
Received November 27, 2019, accepted January 3, 2020, date of publication January 23, 2020, date of current version January 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2969050

Transitory Master Key Transport
Layer Security for WSNs
MATTIA GRIOTTI 1, FILIPPO GANDINO 2, (Member, IEEE), AND
MAURIZIO REBAUDENGO 2, (Senior Member, IEEE)
1TecSA s.r.l., 10067 Vigone, Italy
2Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Torino, Italy

Corresponding author: Filippo Gandino (filippo.gandino@polito.it)

ABSTRACT Security approaches in Wireless Sensor Networks (WSNs) are normally based on symmetric
cryptography. Instead of symmetric encryption, some alternative approaches have been developed by using
public-key cryptography. However, the higher computational cost represents a hard limitation to their
use. In this paper, a new key management protocol is proposed. A transitory symmetric key is used to
authenticate nodes in the network during the key establishment. However, pairwise keys are established
using asymmetric cryptography. A theoretical analysis shows that the computational effort required by the
public key cryptosystem is greatly reduced, while the security of the network is increased with respect to
state-of-the-art schemes based on a transitory master key. Moreover, an experimental analysis demonstrates
that this proposed approach can reduce the time spent for key establishment by about 35%.

INDEX TERMS Wireless sensor networks, asymmetric cryptography, key management, Internet of Things.

I. INTRODUCTION
Wireless sensor networks (WSNs) [1] are a well-established
pervasive technology that represents an ideal sensing compo-
nent in the Internet of things (IoT) [2]. They are composed
of low cost and low power devices, called sensor nodes,
which sense the environment, process the collected data and
exchange information through a wireless connection. They
are applied in numerous fields, like industry 4.0 [3], smart
city [4] and air quality monitoring [5].

WSNs share fundamental characteristics with embed-
ded systems, like low power devices with low cost hard-
ware and special purpose applications. According to these
characteristics and to their network system, ad-hoc solu-
tions must be implemented to solve ordinary issues like
power consumption [6], channel allocation [7] and reliabil-
ity [8]. In particular, WSNs are affected by security threads
(e.g., eavesdropping [9] and hardware tampering [10]).

Symmetric cryptography in WSNs is normally preferred
to public cryptography, since it requires a lower computa-
tional effort. However, with symmetric cryptography two
nodes can communicate only if they share a common secret,
i.e. a key. Various key management approaches have been
developed in order to establish and distribute keys in a
WSN [11]. The Plain global key (PGK) represents the basic

The associate editor coordinating the review of this manuscript and

approving it for publication was Gerhard P. Hancke .

security solution. A single global key is used to encrypt all
the communications. This scheme has very low memory
overheads but it also provides a low security level because
all nodes store the common secret. Therefore, if an adversary
compromises a node the entire network is compromised. Full
pairwise key (FPWK) is another basic approach. Also this
scheme is based on key predistribution: before the deploy-
ment the keys are stored in the memories of the nodes.
Additional computation or data exchange are not required.
In this case, each possible link in the network has its own
secret key. Therefore, each node stores a key per node in the
network. The required memory is proportional to the size of
the network, so FPWK can be only applied to small networks.
However, if an adversary compromises a node he/she cannot
use the achieved information to eavesdrop on the communi-
cations among the other nodes.

Within the techniques based on symmetric encryption,
transitory master key represents a well-known solution for
static networks. At deployment each node stores a global
secret that is used to generate pairwise keys. However, after
a small period of time each node deletes the global secret.
In this way, if a node is compromised after the deletion,
the rest of the network is safe. LEAP+ [12] is the main
example of schemes based on this technique.

The communication security within WSNs is based on
symmetric cryptography. Moreover, public key cryptog-
raphy is also considered too expensive to protect the

20304 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1252-2098
https://orcid.org/0000-0001-5581-1159
https://orcid.org/0000-0002-7135-7694
https://orcid.org/0000-0002-4026-687X

M. Griotti et al.: Transitory Master Key TLS for WSNs

key establishment, since the limited computational and power
resources of the nodes clash with the involved computa-
tional overheads. However, public key could simplify the
key management. An example of public key management
scheme is the simplified versions of TLS (Transport layer
security) [13], which is the protocol used on the Internet
to establish secure connections. In this scheme, public key
digital certificates are used for authentication and then the
key establishment is done with key agreement functions
(e.g. Diffie-Hellman).

This paper presents Transitory master key TLS (TMKTLS),
an hybrid protocol based on both symmetric and asymmetric
cryptography. Its main goal is to reduce the computational
requirements for the application of public cryptography in
WSNs. In TMKTLS, a temporary master key, shared by all
nodes, is employed to authenticate the public keys of the
nodes. After an initial time slot, the transitory master key
is deleted and pairwise keys among the nodes are generated
using asymmetric cryptography. This scheme authenticates
the public keys with a message authentication code instead
of a digital certificate; the former operation takes negligible
time compared to the latter, so the overall time required for
key establishment is greatly reduced. If an adversary com-
promises the transitory master key, he/she can only add fake
nodes to the network, while data secrecy is always preserved
by public cryptography. Moreover, these malicious nodes can
be detected by a malicious node detection routine. This kind
of technique has been also used in [14]. Differently from
that approach, TMKTLS is compliant with node adding and
mobile nodes, even if it has better performance with static
networks.

A theoretical analysis shows that the computational effort
required by TMKTLS is greatly lower than standard public
key cryptosystems. The schemes based on transitory master
key have common security limitations related to the possibil-
ity that the transitory master key is compromised. However,
TMKTLS provides a good protection even if the transitory
master key is compromised, since public cryptography still
protects the links from eavesdropping and the malicious node
detection routine allows to identify fake nodes. Moreover,
an experimental analysis on real nodes validates the the-
oretical analysis and demonstrates that this new approach
can decrease the time spent for key establishment up to
a third.

The rest of the paper is organized as follows. In Sect. II
related works are described. Sect. III presents the proposed
key management scheme. In Sect. IV, the proposed approach
is theoretically analyzed and compared with the state-of-the-
art approaches, while in Sect. V, an experimental analysis val-
idates the scheme. Finally, conclusions are drawn in Sect. VI.

II. RELATED WORKS
Many key management schemes based on different
approaches have been presented in literature [15], [16]. In the
following, the most important ones are described.

A. GLOBAL MASTER KEY
Schemes based on the Global Master Key approach use
a unique master key that is shared by all the nodes and
is used to protect all the communications or to provide
security during the pairwise key establishment. The main
approach in this category is Symmetric-key Key Establish-
ment (SKKE) [17], which is the key management scheme
used by ZigBee. In SKKE every node is preloaded with the
master key. To generate a pairwise key between node A and
node B, node A sends a challenge CA, i.e., a random number,
to node B. Node B sends back a message composed by its
identifier IDB, a challengeCB and the message authentication
code computed over a constant k1, IDA, IDB,CA andCB. Then
a keyed hash function with themaster key is executed over the
two IDs and the challenges. The results is used as a common
secret by both the nodes. From this secret the nodes compute
two pairwise keys, one used to sign messages and the other
used for encryption.

B. TRANSITORY MASTER KEY
Also this family of protocols uses a global secret in order to
protect the pairwise key establishment. However, the global
key is deleted after a timeout. The assumption at the base of
this approach is that an adversary cannot compromise a node
in a short period of time. Therefore, by deleting the global key
before a proper timeout the network can be considered safe.

After the deployment, a node has the master key in its
memory. This period is defined initialization phase. After
the deletion of the master key the node starts the working
phase. Without special techniques, it is possible to establish
keys only within the initialization phase, since two nodes
need to share the master key. Therefore, adding new nodes
after the first deployment would be impossible. However, key
management schemes can use specific techniques to provide
the possibility to add new nodes able to establish pairwise
keys with the previously deployed ones.

If an adversary compromises a node and steals the master
key from its memory, he/she can decrypt all the messages
exchanged for the pairwise key establishment. Otherwise,
if an adversary compromises a node after the deletion of the
master key, he/she cannot get advantages for eavesdropping
on the other links in the network.

A critical point is represented by the timeout for the dele-
tion of the master key. If the timeout is too long an adversary
could be able to compromise the master key. Otherwise, if the
timeout is too short the nodes could not be able to establish
all the pairwise keys.

The most important scheme based on a transitory master
key is LEAP+ [12]. This protocol allows the generation of
different types of keys (e.g. a key to exchange messages with
the base station, the pairwise keys, etc.). However, the estab-
lishment of pairwise keys represents the base of the scheme
while all the other keys are derived from these ones.

In [18], the use of a transitory master secret was mixed
with the random distribution of keys. This approach provides
a high level of security, since an adversary needs both the

VOLUME 8, 2020 20305

M. Griotti et al.: Transitory Master Key TLS for WSNs

transitory secret and the correct key to eavesdrop on a link.
However, the computational and communication overheads
are high.

C. PUBLIC-KEY CRYPTOGRAPHY
Some keymanagement schemes use public-key cryptography
to protect the pairwise key establishment. Transport Layer
Security (TLS) represents the basic approach. This protocol
is commonly used on generic computer networks to establish
secure communications. In a typical WSN implementation of
TLS [19], each node has a couple of public and private keys,
a certificate that ensures that they are authentic and the public
key of the administrator. To generate a common pairwise
key, two nodes exchange their certificates and check their
authenticity by using the administrator’s public key. After
the authenticity check, they generate a pairwise key with a
public-key agreement algorithm, like Diffie-Hellman. In the
rest of the paper this scheme is referred to as Simplified TLS
(STLS).

STLS provides a high level of security, since the adver-
saries cannot forge a certificate and they cannot take any
advantage by compromising a node. However, the public-key
operations require a great computational effort. Moreover,
each asymmetric operation executed by a normal node would
be very slow. Therefore, these approaches are often consid-
ered too complex for WSNs.

III. TRANSITORY MASTER KEY TRANSPORT
LAYER SECURITY
This section presents Transitory Master Key Transport Layer
Security (TMKTLS), a key management scheme based on
a transitory master key. The main goal of this scheme is to
achieve most of the benefits of public key cryptography and
transitory master key approaches with the limited resources
available in WSNs. Therefore, TMKTLS is designed to
require lower computational overheads than basic public key
schemes and to provide a better security level than transitory
master key schemes.

In the proposed scheme, the transitory master key is used
for the authentication of the public credentials of the nodes.
Each node demonstrates the authenticity of its identity and
its public key with a message authentication code, which is
indexed with the transitory master key. After a timeout, each
node deletes the transitory master key, so possible adversaries
cannot forge the signatures.

In STLS, the verification of digital signatures requires a
high computational effort, greater than the one required by
key agreement. In TMKTLS, the computation of a message
authentication code requires negligible time, considerably
reducing the computational time needed to authenticate a
node. In transitory master key schemes, if a node is com-
promised before the deletion timeout, the adversary is poten-
tially able to eavesdrop on all the links and to introduce
into the network new nodes that pass any authenticity check.
TMKTLS has the same protection against eavesdropping of
Diffie-Hellman, since it is used to generate the pairwise keys.

FIGURE 1. Proposed scheme.

The introduction of malicious nodes is possible, since the
authentication is based on a global secret, but it can be
detected by using the asymmetric cryptography.

The key establishment of TMKTLS is divided into four
main phases:

• Hello Phase: hello messages are broadcasted by the
nodes to perform the neighboring discovery. The nodes
check the authenticity of the received messages. At the
end of this phase, the transitory master key is deleted;

• Pairwise Phase: each node computes pairwise keys with
each of the authenticated neighboring nodes;

• Acknowledge Phase: acknowledge messages are
exchanged in order to confirm each link;

• Working Phase: the nodes can still establish new pair-
wise keys by using public-key digital signatures instead
of the transitory master key.

Fig. 1 shows an example of the proposed key establish-
ment. In this case, node 1 can communicate with node 0 and 2.
However, node 0 and node 2 cannot communicate directly
since they are too far. The data represented between curly

20306 VOLUME 8, 2020

M. Griotti et al.: Transitory Master Key TLS for WSNs

brackets are stored into the memory of the nodes, while the
ones in square brackets are sent over the wireless channel.

A. NOTATION AND ASSUMPTIONS
The proposed scheme is based on the following assumptions:
there is no deployment knowledge; all nodes are homoge-
neous; nodes can roam into the network and can be added
after the initial deployment; an adversary can eavesdrop on
all the messages, inject packets and replay older messages;
an adversary can compromise a node and obtain all the data
stored in it. After a node is compromised, the adversary has
the total control of that node.

The following symbols are used in the rest of the paper:

• n: number of nodes in the network;
• ix : identifier of a generic node x;
• ex , dx : public and private keys of node x;
• s: transitory master key;
• kx,y: pairwise key between node x and node y;
• cx : digital signature in the public certificate of node x;
• eCA: public key of the network administrator;
• rx : signature of x’s hello message;
• M (): message authentication code function;
• DS(): digital signature;
• KA(): key agreement function;
• ||: concatenation operator.

B. PREDEPLOYMENT PHASE
Before deploying the network, all nodes are preloaded with
initial data. The data assigned to node u are iu, eu, du and s.
Each node also knows the functions M () and KA().

At the boot, a node computes its hello message, which is
composed of iu, eu and a signature corresponding to the mes-
sage authentication code computed over the concatenation of
iu and eu, indexed by s: ru = M (iu||eu, s). Since the hello
message of a node is based on static data, it can be computed
just once.

C. FIRST PHASE: NEIGHBOR DISCOVERY
During the first phase, the nodes look for possible neighbor-
ing nodes, in order to establish secure links. Each node peri-
odically broadcasts an hellomessage in order to communicate
to the other nodes its credentials.

The neighbor discovery phase is composed by µ rounds,
with a duration of th per round. The total duration of the first
phase is Th = µ · th. Each node broadcasts its hello message
once per round. The message is sent at a random instant of
each round, in order to decrease possible collisions.

Node v sends an hello message composed of [iv, ev, rv].
After receiving this message, node u checks the received
signature. If rv == MAC(iv||ev, s), the message is authentic,
since v knows s. Node u saves iv and ev into its memory.
The duration of this phase should be chosen carefully,

depending on the network characteristics. If it is too short,
not all the nodes will be able to establish a pairwise key
with all their neighboring nodes and the network connectivity

decreases. If it is too long, the probability for an adversary to
capture a node and compromise the transitory key increases.

In Fig. 1, node 0 broadcasts its hello message and node 1
receives and verifies its authenticity; then, node 1 and 2 repeat
the same operation. As it can be seen in the µ-th round, if a
certain hello message was already received, it is not verified
again.

D. SECOND PHASE: PAIRWISE KEY ESTABLISHMENT
The goal of the second phase is the establishment of the pair-
wise keys. Then, since the authentication has been completed
in the previous phase, the transitory key is deleted at the
beginning of this phase. Each node computes a pairwise key
per authenticated neighboring node. At the end of the phase
each link will have a unique symmetric key, known only by a
pair of nodes.

The establishment of the pairwise keys is protected by
public key cryptography. TMKTLS is compliant with key
agreement functions based on a Diffie-Hellman key exchange
(e.g. Elliptic Curve Diffie-Hellman, ECDH). These public
key functions allow two devices to generate a common secret,
which can be used as symmetric key. For example, in order
to establish a pairwise key between nodes u and v, node u
computesKA(du, ev) while node v computesKA(dv, eu). Both
the nodes generate the same common secret ku,v.

In many contexts, but in particular for WSNs, Diffie-
Hellman-like functions represent a proper solution, since to
establish a key it is sufficient to know the other party’s public
key and to exchange few messages [20].

In Fig. 1, each node deletes s from its memory and then
computes the pairwise keys for every discovered neighbors
by using KA(). In this case node 0 and 2 just compute the
key with node 1, while node 1 computes both the pairwise
keys.

E. THIRD PHASE: KEY ACKNOWLEDGEMENT
During the third phase, a 2-way acknowledgement is executed
in order to confirm the correct generation of the pairwise
keys. The goal of this phase is to ensure that the nodes can
correctly communicate with each other. The acknowledge-
ment also allows to detect malicious nodes that participated to
the previous phases without the correct credentials. In every
pair of nodes, the one with the lowest identification number
is defined initiator while the other one is defined recipient.
As an example, let’s consider node u as the initiator and node
v as the recipient. The initiator starts the acknowledgment: it
signs its identification number iu with M (iu, ku,v) and sends
this message to the recipient. The recipient answers with iv
signed with M (iv, ku,v). If both u and v correctly verify the
received signatures it means that the pairwise key ku,v was
correctly created.

In the example, node 0 initiates the acknowledgment with
node 1, that responds accordingly; node 1 does the same with
node 2. The message authentication code verification is not
represented in Fig. 1.

VOLUME 8, 2020 20307

M. Griotti et al.: Transitory Master Key TLS for WSNs

F. FOURTH PHASE: KEY ESTABLISHMENT WITHOUT
THE TRANSITORY KEY
When a node is added to the network after the initial deploy-
ment or it is moved, it is unable to establish pairwise keys
with the nodes that have already deleted s. Therefore, a key
establishment among nodes in the working phase is required.
This routine is based on public certificates.

Each node uses its own digital signature cu and the network
administrator’s public key eCA, that is used to verify other
certificates.

First of all, each node in the working phase periodically
broadcasts its discovery message, in the same way as in the
first phase of the protocol. This node becomes the initiator of
the key establishment. Assuming that node u is the initiator,
the discovery message is composed of [iu, eu, cu], where cu
is equal to the digital signature DS(iu||eu, dCA), computed
over the message that has to be sent with the private key
of the certificate authority, that in this case is the network
administrator. If a node that does not share a pairwise keywith
the initiator receives a discovery message, it immediately
checks the received message. Then, if it is authentic, the node
responds with its own certificate and starts to compute the
pairwise key. The answer is sent in unicast, to reduce the
computation done by the remaining nodes in the network.

Then the initiator verifies all the received discovery
messages. For example, it will verify v’s message with
V (iv||ev, cv, eCA), where V () is the complementary function
of DS(); it takes the message and the signature as input
and verifies them against the public key eCA. If the function
succeeds, it means that v is a valid node, so the pairwise key
is computed with the function KA(), as in the second phase.

Finally, each new pairwise key is confirmed with a 2-way
acknowledgment, as in the third phase.

G. MALICIOUS NODE DETECTION
If the transitory key is compromised, an adversary can intro-
duce into the network malicious nodes able to establish keys
with other nodes with s. This possibility is limited, since each
node will recognize as authentic the malicious nodes only for
the short time before deleting s. However, a malicious node
detection routine can identify them.

The general idea is to execute a key establishment without
the transitory key, since only an authentic node can generate
a pairwise key in that way. In order to verify the authenticity
of a suspect node, an inquirer node sends a check message.
This message has the same content of the discovery message
used in the fourth phase. The suspect node checks the received
message and answers with a discovery message. The inquirer
node checks the received message. If the message is valid,
both the nodes compute a shared key with the function KA().
Finally, a 2-way acknowledgment is performed in order to
verify the authenticity of the suspect node.

IV. EVALUATION AND COMPARISON
In this section, the proposed algorithm is analyzed from
the theoretical point of view and compared with other

TABLE 1. Resilience comparison. All the schemes provide the maximum
of the minimum level.

state-of-the-art protocols. The analysis is focused on security,
memory and computation.

A. CONNECTIVITY
The connectivity level is here defined as the probability of
successfully establishing a link with a neighboring node. The
maximum level of connectivity is reached if every node is
able to communicate with all its neighboring nodes. The
minimum, if no node is able to communicate.

LEAP+ can provide the maximum connectivity only if
the neighbor discovery phase is long enough, since a routine
for the establishment of pairwise keys between two nodes
without the transitory key is not present.

FPWK, STLS and TMKTLS guarantee that all links are
created, so the level of connectivity is the maximum. In par-
ticular, in FPWK each node knows the key for each link.
In STLS the asymmetric cryptography allows all the nodes to
establish a pairwise key with any other node. In TMKTLS,
although the nodes could be unable to complete the key
establishment within a too short timeout, they can always
establish the pairwise keys without the transitory key.

B. RESILIENCE
The resilience level is defined as the ability of resisting
to compromised secret material. In particular, the resilience
against eavesdropping is computed according to the proba-
bility that an adversary cannot eavesdrop on a link, while the
resilience against node forgery is identified by the probability
that an adversary cannot pass an authentication check. The
possibility to eavesdrop on the links of the compromised
nodes or to clone the compromised nodes are not considered.
The maximum level of resilience against eavesdropping is
reached if no link can be eavesdropped. The minimum if
all the links can be eavesdropped. The maximum level of
resilience against forgery is reached if all nodes can recognize
the fake nodes. The minimum if all the nodes cannot recog-
nize them. Table 1 shows the level of resilience against eaves-
dropping (eavesdropping rows) and against node forgery
(forgery rows) if an adversary has compromised nodes within
the initialization or the working phases.

FPWK and STLS always provide the maximum level of
resilience. This level is reached since a node does not store
any information useful to find the keys generated by the other
nodes.

In LEAP+, if at least a node is compromised during the
initialization phase all the links could be eavesdropped and

20308 VOLUME 8, 2020

M. Griotti et al.: Transitory Master Key TLS for WSNs

TABLE 2. Recoverability comparison. All the schemes provide the
maximum of the minimum level.

the adversary can forge new nodes able to pass all the authen-
ticity checks. If some nodes are compromised in the working
phase, the level of resilience is maximum.

In TMKTLS, the transitory key is the only secret that can
be stolen from a node in order to attack other parts of the net-
work. Therefore, TMKTLS provides the maximum resilience
during the working phase. During the initialization, the level
of resilience against eavesdropping is maximum, since all
the pairwise keys are protected by asymmetric cryptography.
However, an adversary with the transitory master key can
introduce malicious nodes able to establish a pairwise key
with nodes that still store the transitory key.

C. RECOVERABILITY
The recoverability level is defined as the ability of restoring
secure communication after some compromised secret mate-
rial has been revoked [21]. It can be computed according to
the probability that a link is still safe or a new key can be
established to protect it. The maximum level of recoverability
is reached if every node will be able to communicate with
all its neighboring nodes after revoking the compromised
secret material. The minimum if no node can communicate
after revoking the secret material. Table 2 shows the level of
recoverability if an adversary has compromised nodes within
the initialization or the working phases.

FPWK, STLS and LEAP+ have a level of recoverability
equal to the level of resilience, which is always the maximum
or the minimum. Therefore, FPWK and STLS always provide
the maximum level of recoverabilty, while LEAP+ provides
the maximum if a node is compromised during the working
phase, and the minimum if a node is compromised during the
initialization phase.

If a node is compromised during the working phase,
TMKTLS provides the maximum level of recoverability,
as for the resilience. If a node is compromised during the
Initialization phase, the adversary is able to introduce new
malicious nodes. Nevertheless, the malicious node detection
routine allows to check the authenticity of the nodes and to
revoke the keys used to communicate with them. Therefore,
the maximum level of recoverability is provided.

D. COMPUTATIONAL REQUIREMENTS
The operations involved by the analyzed schemes are shown
in Table 3, where: v represents the verification of a public key
signature, dh represents a shared secret computation using the
Diffie-Hellman scheme, r represents a keyed pseudo-random
function, and m represents a message authentication code or
a hash function.

TABLE 3. Computational requirements comparison.

TABLE 4. Memory requirements comparison.

The most efficient scheme is FPWK, since all the pairwise
keys are preloaded and no operation is required after the
deployment. LEAP+ requires to execute two pseudo-random
functions and a message authentication code in order to
compute the other node individual master key, the pairwise
key and to verify a message. The involved computational
overheads are still low.

In STLS, the operations involved are the verification of
a digital signature and two message authentication codes.
TMKTLS requires a Diffie-Hellman scheme execution and
three message authentication codes. Both in STLS and
TMKTLS, two of the message authentication codes are
needed for the acknowledgement task. Since the computa-
tional overheads of a message authentication code execu-
tion are extremely lower than public key operations, STLS
requires more computational time than TMKTLS, which
requires more time than LEAP+.

E. MEMORY REQUIREMENTS
Table 4 shows the memory required by each scheme in order
to store the secret material. The number of nodes in the
network and the number of nodes in direct communication are
n and v, respectively. The length of secret material are: lk for
the symmetric keys, ld for the private keys, le for the public
keys, ls for the public digital signatures, lm for the message
authentication codes, and la for the temporary key. The length
of the identification number of a node is lid .

FPWK has the largest memory overhead, since each node
stores a key per node of the network, independently from the
density. During the working phase, in all the other schemes,
each node stores the pairwise keyswith its neighboring nodes,
for an area that corresponds to v(lk + lid). Among these
schemes, LEAP+ has the lowest memory overhead, since
each node stores only two keys during the initial phase.
STLS has larger requirements, since each node stores a
pair of asymmetric keys for the communication, the digi-
tal signature and the public key of the certificate authority.
TMKTLS has larger memory requirements than STLS, since
each node stores the samematerial as in STLS plus a message
authentication code signature and the transitory master key.

VOLUME 8, 2020 20309

M. Griotti et al.: Transitory Master Key TLS for WSNs

However, during the working phase, the additional secret
material is deleted.

F. OVERALL COMPARISON
The analyzed schemes are all based on similar assumptions.
They all allow, to some extent, to add nodes after the initial
deployment (only FPWK has some limitations in this area
because it requires unused pairwise keys); they also provide
a high level of security when nodes are compromised during
the working phase of the protocols.

In order to provide a quantitative comparison, the follow-
ing case study is considered (all values are in bytes): lk = 16,
ld = 20, le = 40, ls = 40, lm = 4, la = 48 and lid = 1,;
the limit to the memory size dedicated to the secret material
is 4 KB.

According to the formulas in Table 4, FPWK is compliant
with networks composed by at most 256 nodes, STLS and
TMKTLS with networks with at most 232 nodes in direct
communication and LEAP+ 240 nodes in direct communica-
tion. Therefore, LEAP+, STLS and TMKTLS are compliant
with large networks with high density.

From the computational point of view, FPWK is the
scheme with the lowest requirements. LEAP+ has larger
requirements, but they are still faster than the protocols based
on public key cryptography. TMKTLS has lower require-
ments than STLS, which is the scheme with the largest
requirements.

Although the schemes based on random predistribution
cannot reach the maximum resilience, if some nodes are
compromised during the working phase all the considered
schemes provide a high level of security. In particular in
FPWK, LEAP+, STLS and TMKTLS, an adversary that
compromises a node doesn’t obtain useful information about
other nodes, so he/she cannot eavesdrop on any link or intro-
duce new nodes different from the compromised ones. If
some nodes are compromised during the initialization phase,
in LEAP+ the adversary could eavesdrop on all the links
and introduce new nodes. In TMKTLS, an adversary cannot
eavesdrop on any link. However, he/she could introduce new
nodes able to establish a link with nodes that still store the
transitory key. Nevertheless, these fake nodes will be able to
operate only until a malicious node detection.

For medium to large size WSNs with high density,
TMKTLS represents a suitable key management scheme,
since it provides a high level of security with computational
effort lower than STLS.

V. EXPERIMENTAL ANALYSIS
A prototypical implementation of TMKTLS has been devel-
oped on the TinyOS platform in order to evaluate its
feasibility on the current generation of nodes and verify its
performances. The main goal of this analysis is to com-
pare TMKTLS and STLS, in order to correctly evaluate
the execution times of the proposed protocol; LEAP+ was
not considered because, from the performance point-of-view,
it will always be faster that protocols based on public-key

cryptography. Furthermore, resilience was not considered in
this analysis because it is a static property that does not affect
the experimental comparison.

The prototypical implementation was executed on the
TelosB Tmote Sky IV, a sensor node that mounts a
MSP430 8 MHz microcontroller with 10 KB RAM and a
CC2420 wireless chip with a transmission rate of 250 kbps.
From the software point-of-view, TMKTLS was developed
with the NesC language, a C dialect specifically designed for
TinyOS; the library TinyECCwas used to provide support for
elliptic curve cryptography, in particular for the Elliptic Curve
Diffie-Hellman (ECDH) algorithm.Moreover, Crypto library
was used to for the Multilinear Modular Hashing (MMH),
a fast message authentication code algorithm.

The actual implementation of TMKTLS has some small
differences with the described algorithm that, however, do not
affect the overall analysis. In particular, public and private
key pairs are generated on-line at the node boot-up instead of
being preloaded into the node memory.

An implementation of STLS was also developed in order
to perform the comparison with TMKTLS; these implemen-
tations are very similar: STLS uses a public key digital signa-
ture instead of a message authentication code, that is verified
during the pairwise phase for each of the neighboring nodes.

The focus of this analysis is on the optimization of the
neighbor discovery, in order to reach a high connectivity and
on the execution time of the algorithm, to verify the benefits
with respect to STLS.

A. HELLO PHASE OPTIMIZATION
Optimizing the hello phase means choosing the minimal
duration that guarantees the desired average level of connec-
tivity. Here, connectivity is the ratio between successfully
created links and the total number of possible links among
nodes. Shortening the initial phase also implies a higher
security of the protocol.

The neighbor discovery phase, as explained in section III-C,
is divided into rounds, in which nodes broadcast their hello
messages at random instants. Using probability methods it is
possible to analyze this procedure and compute the average
connectivity:

Cavg =

(
1−

(
1−

(
1− 2

ttx
th

)v−1)µ)2

(1)

where the involved parameters are: ttx as the duration of the
transmission, th as the round duration, v as the number of
neighboring nodes and µ as the number of rounds. In order
to correctly receive a whole message, even partial overlap
with other messages must be avoided. Therefore, in order
to receive the hello message from a node within a round,
the fraction of time in which no other message can be sent is
2 ttxth . Considering that each node sends an hello message per
round, the probability that in a round the hello message from

a node has no collision is
(
1− 2 ttxth

)v−1
. The probability that

the hello message from a node has at least a collision in every

20310 VOLUME 8, 2020

M. Griotti et al.: Transitory Master Key TLS for WSNs

FIGURE 2. Neighbor discovery minimum duration of TMKTLS according to
the target connectivity.

TABLE 5. TMKTLS neighbor discovery final settings according to the
number of neighboring nodes.

round is
(
1−

(
1− 2 ttxth

)v−1)µ
. The final square operation is

required since both the involved nodes have to successfully
receive the reciprocal message. In order to verify the pro-
posed formula, a in-house simulator was developed in Python
programming language. The tests were run 30 times with
random parameters, each case was simulated 106 times and,
on average, the difference with the formula was below 1%.

Using (1), it is possible to obtain, through a simple lookup
table, the best values of th and µ for a given ttx , v and the
desired Cavg.
Figure 2 shows the minimal neighbor discovery duration

given the number of neighboring nodes, for different target
connectivity levels; the transmission time was set to 3.2 ms,
that corresponds to the time required by a TelosB sensor
node to send 100 bytes. Even for more than 250 nodes,
the minimum neighbor discovery duration is about 18 s; if the
target connectivity is lowered to 0.95, the duration becomes
about 12 s. This shows that, even for high density networks,
the initial phase is short, so the time window in which the
protocol is vulnerable is small. The number of neighboring
nodes v depends on the network density; for instance, if the
density is 1 (i.e. each node is able to directly communicate
with every other node), v is equal to the number of nodes in
the network.

These optimizations were used for the analysis of the exe-
cution time of TMKTLS, in order to minimize the discovery
phase. A target connectivity of 0.99 was set, and ttx was set
to 2.33 ms, that is the transmission time of the hello message
(73 B) on the TelosB sensor node. Table 5 shows the values

FIGURE 3. Total execution time.

used for the TMKTLS discovery phase, for different number
of nodes. They were obtained with the method explained in
this section; the actual round duration was rounded up to an
integer number for implementation reasons.

B. EXECUTION TIME ANALYSIS
Figure 3 shows the total execution time of TMKTLS and
STLS (neighbor discovery, pairwise and acknowledge phase),
with a network with a number of nodes from 4 to 16, adding
2 nodes each time; the target connectivity was set to the
maximum, so that each node is able to communicate with
every other node in the network. The values in this section
are the average execution time over 5 experiments for each
number of nodes.

The neighbor discovery phase of TMKTLS was optimized
with the values reported in table 5, while STLS uses the same
approach but with different values, that are due to a longer
hello message.

The pairwise phase may have a variable duration on dif-
ferent nodes because of an intrinsic variability of the ECDH
algorithm (on TelosB motes, 2971± 33.9 ms). This requires
that the acknowledgment phase is long enough to allow all
nodes to finish at different instants but still have enough
time to perform all the acknowledgments. Because of this,
the acknowledgment phase duration was set to a value that is
proportional to the ECDHvariability and the number of nodes
plus a fixed time; in general it goes from 5 to 8 seconds.

As we can see, TMKTLS execution time is drastically
lower than STLS, for any number of nodes. The ratio between
the two slopes is 0.35; this means that TMKTLS has an
execution time that is about 35% of STLS. This result is
mainly due to the pairwise phase duration, which is longer
in STLS; for each neighbor node, in TMKTLS one ECDH
computation is done, while in STLS one digital signature
verification and one ECDH are executed. Considering that
the average ECDH execution is of 2971 ms, while verifying
a certificate takes 5889 ms, if we compute 2971 / (5889 +
2971), the result equal to 0.34 confirms the previous analysis.
The duration is extremely linear with respect to the number
of nodes for both TMKTLS and STLS; this is because all the
three phases of the algorithms are dependent on the network
density.

VOLUME 8, 2020 20311

M. Griotti et al.: Transitory Master Key TLS for WSNs

VI. CONCLUSION
In this paper, a new key management scheme for WSNs,
TMKTLS, has been presented. It is based on a hybrid
approach, in which a transitory master key is used to authen-
ticate nodes in the network, while pairwise keys are created
using public cryptography. The main benefits of TMKTLS
are the lower computational overheads with respect to
TLS-based approaches, and a higher level of resilience with
respect to transitory master key schemes.

A comparative theoretical and experimental analysis
showed that TMKTLS provides good security properties and
that its computational overheads are compliant with real
WSNs. Therefore, TMKTLS can be considered a valuable
solution, especially for WSNs with strict security constraints.

As a future work, the proposed approach will be texted on
a larger network.

REFERENCES
[1] M. T. Lazarescu and L. Lavagno, ‘‘Wireless sensor networks,’’ in Hand-

book of Hardware/Software Codesign. Berlin, Germany: Springer, 2017,
pp. 1–42.

[2] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, ‘‘Internet of
Things security: A survey,’’ J. Netw. Comput. Appl., vol. 88, pp. 10–28,
Jun. 2017.

[3] Y. Luo, Y. Duan, W. Li, P. Pace, and G. Fortino, ‘‘A novel mobile and hier-
archical data transmission architecture for smart factories,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 8, pp. 3534–3546, Aug. 2018.

[4] W. Lu, Y. Gong, X. Liu, J. Wu, and H. Peng, ‘‘Collaborative energy and
information transfer in green wireless sensor networks for smart cities,’’
IEEE Trans. Ind. Informat., vol. 14, no. 4, pp. 1585–1593, Apr. 2018.

[5] A. Velasco, R. Ferrero, F. Gandino, B. Montrucchio, and M. Rebaudengo,
‘‘A Mobile and Low-Cost system for environmental monitoring: A case
study,’’ Sensors, vol. 16, no. 5, p. 710, May 2016.

[6] M. Collotta, G. Scata, S. Tirrito, R. Ferrero, andM. Rebaudengo, ‘‘A paral-
lel fuzzy scheme to improve power consumption management in Wireless
Sensor Networks,’’ in Proc. IEEE Emerg. Technol. Factory Autom. (ETFA),
Sep. 2014, pp. 1–4.

[7] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, ‘‘Distributed channel allocation
protocols for wireless sensor networks,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 9, pp. 2264–2274, Sep. 2014.

[8] Z. Ruan, H. Luo, and Z. Chen, ‘‘Improving reliability of erasure codes-
based storage paradigm under correlated failures for wireless sensor net-
works,’’ Int. J. Commun. Syst., vol. 29, no. 5, pp. 992–1011, 2016.

[9] Y. Zhang, Y. Shen, H. Wang, J. Yong, and X. Jiang, ‘‘On secure wire-
less communications for IoT under eavesdropper collusion,’’ IEEE Trans.
Autom. Sci. Eng., vol. 13, no. 3, pp. 1281–1293, Jul. 2016.

[10] A. K. Mishra and A. K. Turuk, ‘‘A comparative analysis of node replica
detection schemes in wireless sensor networks,’’ J. Netw. Comput. Appl.,
vol. 61, pp. 21–32, Feb. 2016.

[11] C.-Y. Chen and H.-C. Chao, ‘‘A survey of key distribution in wireless
sensor networks,’’ Secur. Commun. Netw., vol. 7, no. 12, pp. 2495–2508,
Dec. 2014.

[12] S. Zhu, S. Setia, and S. Jajodia, ‘‘LEAP+ Efficient security mechanisms
for large-scale distributed sensor networks,’’ ACM Trans. Sensor Netw.,
vol. 2, no. 4, pp. 500–528, 2006.

[13] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, document 5246, Internet Engineering Task Force, 2008.

[14] M. Griotti, F. Gandino, and M. Rebaudengo, ‘‘Mixed public and secret-
key cryptography for wireless sensor networks,’’ in Proc. 10th Int. Conf.
Mobile Comput. Ubiquitous Netw. (ICMU), Oct. 2017, pp. 1–6.

[15] O. Cheikhrouhou, ‘‘Secure group communication in wireless sensor
networks: A survey,’’ J. Netw. Comput. Appl., vol. 61, pp. 115–132,
Feb. 2016.

[16] X. He, M. Niedermeier, and H. De Meer, ‘‘Dynamic key management in
wireless sensor networks: A survey,’’ J. Netw. Comput. Appl., vol. 36, no. 2,
pp. 611–622, Mar. 2013.

[17] ZigBee Specification Document 053474r20, ZigBee Alliance Standard,
2012.

[18] F. Gandino, B. Montrucchio, and M. Rebaudengo, ‘‘Key
management for static wireless sensor networks with node adding,’’
IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1133–1143,
May 2014.

[19] S. K. Sahoo and M. N. Sahoo, An Elliptic-Curve-Based Hierarchical
Cluster Key Management in Wireless Sensor Network India, New Delhi:
Springer, 2014, pp. 397–408.

[20] H. Wang, B. Sheng, and Q. Li, ‘‘Elliptic curve cryptography-based access
control in sensor networks,’’ Int. J. Secur. Netw., vol. 1, no. 3/4, p. 127,
2006.

[21] F. Gandino and A. Servetti, ‘‘Key recoverability in wireless sensor net-
works,’’ IEEE Access, vol. 7, pp. 164407–164417, 2019.

MATTIA GRIOTTI received the B.S. and M.S.
degrees in computer engineering from the Politec-
nico di Torino, in 2014 and 2016, respectively.
He is currently a Software Engineer with TecSA
s.r.l., where he is developing real-time embedded
C++ software.

FILIPPO GANDINO (Member, IEEE) received
the M.S. and Ph.D. degrees in computer engineer-
ing from the Politecnico di Torino, in 2005 and
2010, respectively. He is currently an Associate
Professor with the Dipartimento di Automatica e
Informatica, Politecnico di Torino. His research
interests include ubiquitous computing, RFID,
WSNs, security and privacy, network modeling,
and quantum computing.

MAURIZIO REBAUDENGO (Senior Member,
IEEE) received the M.S. degree in electronics
and the Ph.D. degree in computer engineering
from the Politecnico di Torino, Italy, in 1991 and
1995, respectively. He is currently a Full Pro-
fessor with the Dipartimento di Automatica e
Informatica, Politecnico di Torino. His research
interest includes ubiquitous computing and test-
ing and dependability analysis of computer-based
systems.

20312 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORKS
	GLOBAL MASTER KEY
	TRANSITORY MASTER KEY
	PUBLIC-KEY CRYPTOGRAPHY

	TRANSITORY MASTER KEY TRANSPORT LAYER SECURITY
	NOTATION AND ASSUMPTIONS
	PREDEPLOYMENT PHASE
	FIRST PHASE: NEIGHBOR DISCOVERY
	SECOND PHASE: PAIRWISE KEY ESTABLISHMENT
	THIRD PHASE: KEY ACKNOWLEDGEMENT
	FOURTH PHASE: KEY ESTABLISHMENT WITHOUT THE TRANSITORY KEY
	MALICIOUS NODE DETECTION

	EVALUATION AND COMPARISON
	CONNECTIVITY
	RESILIENCE
	RECOVERABILITY
	COMPUTATIONAL REQUIREMENTS
	MEMORY REQUIREMENTS
	OVERALL COMPARISON

	EXPERIMENTAL ANALYSIS
	HELLO PHASE OPTIMIZATION
	EXECUTION TIME ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	MATTIA GRIOTTI
	FILIPPO GANDINO
	MAURIZIO REBAUDENGO

