�

�

Zavattaro

���� t�e�a��P
�a

�� haijP

Table �

Additional axiom for L��

Lemma ��� Let Q be an agent of L�� If Q �
 Q� then also QjR �
 Q�jR

for any agent R�

Proof� As 	a is not a label in L�� the reduction Q �
 Q�

is composed of

only � steps� The thesis directly follows from rule �� of Table �� �

Corollary ��� Let Q be an agent of L�� If Q � then also QjR � for every

agent R�

The non�encodability result can be now proved taking into account this

corollary and the above agent P �

Theorem ��� There exists no program distribution preserving encoding of

L� in L� that respects the divergent behaviour�

Proof� Suppose by contradiction that �� �� is such an encoding� Consider the

program P of L� de
ned above� then�

��P �� � and ��P �� j ��hai�� ��

by divergence preservation� The fact that ��P �� � leads� by Corollary ���� to

the contradiction ��P �� j ��hai�� �� �

� The Test�and�Emit Primitive

In this section we analyze L�� the extension of L� with the new pre
x t�e�a

that atomically tests the absence of hai and� if it is not available� instanta�

neously emits a new occurrence of it� We
rst present syntax and semantics

of L� and then analyze its expressivity with respect to L��

��� Syntax and Semantics of L�

The syntax of L� is obtained by extending the set of pre
xes of L� with the

new t�e�a�

� ��� in�a j out�a j t�e�a

The semantics is de
ned by means of the labeled transition system �Agent��

Label�� ���� The set Agent� comprises the agents containing also the new

pre
x t�e�a� the set of labels Label� is the same as Label�� and
nally ���

is the smallest labeled transition relation satisfying the axioms and rules in

Table � plus rules �� and ��� of Table � and axiom ��� of Table ��

�

Zavattaro

Axiom ��� indicates that the new pre
x operation t�e�a is performed by
means of a transition step labeled with 	a� in the reached state a new hai is

made instantaneously available� In this way� the atomic test for absence and
consequent emission of hai is obtained�

��� On the Expressiveness of L�

In order to prove that L� � L� we
rst show how to encode L� in L� and then
we show that there exists no program distribution preserving encoding of L� in

L� that preserves at least the divergent and deadlock behaviour of agents�

The
rst intuitive approach to encode L� in L� is to map each tfa�a in

the sequence of actions t�e�a�in�a� where the second input action is used

to remove the new instance of hai produced by the test�and�emit operation�

This idea is not correct because the occurrence of hai produced by t�e�a

could be consumed by other agents in the environment before beeing removed
by the consequent input action� In order to avoid this� we use� for every

name a� all distinct auxiliary names a�� a��
� Unobs to encode� with a sort of

hand�shake protocol� the consumption of data� The idea is that each instance
of hai comes in pair with an extra agent in�a��in�a�out�a�� which is the

unique responsible of its consumption� Every time a process needs to input
a datum hai� it explicitly requires to consume it �emitting ha�

i and waits for

the acknowledgement ha��
i� Formally� we de
ne the encoding ��P �� inductively

on the structure of P as follows�

��hai�� � haijin�a��in�a�out�a�� ����� � �

��P jQ�� � ��P ��j��Q�� ��Pna�� � ��P ��nana�
na��

��X�� � X ��recX�P �� � recX���P ��

��in�a�P �� � out�a��in�a�����P �� ��tfa�a�P �� � t�e�a�in�a���P ��

��out�a�P �� � out�a��in�a��in�a�out�a��j��P ��

In order to prove the non�encodability of L� in L�� we consider the prob�

lem of implementing mechanisms of mutual exclusion between identical agents�
The idea is to consider a generic agent QjQ obtained as the parallel compo�

sition of identical terms� Then� we investigate if the agent have the ability of

blocking the opposite one� We will show that this kind of mutual exclusion

is not implementable in L�� Indeed� every time a process performs a certain

kind of step� the opposite is always able to answer with the same kind of step�

In this way� the computation should diverge or terminate in a state Q�
jQ� that

is still the composition of two identical agents �thus no mutual exclusion is

obtained�

Before presenting the formal proof of this result� we adapt to our setting

Lemma ��� of ���� stating a sort of con�uence property�

Lemma ��� Let Q be an agent such that Q
a

��Q� and Q
a

��Q�� for some

��

Zavattaro

Q�
and Q��

� Then� there exists R such that Q�
a

��R and Q��
a

��R�

Besides this con�uence property� we need also the following lemma stating

that no new data can be produced during a step labeled with 	a�

Lemma ��� Let Q be an agent of L� such that Q
b

��	 � If Q
�a

��Q�
	for some

a
 then also Q�
b

��	 �

We are now able to prove that after a step performed by an agent Q� a

second instance of Q composed in parallel is always able to answer with the

same kind of step�

Lemma ��� Let Q be a program of L�� Then� the agent QjQ is deadlocked

or there exists an agent Q�
such that QjQ��

�Q�
jQ�

	where ��
�
indicates

that two reduction steps are performed
�

Proof� If QjQ is deadlocked the thesis already holds� Otherwise� there exists

R such that QjQ
�

��R with � � � or 	a for some a� It is su�cient to

proceed by case analysis on the last rule applied in order to derive transition

QjQ
�

��R�

The possible rules are ��� ��� and ��� The
rst two cases are treated

similarly to the proof of Theorem ��� of ����� where the con�uence property

of Lemma ��� is used in the case of synchronization �rule ���

In the case of rule �� we have Q
�a

��Q� and Q
a

��	 � By Lemma ����

also Q�
a

��	 � Thus� after the initial step QjQ
�a

��Q�
jQ �or QjQ

�a

��QjQ�

also the other instance of Q can perform its negative test on name a� hence

Q�
jQ

�a

��Q�
jQ� �or QjQ�

�a

��Q�
jQ�� �

Corollary ��� Let Q be a program of L�� Then there exists a computation�

QjQ��
�Q�jQ� ��

� � � � �� �QnjQn ��
� � � �

such that�

�i the computation diverges or

�ii there exists m such that QmjQm is deadlocked�

We are now able to present the non�encodability result�

Theorem ��� There exists no program distribution preserving encoding of

L� in L� that respects the deadlock and divergent behaviour�

Proof� Consider the agent t�e�ajt�e�a of L�� This agent incorporates a

mutual exclusion mechanism between its two components� Indeed� after the

rst step is performed by one of the agents� a
rst instance of hai is avail�

able� the presence of this datum blocks the opposite agent which is testing

the absence of hai� The deadlock and divergent behaviour of this agent is

summarized as follows�

t�e�ajt�e�a � m i	 m � fag and t�e�ajt�e�a ��

��

Zavattaro

��	� t�p�a� b��P
�a

�� hbijP

Table �

Additional axiom for L��

Suppose� by contradiction� the existence of a program distribution encoding

�� �� of L� in L� that preserves the deadlock and divergent behaviour� We have

that� by program distribution preservation�

��t�e�ajt�e�a�� � ��t�e�a�� j ��t�e�a��

Let Q � ��t�e�a��� As QjQ � ��t�e�ajt�e�a�� the following holds�

QjQ � m i	 m � fag by deadlock preservation

QjQ �� by divergence preservation

By Corollary ��� there exists a computation such that�

�i The computation diverges� This leads to the contradiction QjQ ��

�ii The computation terminates in a deadlocked con�guration Q�jQ�� It is

easy to see that Q�jQ� � m� � m� where Q� � m�� Then QjQ � m� � m��

leading to the contradiction m� �m� � fag�

�

� The Test�and�Produce Primitive

In this section we analyze L�� the extension of L� with the new pre
x t�p�a� b

that atomically tests the absence of hai and� if it is not available� produces a
new occurrence of hbi� We
rst present the syntax and semantics of L� and

then analyze its expressivity with respect to L��

��� Syntax and Semantics of L�

The syntax of L� is obtained by extending the set of pre
xes of L� with the

new t�p�a� b�

� ��� in�a j out�a j t�p�a� b

The semantics of L� is de
ned as for L� with the only di	erence that rule

��� of Table � is changed with rule ��� introduced in Table �� This new rule

permits the production of a new instance of hbi instead of hai�

��� On the Expressiveness of L�

In order to prove that L� � L� we
rst observe that L� is trivially encodable in

L� as it corresponds to the sublanguage of L� in which b � a in each use of the

pre
x t�p�a� b� After� we show that there exists no program distribution and

��

Zavattaro

symmetry preserving encoding of L� in L� that respects at least the deadlock

and divergent behaviour�

First of all we need to introduce the notion of symmetry between agents�

De�nition ��� Let P and Q be two agents� They are symmetric 	denoted by

P � Q
 if and only if there exists a corresponding bijection � � Obs � Obs�

such that ��a �� a for any name a� for which �P � Q�

Observe that relation � is symmetric because the renaming function � is

invertible and ���Q � P �

Fact ��� Let P and Q be two symmetric agents with corresponding bijection

�� Then� P
�

�� P �

if and only if Q
����
��Q�

where P �

and Q�

are still symmetric

and ��� is the label obtained by changing each name a appearing in � to ��a�

In the proof presented in the previous section we have observed that the

t�e�a pre
x permits to implement a protocol of mutual exclusion between two

identical agents� In this section we consider the problem of mutual exclusion

between two symmetric agents�

The mutual exclusion was obtained� in the previous section� by means of

a competition on the execution of a t�e�a operation on a particular name a�

In the case of symmetric agents� there cannot be an initial agreement on this

particular name� this follows from the fact that the bijection � in De
nition ���

maps each name a on a di	erent name ��a �i�e� ��a �� a�

Similarly to the previous section we show that given the parallel composi�

tion of two symmetric agents of L�� every time a process performs a certain

kind of step� the opposite is always able to answer with the symmetric one�

Also in this case� the computation should diverge or terminate in a state which

is still the composition of two symmetric agents� This permits to conclude that

the test�and�emit primitive is not enough powerful to ensure an agreement on

the name a to use to realize mutual exclusion by means of t�e�a�

Before formally proving the existence of this particular computation in

which the symmetry is never broken� we need to adapt to L� Lemma ���� In

fact� the test�and�emit primitive of L� permits the instantaneous production

of new data� but only of the same kind of the tested one�

Lemma ��� Let Q be an agent of L� such that Q
b

��	 � If Q
�a

��Q�

	for some

a �� b
 then also Q�

b

��	 �

Lemma ��� Let P and Q be two symmetric agents of L�� Then� the agent

P jQ is deadlocked or there exist two symmetric agents P �

and Q�

such that

P jQ�� �P �jQ�

�

Proof� As in the proof of Lemma ��� where Fact ��� is used to deal with the

symmetry of P and Q instead of their identity�

The most interesting case to consider is the one in which a test�and�emit

operation is executed� We have P jQ
�a

�� P �jQ with P
�a

�� P �

and Q
a

��	 �

��

Zavattaro

Let � be the corresponding bijection for the symmetric agents P and Q� By

Fact ��� we have P
��a�
��	 and Q

���a�
�� The fact that ��a �� a permits to apply

Lemma ���� hence also P
�

��a�
��	 � Thus� agent Q can perform the symmetric

test�and�emit operation testing the absence of ��a� �

Corollary ��� Let P and Q be two symmetric agents of L�� Then there exists

a computation�

P jQ��
�
P�jQ� ��

�
� � � ��

�
P
n
jQ

n
��

�
� � �

such that�

�i the computation diverges or

�ii there exists m such that P
m
jQ

m
	where P

m
and Q

m
are symmetric
 is

deadlocked�

Theorem ��� There exists no program distribution and symmetry preserving

encoding of L� in L� that respects the deadlock and divergent behaviour�

Proof� Consider the term t�p�a� bjt�p�b� a with a� b � Obs� composed by

the parallel composition of two symmetric agents of L��with a corresponding

bijection in which a � b and b � a� The two agents realize a mechanism of

mutual exclusion because after the
rst step is performed by one of the agents�

the opposite cannot proceed because blocked by the new produced datum� The

deadlock and divergent behaviour of the above agent is summarized as follows�

t�p�a� bjt�p�b� a � m i	 m � fag or m � fbg and

t�p�a� bjt�p�b� a ��

Consider the agents P � ��t�p�a� b�� and Q � ��t�p�b� a��� We have that�

��t�p�a� bjt�p�b� a�� � P jQ by program distribution preservation

P � Q by symmetry preservation

At this point� the proof proceeds similarly to the one of Theorem ��� where

Corollary ��� is used instead of Corollary ���� �

� Related Work and Conclusion

In this paper we have investigated the expressiveness of negative test prim�

itives able to verify the absence of data in coordination languages based on

generative communication� We have pointed out a strict hierarchy of expres�

siveness among three typical negative tests�

The comparing criterion we have adopted is inspired by the notion of

uniform encoding preserving a reasonable semantics of ����� Similarities and

di	erences between our criterion and the one of ���� have been already dis�

cussed in Section �� The main result presented in ���� is that the ��calculus

���� is strictly more expressive than its asynchronous fragment ������� It is

��

Zavattaro

interesting to observe that instead of comparing synchrony with asynchrony�

we have compared four asynchronous languages di	erent in the ability of ob�

serving the absence and instantaneously emitting data� Even if we left for

future work the comparison among our di	erent levels of asynchrony and syn�

chronous communication� we have already observed that the leader election

problem in symmetric networks having solution in the synchronous ��calculus

and not in its asynchronous subset� can be solved in our asynchronous lan�

guage L�� Indeed� adapting the de
nition of ���� to our CCS�like setting� we

have that the following agent P is a symmetric network�

P
def
� P�jP�j � � � jP�n���

Pi
def
� t�p�ai� ai���t�p�ai� ai�� � � � t�p�ai� ai��n����out�wi j
Q

j������n��� in�wj�out�wj�out�oj

where � is sum modulo n and
Q

is used as a shorthand for the parallel

composition of a set of agents� Agent P is also an electoral system as all the

agents Pi will agree sooner or later on their leader Pj by emitting their vote

hoji� Indeed� it is not di�cult to see that one and only one of the agents Pj

will produce hwji� this indicates that Pj is the winner of the competition� The

presence of hwji has the e	ect of forcing each agent to vote Pj as leader� by

means of the emission of hoji�

In ��� two possible interpretations for the out operator of Linda are dis�

cussed� the ordered output� that immediately introduces the emitted data in

the shared data space� and the the unordered one� that requires an unpre�

dictable delay before the e	ective rendering of the emitted data� Using a

CCS�like ���� � pre
x� the two di	erent outputs can be modeled as follows�

outo�a�P
�

�� haijP

outu�a�P
�

�� ���haijP

where outo and outu stands for the ordered and the unordered output� respec�

tively� The expressive power of a Linda�like process algebra is investigated

under the two interpretations� surprisingly� the calculus is Turing equivalent

considering the ordered output and not under the unordered one� In this pa�

per we have adopted the ordered output� but it is not di�cult to show that

the same results hold also if we move to the unordered interpretation�

The comparing criterion we have used in this paper has been used also in

���� to prove that Gamma ��� and Linda ���� are incomparable� in the sense

that there exists no program distribution preserving encoding of one language

in the other that respects at least the divergent and deadlock behaviour� To

prove that Gamma is not encodable in Linda� we prove that it is not possible

to embed in Linda the atomic consumption of a multiset of data� On the

other hand� to prove that Linda cannot be encoded in Gamma� the ability of

observing the absence of data �that the Linda inp has plays a basic role�

Brogi and Jacquet ��� use the notion of modular embedding ��� to com�

��

Zavattaro

pare the relative expressiveness of all Linda dialects obtainable taking into

account a subset of the following coordination primitives� tell� get� ask �cor�

responding to the Linda out� in� rd respectively and nask�a �corresponding

to our tfa�a� The comparing criterion they use di	ers from ours for several

aspects� e�g�� they require modularity w�r�t� all the operators and do not ob�

serve the divergent behaviour� Nevertheless� the results they obtain con
rm

our observation that the ability of testing the absence of data increases the

expressiveness of languages� Indeed� they prove that each dialect without the

nask�a primitive is strictly less expressive than the one obtained adding also

this operator� The di	erent comparing criterion they use requires also di	erent

proof techniques� For example� they prove that nask cannot be encoded with

only get and tell operations �the result corresponding to our Theorem ��� by

taking into account modularity with respect to a sequential composition op�

erator P �Q� Instead� we only consider modularity with respect to the parallel

operator�

Acknowledgement

We would like to acknowledge discussions with Farhad Arbab� Frank de Boer�

Marcello Bonsangue� Jan Rutten and all members of the Amsterdam Coor�

dination Group� as also interesting communications with Antonio Brogi and

Jean�Marie Jacquet on di	erences and similarities among criteria for the com�

parison of coordination languages� We are also grateful to Nadia Busi� Roberto

Gorrieri and the anonymous referees for their comments�

References

��� J�P� Ban�atre and D� Le M�etayer� Programming by Multiset Transformation�
Communications of the ACM� ������ ������� �����

�	� F�S de Boer� J�N� Kok� C� Palamidessi� and J�J�M�M� Rutten� Non�Monotonic
Concurrent Constraint Programming� In Proc� International Logic Programming

Symposium� pages �������� The MIT press� �����

��� F�S de Boer� C� Palamidessi� Embedding as a Tool for Language Comparison� On
the CSP Hierarchy� In Proc� Concur���� volume �	� of LNCS� pages �	������
�����

��� G� Boudol� Asynchrony and the ��calculus� Technical Report ��
	� INRIA�
Sophia�Antipolis� ���	�

��� A� Brogi and P� Ciancarini� The Concurrent language Shared Prolog� ACM

Transactions on Programming Languages and Systems� ����������	�� �����

��� A� Brogi and J�M� Jacquet� On the Expressiveness of Linda�like Concurrent
Languages� In Proc� Express���� volume �� of ENTCS� �����

��

Zavattaro

��� N� Busi� R� Gorrieri� and G� Zavattaro� Three Semantics of the Output Operation
for Generative Communication� In Proc� Coordination���� volume �	�	 of LNCS�
pages 	
��	��� �����

��� N� Busi� R� Gorrieri� and G� Zavattaro� On the Turing Equivalence of Linda
Coordination Primitives� In Proc� Express���� volume � of ENTCS� �����

��� N� Busi� R� Gorrieri� and G� Zavattaro� A Process Algebraic View of Linda
Coordination Primitives� Theoretical Computer Science� ��	�	�� �������� �����

��
� N� Busi� R� Gorrieri� and G� Zavattaro� Comparing Three Semantics for Linda�
like Languages� To appear in Theoretical Computer Science�

���� D� Gelernter� Generative Communication in Linda� ACM Transactions on

Programming Languages and Systems� ������
���	� �����

��	� D� Gelernter and N� Carriero� Coordination Languages and their Signi�cance�
Communications of the ACM� ���	������
�� ���	�

���� J�F� Groote� Transition system speci�cations with negative premises�
Theoretical Computer Science� ����	���	��� �����

���� R� Milner� Communication and Concurrency� Prentice�Hall� �����

���� R� Milner� J� Parrow� and D� Walker� A Calculus of Mobile Processes�
Information and Computation� �

��������� ���	�

���� U� Nestmann and B�C� Pierce� Decoding Choice Encodings� In CONCUR����
volume ���� of LNCS� pages �������� Springer� �����

���� K� Honda and M� Tokoro� An Object Calculus for Asynchronous
Communication� In ECOOP���� volume ��	 of LNCS� pages �������� Springer�
�����

���� C� Palamidessi� Comparing the Expressive Power of the Synchronous and the
Asynchronous ��calculus� In Proc� POPL���� pages 	���	��� ACM� �����

���� G� Zavattaro� On the Incomparability of Gamma and Linda� Technical Report
�to appear�� Centrum voor Wiskunde en Informatica� Amsterdam� �����

��

