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Abstract Weextend the capabilities ofMixSim, a frameworkwhich is useful for eval-
uating the performance of clustering algorithms, on the basis ofmeasures of agreement
between data partitioning and flexible generation methods for data, outliers and noise.
The peculiarity of the method is that data are simulated from normal mixture distribu-
tions on the basis of pre-specified synthesis statistics on an overlapmeasure, defined as
a sum of pairwise misclassification probabilities. We provide new tools which enable
us to control additional overlapping statistics and departures from homogeneity and
sphericity among groups, together with new outlier contamination schemes. The out-
put of this extension is a more flexible framework for generation of data to better
address modern robust clustering scenarios in presence of possible contamination. We
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also study the properties and the implications that this newway of simulating clustering
data entails in terms of coverage of space, goodness of fit to theoretical distributions,
and degree of convergence to nominal values. We demonstrate the new features using
our MATLAB implementation that we have integrated in the Flexible Statistics for
Data Analysis (FSDA) toolbox for MATLAB. WithMixSim, FSDA now integrates in
the same environment state of the art robust clustering algorithms and principled rou-
tines for their evaluation and calibration. A spin off of our work is a general complex
routine, translated from C language toMATLAB, to compute the distribution function
of a linear combinations of non central χ2 random variables which is at the core of
MixSim and has its own interest for many test statistics.

Keywords MixSim · FSDA · Synthetic data · Mixture models · Robust clustering

Mathematics Subject Classification 62H30 · 62F35

1 Introduction

The empirical analysis and assessment of statistical methods require synthetic data
generated under controlled settings and well defined models. Under non-asymptotic
conditions and in presence of outliers the performances of robust estimators for mul-
tiple regression or for multivariate location and scatter may strongly depend on the
number of data units, the type and size of the contamination and the position of the
outliers.

For example, Riani et al. (2014) have shown how the properties of the main robust
regression estimators (the parameter estimates, their variance and bias, the size and
power curves for outlier detection) vary as the distance between the main data and
the outliers, initially remote, decreases. The framework is parametrised by a measure
of overlap λ between the two groups of data. Then, a theoretical overlapping index
is defined as the probability of intersection between the cluster of outliers and a strip
around the regression plane where the cluster of “good” data resides. An empirical
overlap index is computed accordingly by simulation. The left panel of Fig. 1 shows
examples from Riani et al. (2014) of cluster pairs generated under this parametrised
overlap family and used to show how smoothly the behavior of robust regression
estimators change with the overlap parameter λ.

More in general, to address realistic multivariate scenarios, much more complex
cluster structures, possibly contaminated by different kind of outliers, are required.
Typically, the data are generated by specifying directly the groups location, scatter and
pairwise overlap, but this approach can be laborious and time consuming even in the
simple bivariate case. Consider for example the M5 dataset in the right panel of Fig. 1
proposed by Garcia-Escudero et al. (2008) for assessing some trimming-based robust
clustering methods. The data are obtained from three normal bivariate distributions
with fixed centers but different scales and proportions. One of the components strongly
overlaps with another one. A 10% background noise is added uniformly distributed
in a rectangle containing the three mixture components in an ad hoc way to fill the
bivariate range of simulated data. This configuration was reached through careful
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Fig. 1 Left typical cluster pairs for different overlap parameter values λ, simulated in the regression
framework proposed by Riani et al. (2014); the parallelogram defines an empirical overlapping region.
Right the more complex M5 dataset of Garcia-Escudero et al. (2008), simulated by careful selection of
the mixture model parameters (β = 8 and (a, b, c, d, e, f ) = (1, 45, 30, 15,−10, 15) in Eqs. (1) and (2)
respectively, with proportions chosen so that the first cluster size is half the size of clusters two and three;
uniformly distributed outliers are added in the bounding box of the data)

choice of six parameters for the groups covariance matrices (Eq. 2), to control the
differences between their eigenvalues and therefore the groups scales and shapes, and
a parameter (together with its opposite) for the groups centroid (Eq. 1), to specify how
strongly the clusters should overlap.

μ1 = (0, β) μ2 = (β, 0) μ3 = (−β,−β) (1)

�1 =
(
1 0
0 a

)
�2 =

(
b 0
0 c

)
�3 =

(
d e
e f

)
(2)

Small values of β produce heavily overlapping clusters, whereas large values increase
their separation. In v > 2 dimensions, Garcia-Escudero et al. (2008) simply set the
extra v − 2 elements of the centroids to 0, the diagonal elements of the covariance
matrices to 1 and the off-diagonal elements to 0. Popular frameworks for multivariate
normal mixture models that follow this data generation approach include EMMIX
(McLachlan and Peel 1999) and MIXMOD (Biernacki et al. 2006).

There are therefore two general approaches to simulate clustered data, one where
the separation and overlap between clusters are essentially controlled by the model
parameters, like in Garcia-Escudero et al. (2008), and another where, on the contrary,
a pre-specified nominal overlap level determines the model parameters, as in Riani
et al. (2014) in the context of multiple outlier detection.We have adopted and extended
an overlap control scheme of the latter type called MixSim, by Maitra and Melnykov
(2010). InMixSim, samples are generated fromnormalmixture distributions according
to a pre-specifiedoverlap defined as a sumofmisclassification probabilities, introduced
in Sect. 3. The approach is flexible, applies in any dimension and is applicable to
many traditional and recent clustering settings, reviewed in Sect. 2. Other frameworks
specifically conceived for overlap control are ClusterGeneration (Qiu and Joe
2006) and OCLUS (Steinley and Henson 2005), which have however some relevant
drawbacks. ClusterGeneration is based on a separation index defined in terms of
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cluster quantiles in the one-dimensional projections of the data space. The index is
therefore simple and applicable to clusters of any shape but, as it is well known, even
in the bi-dimensional case conclusions taken on the basis of projections can be partial
and even misleading. OCLUS can address only three clusters overlap at the same time,
has limitations on generating groups with different correlation structures and, finally,
is no longer available as software package.

This paper describes three types of contributions that we have given to theMixSim
framework, computational, methodological and experimental.

First of all, we have ported theMixSim R package, including the long and complex
C code at the basis of the misclassification probabilities estimation, to the MATLAB
FSDA toolbox of Riani et al. (2012). Flexible Statistics for Data Analysis (FSDA) is a
statistical library providing a rich variety of robust and computationally efficient meth-
ods for the analysis of complex data, possibly affected by outliers and other sources
of heterogeneity. A challenge of FSDA is to grant outstanding computational per-
formances without resorting to compiled of parallel processing deployments, which
would sacrifice the clarity of our open source codes. With MixSim, FSDA now inte-
grates in the same environment several state of the art (robust) clustering algorithms
and principled routines for their evaluation and calibration. The only other integrated
tool, similar in aim and purpose but at some extent different in usability terms, is CARP,
also by the MixSim authors (Melnykov and Maitra 2011): being a C-package based
on the integration of user-provided clustering algorithms in executable form, CARP
has the shortcoming to require much more familiarity of the user with programming,
compilation and computer administration tasks.

Wehave introduced threemethodological innovations (Sect. 4). Thefirst is about the
overlap control. In the original MixSim formulation, the user can specify the desired
maximum and/or average overlap values for k groups in v dimensions. However,
given that very different clustering scenarios can produce the same value of maximum
and/or average overlap, we have extended the control of the generated mixtures to the
overlapping standard deviation. We can now generate overlapping groups by fixing
up to two of the three statistics. This new feature is described in Sect. 4.1. The sec-
ond methodological contribution relates to the control of the cluster shape. We have
introduced a new constraint on the eigenvalues of the covariance matrices in order to
control the ratio among the lengths of the ellipsoids axes associated with the groups
(i.e. departures from sphericity) and the relative cluster sizes. This newMixSim feature
allows us to simulate data which comply with the TCLUSTmodel of Garcia-Escudero
et al. (2008). The new constraint and its relation with the maximum eccentricity for all
group covariance matrices, already in the MixSim theory, are introduced in Sects. 2
and 3; then, they are illustrated with examples from FSDA in Sect. 4.2.

Our third contribution consists in providing new tools for either contaminating
existing datasets or adding contamination to a mixture simulated with pre-specified
overlap features. These newcontamination schemes,which range fromnoise generated
from symmetric/asymmetric distributions to component-wise contamination, passing
through point mass contamination, are detailed in Sect. 4.3.

Our experimental contributions, summarized in Sect. 5 and detailed in the supple-
mentary material, focus on the validation of the properties of the new constraints, on
goodness of fit to theoretical distributions and on degree of coverage of the parameter
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space. More precisely, we show by simulation that our new constraints give rise to
clusters with empirical overlap consistent with the nominal values selected by the
user. Then we show that datasets of different clustering complexities typically used
in the literature (e.g. the M5 dataset of Garcia-Escudero et al. (2008)) can be easily
generated with MixSim using the new constraints. We also investigate the extent to
which the hypothesis made by Maitra and Melnykov (2010) about the distribution of
pairwise overlaps holds. A final experimental exercise tries to answer an issue left open
by the MixSim theory, which is about the parameter space coverage. More precisely,
we investigate if different runs for the same pre-specified values of the maximum,
average and (now) standard deviation of overlap lead to configuration parameters that
are essentially different.

In “Appendix 1” we describe a newMATLAB function to compute the distribution
function of a linear combination of non central χ2 random variables. This routine is
at the core of MixSim and was only available in the original C implementation of his
author. However, given the relevance of this routine also in other contexts (see, e.g.,
Lindsay 1995; Cerioli 2002), we have created a stand alone function which extends
the MATLAB existing routines. In “Appendix 2” we discuss the time required to run
our open code MATLAB implementation in relation to the R MixSim package which
largely relies on compiled C code.

2 Model-based (robust) clustering

Our interest on methods for simulating clustered data under well defined probabilistic
models and controlled settings is naturally linked to the model-based approach to
clustering, where data x1, . . . , xn are assumed to be a random sample from k sub-
populations defined by a v-variate density φ(·; θ j ) with unknown parameter vectors
θ j , for j = 1, . . . , k. It is customary to distinguish between two frameworks for
model-based clustering, depending on the type of membership of the observations to
the sub-populations (see e.g. McLachlan 1982):

– Themixture modeling approach, where there is a probabilityπ j that an observation
belongs to a mixture component (π j ≥ 0; ∑k

j=1 π j = 1). The data are therefore

assumed to come from a distribution with density
∑k

j=1 π jφ(·; θ j ), which leads
to the (mixture) likelihood

n∏
i=1

⎡
⎣ k∑

j=1

π jφ(xi ; θ j )

⎤
⎦ . (3)

In this framework each observation is naturally assigned to the cluster to which
it is most likely to belong a posteriori, conditionally on the estimated mixture
parameters.

– The “Crisp” clustering approach, where there is a unique classification of each
observation into k non-overlapping groups, labeled as

R1, . . . , Rk .
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Assignment is based on the (classification) likelihood (e.g. Fraley and Raftery
(2002) or McLachlan and Peel (2004)):

k∏
j=1

∏
i∈R j

φ(xi ; θ j ). (4)

Traditional clusteringmethods are based on Gaussian distributions, so that φ(·; θ j ),
j = 1, . . . , k, is the multivariate normal density with parameters θ j = (μ j ;� j ) given
by the cluster meanμ j and the cluster covariance matrix� j : see, e.g., Eqs. (1) and (2).
This modeling approach often is too simplistic for real world applications, where data
may come fromnon-elliptical or asymmetric families andmay contain several outliers,
either isolated or intermediate between the groups. Neglecting these complications
may lead to wrong classifications and distorted conclusions on the general structure of
the data. For these reasons, somemajor recent developments ofmodel-based clustering
techniques have been towards robustness (Garcia-Escudero et al. 2010; Ritter 2014).

In trimmed clustering (TCLUST) (Garcia-Escudero et al. 2008), the popular robust
clustering approach that we consider in this work, the “good” part of the data con-
tributes to a likelihood equation that extends the classification likelihood (4) with
unknown weights π j to take into account the different group sizes:

k∏
j=1

∏
i∈R j

π jφ(xi ;μ j , � j ). (5)

In addition, in order to cope with the potential presence of outliers, the cardinality of⋃k
j=1 R j is smaller than n and it is equal to �n(1 − α)]�. That is, a proportion α of

the sample which is associated with the smallest contributions to the likelihood is not
considered in the objective function and in the resulting classification. In our FSDA
implementation of TCLUST, it is possible to choose between Eqs. (3), (4) and (5)
together with the trimming level α.

Without constraints on the covariance matrices the above likelihood functions can
easily diverge if, even for a single cluster j , during the optimization process det(�̂ j )

becomes very small. As a result, spurious (non-informative) clusters may occur. Tradi-
tionally, constraints are imposed on the kv, 12kv(v +1) and (k −1) model parameters,
associated respectively to allμ j ,� j and π j , on the basis of the well known eigenvalue
decomposition, proposed in the mixture modeling framework by Banfield and Raftery
(1993). TCLUST, in each step of the iterative trimmed likelihood optimization proce-
dure, imposes the constraint that the ratio between the largest and smallest eigenvalue
of the estimated covariance matrices of the k groups �̂ j , j = 1, . . . , k, does not
exceed a predefined maximum eccentricity constant, say etclust ≥ 1:

max j d1 j

min j dv j
≤ etclust , (6)

where d1 j ≥ d2 j ≥ . . . ≥ dv j are the ordered eigenvalues of the covariance matrix of
group j , j = 1, . . . , k. Clearly, if the ratio of Eq. (6) reduces to 1 we obtain spheri-
cal clusters (i.e. the trimmed k-MEANS solution). The application of the restriction
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involves a constrained minimization problem cleverly solved by Fritz et al. (2013) and
now implemented also in FSDA.

Recently, Garcia-Escudero et al. (2014) have specifically addressed the problem
of spurious solutions and how to avoid it in an automatic manner with appropriate
restrictions. In stressing the pervasiveness of the problem, they show that spurious
clusters can occur evenwhen the likelihood optimization is applied to artificial datasets
generated from the known probabilistic (mixture) model of the clustering estimator
itself. This motivates the need of data simulated under the same restrictions that are
assumed in the clustering estimation process and, thus, the effort we made to extend
the TCLUST restriction (6) to the MixSim simulation environment.

3 Simulating clustering data with MIXSIM

MixSim generates data from normal mixture distributions with likelihood (3) accord-
ing to pre-specified synthesis statistics on the overlap, defined as sum of the
misclassification probabilities. The goal is to derive the mixture parameters from the
misclassification probabilities (or overlap statistics). This section is intended to give
some terms of reference for the method in order to better understand the contribution
that we give. The details can be found in Maitra and Melnykov (2010) and, for its R
implementation, in Melnykov et al. (2012).

Themisclassification probability is a pairwisemeasure definedbetween twoclusters
i and j (i �= j = 1, . . . , k), indexed by φ(x;μi , �i ) and φ(x;μ j , � j ), with proba-
bilities of occurrence πi and π j . It is not symmetric and it is therefore defined for the
cluster j with respect to the cluster i (i.e. conditionally on x belonging to cluster i):

w j |i = Pr [πiφ(x;μi , �i ) < π jφ(x;μ j , � j )]. (7)

We have that w j |i = wi | j only for clusters with same covariance matrix �i = � j and
same occurrence probability (or mixing proportion) πi = π j . As in general w j |i �=
wi | j , the overlap between groups i and j is defined as sum of the two probabilities:

wi j = w j |i + wi | j i, j = 1, 2, . . . , k (8)

In theMixSim implementation1, the matrix of the misclassification probabilities w j |i
is indicated with OmegaMap. Then, the average overlap, indicated with BarOmega,
is the sum of the off-diagonal elements of OmegaMap divided by k(k − 1)/2, and
the maximum overlap, MaxOmega, is maxi �= j wi j . The central result of Maitra and
Melnykov (2010) is the formulation of the misclassification probability w j |i in terms
of the cumulative distribution function of linear combinations of v independent non-
central χ2 random variables Ul and normal random variables Wl . The starting point is
matrix� j |i defined as�

1/2
i �−1

j �
1/2
i . The eigenvalues and eigenvectors of its spectral

decomposition are denoted respectively as λl and γl , with l = 1, . . . , v. Then, we have

1 In portingMixSim to the MATLAB FSDA toolbox, we have rigorously respected the terminology of the
original R and C codes.
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ω j |i = PrNp(μi ,�i )

⎡
⎢⎢⎣

v∑
l=1

l:λl �=1

(λl − 1)Ul + 2
v∑

l=1
l:λl=1

δl Wl

≤
v∑

l=1
l:λl �=1

λlδ
2
l

λl − 1
−

v∑
l=1

l:λl=1

δ2l + log
π2

j |�i |
π2

i |� j |

⎤
⎥⎥⎦ (9)

with δl = γ
′
l �

−1/2
i (μi − μ j ).

Note that, when all λl = 1, ω j |i reduces to a combination of independent normal
distributions Wl = N (0, 1). On the other hand, when all λl �= 1, ω j |i is only based on
the non-central χ2-distributions Ul , with one degree of freedom and with centrality
parameter λ2l δ

2
l /(λl − 1)2. The computation of the linear combination of non-central

χ2-distributions has no exact solution and requires the AS 155 algorithm of Davies
(1980), which involves the numerical inversion of the characteristic function (Davies
1973). Computationally speaking, this is the more demanding part of MixSim. In the
appendices we give the details of our MATLAB implementation of this routine.

To reach a pre-specified maximum or average level of overlap, the idea is to inflate
or deflate the covariance matrices of groups i and j by multiplying them by a positive
constant c. InMixSim, this is done by the functionFindC, which searches the constant
in intervals formed by positive or negative powers of 2. For example, if the first interval
is [0 1024], then if the new maximum overlap found using c = 512 is smaller than
the maximum required overlap, then the new interval becomes [512 1024] (i.e. c
has to be increased and the new candidate is c = (512 + 1024)/2), else the new
interval becomes [0 512] (i.e. c has to be decreased and the new candidate is c =
(0 + 512)/2).

So, the mixture model used to simulate data by controlling the maximum or the
average overlap between the mixture components is reproduced by MixSim in three
steps:

1. First of all, the occurrence probabilities (mixing proportions) are generated in
[0 1] under user-specified constraints and the obvious condition

∑k
j π j = 1;

the cluster sizes are drawn from a multinomial distribution with such occurrence
probabilities. The mean vectors of the mixture model μ j (giving rise to the cluster
centroids) are generated independently and uniformly from a v-variate hyper-
cube within desired bounds. Random covariance matrices are initially drawn from
a Wishart distribution. In addition, restriction (10) is applied to control cluster
eccentricity. This initialization step is repeated if these mixture model parameters
bring to an asymptotic average (or maximum) overlap, computed using limiting
expressions given in Maitra and Melnykov (2010), larger than the desired average
(or maximum) overlap.

2. Equation (9) is used to estimate the pairwise overlaps and the corresponding
BarOmega (or MaxOmega).

3. If BarOmega (or MaxOmega) is close enough to the desired value we stop and
return the final mixture parameters, otherwise the covariance matrices are rescaled
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(inflated/deflated) and step 2 is repeated; for heterogeneous clusters, it is possible
to indicate which clusters participate to the inflation/deflation.

To control simultaneously themaximumor average overlap levels,MixSimfirst applies
the above algorithm with the maximum overlap constraint. Then, it keeps fixed the
two components with maximum overlap and applies the inflation/deflation process to
the other components to reach the average overall overlap. Note that not every com-
bination of BarOmega and MaxOmega can be reached: restrictions are BarOmega
≤ MaxOmega, and MaxOmega ≤ k(k − 1)/2· BarOmega.

To avoid degeneracy of the likelihood function (3), eigenvalue constraints are con-
sidered also in MixSim, but the control of an eccentricity measure, say emixsim , is
done at individual mixture component level and only in the initial simulation step. By
using the same notation as in (6), we thus have that for all �̂ j

√
1 − dv j

d1 j
= e j ≤ emixsim . (10)

Therefore, differently from (6), inMixSimonly the r covariancematriceswhichviolate
condition (10) are independently shrunk so that enew

j1
= enew

j2
= . . . enew

jr
= emixsim

being j1, j2, . . . jr the indexes of the matrices violating (10).

4 MIXSIM advances in FSDA

We now illustrate the two main new features introduced with the MATLAB imple-
mentation of MixSim distributed with our FSDA toolbox. The first is the control of
the standard deviation of the k(k − 1)/2 pairwise overlaps (that we call StdOmega),
which is useful to monitor the variability of the misclassification errors. This case
was not addressed in the general framework of Maitra and Melnykov (2010) even if
its usefulness was explicitly acknowledged in their paper, together with the difficulty
of the related implementation. In fact, in order to circumvent the problem, in pack-
age CARP Melnykov and Maitra (2011, 2013) included a new generalized overlap
measure meant to be an alternative to the specification of the average or the maxi-
mum overlap. The performance of this alternative measure has yet to be studied under
various settings.

The second is the restrfactor option which is useful not only to avoid singu-
larities in each step of the iterative inflation/deflation procedure, but also to control
the degree of departure from homogeneous spherical groups.

The third consists in new contamination schemes.

4.1 Control of standard deviation of overlapping (StdOmega)

The inflation/deflation process described in the previous section, based on searching
for a multiplier to be applied to the covariance matrices, is extended to the target of
reaching the required standard deviation of overlap. StdOmega can be searched on
its own or in combination with a prefixed level of average overlapping BarOmega.
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In the first case we have written a new function called FindCStd. This new
routine contains a root-finding technique and is very similar to FindC described in
the previous section. On the other hand, if we want to fix both the average and the
standard deviation of overlap (i.e both BarOmega and StdOmega) the procedure is
much more elaborate and it is based on the following steps.

1. Generate initial cluster parameters.
2. Check if the requested StdOmega is reachable. We find the asymptotic (i.e. max-

imum reachable) standard deviation, defined as

̂StdOmega∞ =
√
BarOmega · ( ̂MaxOmega∞ − BarOmega)

where ̂MaxOmega∞ is the maximum (asymptotic) overlap defined by Maitra and
Melnykov (2010) which can be obtained by using initial cluster parameters. If

̂StdOmega∞ < StdOmega discard realization and redo step 1, else go to step 2
which loops over a series of candidates ̂MaxOmega.

3. Given a value of ̂MaxOmega (as starting value we use 1.1 BarOmega) we find,
using just the two groupswhich in step 1 produced the highest overlap, the constant
c which enables to obtain ̂MaxOmega. This is done by calling routine findC. We
use this value of c to correct the covariance matrices of all groups and compute the
average and maximum overlap. If the average overlap is smaller than BarOmega,
we immediately compute ̂StdOmega, skip step 3 and go directly to step 4, else
we move to step 3.

4. Recompute parameters using the value of c found in previous step and use
again routine findC in order to find the value of c which enables us to obtain
BarOmega. Routine findC is called excluding from the iterative procedure the
two clusters which produced ̂MaxOmega and using as upper bound of the inter-
val for c the value of 1. Using this new value of 0 < c < 1, we recalculate the
probabilities of overlapping and compute ̂StdOmega

5. if the ratio StdOmega/ ̂StdOmega > 1, we increase the value of ̂MaxOmega
else we decrease it by a fixed percentage, using a greedy algorithm.

6. Steps 2–4 are repeated until convergence. In each step of the iterative proce-
dure we check that the decrease in the candidate ̂MaxOmega is not smaller
than BarOmega. This happens when the requested value of StdOmega is
too small. Similarly, in each step of the iterative procedure we check whether

̂MaxOmega > MaxOmega∞. This may happen when the requested value of
StdOmega is too large. In these last two cases, a message informs the user about
the need of increasing/decreasing the required StdOmega and we move to step 1
considering another set of candidate values. Similarly, every time routine findC
is called, in the unlikely case of no convergence we stop the iterative procedure
and move to step 1 considering another set of simulated values.

The new function, which enables us to control both the mean and the standard
deviation of misclassification probabilities is called OmegaBarOmegaStd.
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>> largesigma.OmegaMap =
1.0000 0.0107 0.0186 0.0123
0.0112 1.0000 0.0102 0.0053
0.0507 0.0261 1.0000 0.1476
0.0355 0.0156 0.2564 1.0000

>> smallsigma.OmegaMap =
1.0000 0.0391 0.0337 0.0487
0.0397 1.0000 0.0404 0.0343
0.0330 0.0402 1.0000 0.0781
0.0524 0.0393 0.1213 1.0000

Fig. 2 Datasets obtained for k = 4, v = 5, n = 200 and BarOmega = 0.10, when
StdOmega is 0.15 (top) or 0.05 (bottom). Under the scatterplots, the corresponding matrices of
misclassification probabilities (OmegaMap in the MixSim notation). The MATLAB output struc-
ture largesigma is obtained for StdOmega = 0.15, while smallsigma is obtained for
StdOmega = 0.05. Note that when StdOmega is large, two groups show a strong overlap
(ω3,4 + ω4,3 = 0.4040) and that min(largesigma.OmegaMap+largesigma.OmegaMapT ) <

min(smallsigma.OmegaMap+smallsigma.OmegaMapT )
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Fig. 3 Convergence of the ratio between the standard deviation of the required overlap and the standard devi-
ation of the empirical overlap, for the examples of Fig. 2. Left panel refers to the case of StdOmega=0.15

Figures 2 and 3 show the application of the new procedure when the code
out = MixSim(k,v,‘BarOmega’,BarOmega,‘StdOmega’,
StdOmega); [X,id] = simdataset(n, out.Pi, out.Mu, out.S);

is run with k = 4, v = 5, n = 200 and two overlap settings where BarOmega= 0.10
and StdOmega is set in one case to 0.15 and in the other case to 0.05. Of course, the
same initial conditions are ensured by restoring the random number generator settings.
When StdOmega is large, groups 3 are 4 show a strong overlap (ω3,4 = 0.1476),
while groups 1, 2, 3 are quite separate. When StdOmega is small, the overlaps are
muchmore similar. Note also the boxplots on themain diagonal of the two plots.When
StdOmega is small the range of the boxplots is very similar. The opposite happens
when StdOmega is large. Figure 3 shows that the progression of the ratio for the two
requested values of StdOmega is rapid and the convergence to 1, with a tolerance of
10−6, is excellent.

4.2 Control of degree of departure from sphericity (restrfactor)

In the original MixSim implementation constraint (10) is applied just once when the
covariance matrices are initialized. On the other hand, we implement constraint (6) in
each step of the iterative procedure which is used to obtain the required overlapping
characteristics without deteriorating the computational performance of the method.

The application of the restriction factor to the matrix containing the eigenvalues of
the covariancematrices of the k groups is done in FSDAusing functionrestreigen.
There are two features which make this application very fast. The first is the adop-
tion of the algorithm of Fritz et al. (2013) for solving the minimization problem
with constraints without resorting to the Dykstra algorithm. The second is that, in
applying the restriction on all clusters during each iteration, matrices �0.5

1 , . . . , �0.5
k ,

�−1
1 , . . . , �−1

k and scalars |�1|, . . . , |�k |, which are the necessary ingredients to
compute the probabilities of misclassification [see Eq. (9)], are computed using sim-
ple matrix multiplication, exploiting the restricted eigenvalues previously found. For
example if λ∗

1 j , . . . , λ
∗
v j are the restricted eigenvalues for group j and Vj is the corre-

sponding matrix of the eigenvectors, then
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�−1
j = Vjdiag(1/λ

∗
1 j , . . . , 1/λ

∗
v j )V T

j

�0.5
j = Vjdiag(

√
λ∗
1 j , . . . ,

√
λ∗

v j )V T
j

|� j | =
v∏

r=1

λ∗
r j .

These matrices (determinants) are then used in their scaled version (e.g. c−1�−1
j ) for

each tentative value of the inflation/deflation constant c. Note that the introduction
of this restriction cannot be addressed with the standard procedure of Maitra and
Melnykov (2010), as in Eq. (9) the summations in correspondence of the eigenvalues
equal to 1 were not implemented.

Below we give an example of application of this restriction.

outr = MixSim(3,5,‘BarOmega’,0.1, ‘MaxOmega’,0.2,
‘restrfactor’,1.1);
out = MixSim(3,5,‘BarOmega’,0.1, ‘MaxOmega’,0.2);

In the first case we fix restrfactor to 1.1 in order to find clusters that are roughly
homogeneous. In the second case, no constraint is imposed on the ratio of maximum
and minimum eigenvalue among clusters, so elliptical shape clusters are allowed. In
both cases the same random seed togetherwith the same level of average andmaximum
overlap is used.

Figure 4 shows the scatterplot of the datasets generated with

[Xr,idr] = simdataset(n, outr.Pi, outr.Mu, outr.S);
[X,id] = simdataset(n, out.Pi, out.Mu, out.S);
spmplot(X,id); spmplot(Xr,idr);

for n = 200 (where spmplot is the FSDA function to generate a scatterplot with
additional features such asmultiple histogramsormultiple boxplots along thediagonal,
and interactive legends which enable to show/hide the points of each group). In the
bottom panel of the figure there is one group (Group 3, with darker symbol) which is
clearly more concentrated than the others: this is the effect of not using a TCLUST
restriction close to 1.

As pointed out by an anonymous referee, the eigenvalue constraint which is used
is not scale invariant and this lack of invariance propagates to the estimated mixture
parameters. This makes even more important the need of having a very flexible data
mixture generating tool capable to address very different simulation schemes.

4.3 Control on outlier contamination

In the originalMixSim implementation it is possible to generate outliers just from the
uniform distribution. In our implementationwe allow the user to simulate outliers from
the following 4 distributions (possibly in a combined way): uniform, χ2, Normal, and
Student T . In the case of the last three distributions, we rescale the candidate random
draws in the interval [0 1] by dividing by the max and min over 20,000 simulated data.
Finally, for each variable the random draws aremapped by default in the interval which
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restrfactor=1.1: almost homogeneous groups
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restrfactor=‘’: heterogeneous groups
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Fig. 4 Effect of the restrfactor option: when set to a value very close to 1 (top), clusters are forced to
be roughly homogeneous. When the constraint is not used (bottom) the clusters are clearly heterogeneous

goes from the minimum to the maximum of the corresponding coordinate. Following
the suggestion of a referee, to account for the possibility of very distant (extreme)
outliers, it is also possible to control the minimum and maximum values of the gener-
ated outliers for each dimension. In order to generalize even more the contamination
schemes we have also added the possibility of point mass and component-wise con-
tamination (see, e.g., Farcomeni 2014). In this last case, we extract a candidate row
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Fig. 5 Four groups in two dimension generated imposing BarOmega= 0.1 with uniform noise (left) and
normal noise (right) shown with filled (red) circles

from the matrix of simulated data and we replace just a single random component with
either the minimum or the maximum of the corresponding coordinate. In all contami-
nation schemes, we retain the candidate outlier if its Mahalanobis distance from the k
existing centroids exceeds a certain confidence level which can be chosen by the user.
It is also possible to control the number of tries to generate the requested number of
outliers. In case of failure a warning message alerts the user that the requested number
of outliers could not be reached.

In Figures 5 and 6 we superimpose to 4 groups in two dimensions generated using
BarOmega= 0.10, 10,000 outliers with the constraint that their Mahalanobis dis-
tance from the existing centroids is greater than the quantile χ2

0.999 on two degrees
of freedom. This gives an idea of the varieties of contamination schemes which can
be produced and of the different portions of the space which can be covered by the
different types distributions. The two panels of Fig. 5 respectively refer to uniform and
normal noise. The two top panels of Fig. 6 refer to χ2

5 and χ2
40. The bottom left panel

refers to component-wise contamination. In the bottom right panel we combined the
contamination based on χ2

5 with that of Student T with 20 degrees of freedom. These
picture show that, while the data generated from the normal distribution tend to occupy
mainly the central portion of the space whose distance from the existing centroids is
greater than a certain threshold, the data generated from an asymmetric distribution
(like the χ2) tend to be much more condensed in the lower left corner of the space. As
the degrees of freedom of χ2 and T reduce, the outliers which are generated (given
that they are rescaled in the interval [0 1] using 20,000 draws) will tend to occupy a
more restricted portion of the space and when the degrees of freedom are very small
they will be very close to a point-wise contamination. Finally, the component-wise
contamination simply adds outliers at the boundaries of the hyper cube data generation
scheme.

In a similar vein, we have also enriched the possibility of adding noise variables
from all the same distributions described above.

In the current version of our algorithm, noise observations are defined to be a
sample of points coming from a unimodal distribution outside the existing mixture
components in (3). Although more general situations might be conceived, we prefer
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Fig. 6 Four groups in two dimension generated imposing BarOmega=0.1 with χ2
5 noise (top left), χ2

40
noise (top right panel), component-wise contamination (bottom left) and χ2

5 combined with Student T with
20 degrees of freedom noise (bottom right). The first noise component is always shown with filled (red)
circles, while the second noise component (bottom right) is displayed with ‘times’ (magenta) symbol

to stick to a definition where noise and clusters have conceptually different origins.
A similar framework has also proven to be effective for separating clusters, outliers
and noise in the analysis of international trade data (Cerioli and Perrotta 2014). We
acknowledge that some noise structures originated in this way (as in Figs. 5 and 6)
might resemble additional clusters from the point of view of data analysis. However,
we emphasize that the shape of the resulting groups is typically very far from that
induced by the distribution of individual components in (3). It would thus be hard to
detect such structures as additional isolated groups bymeans ofmodel-based clustering
algorithms, even in the robust case. More in general, however, to define what a “true
cluster” is and, therefore, distinguish clusters from noise, are issues where there is no
general consensus (Hennig 2015).

The two options which respectively control the addition of outliers and noise vari-
ables are called respectively noiseunits and noisevars. If these two quantities
are supplied as scalars (say r and s) then the X data matrix will have dimension (n+r)

× (v + s), the type of noise which is used comes from uniform distribution and the
outliers are generated using the default confidence level and a prefixed number of tries.
On the other hand, more flexible options such as those described above are controlled
usingMATLAB ‘structure arrays’ combining fields of different types. In the initial part
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Fig. 7 Contamination of denoised M5 with uniform noise (left) and χ2
40 noise (right). While the uniform

noise fills all the gaps, the noise generated from asymmetric distributions is much more concentrated in a
particular portion of the space

of file simdataset.m we have added a series of examples which enable the user to
easily reproduce the output shown in Figs. 5 and 6. In particular, one of them shows
how to contaminate an existing dataset. For example, in order to contaminate the M5
denoised dataset with r outliers generated from χ2

40 and to impose the constraint that
the contaminated units have a Mahalanobis distance from existing centroids greater
than the quantile χ2

0.99 on two degrees of freedom one can use the following syntax

noiseunits=struct;
noiseunits.number=r;
noiseunits.alpha=0.01;
noiseunits.typeout={‘Chisquare40’};
[Yout,id]=simdataset(Y, pigen, Mu, S,‘noiseunits’,
noiseunits);

where Y is the 1800-by 2 matrix containing the denoised M5 data, Mu is a matrix
3 × 2 matrix containing the means of the three groups, S, is a 2-by-2-by-3 array
containing the covariance of the 3 groups and pigen is the vector containing the
mixing proportions (in this case case pigen = [0.2 0.4 0.4]. Figure 7 shows both the
contamination with uniform noise (left panel) and χ2

40. In order to have an idea about
space coverage we have added 1000 outliers.

The possibility to add very distant outliers beyond the range of the simulated
clusters, suggested by a referee and mentioned at the beginning of this section, is
implemented by the field interval of optional structure noiseunits. This type
of extreme outliers can be useful in order to compare (robust) clustering procedures
or when analyzing “breakdown point” type properties in them.

5 Simulation studies

In the on line supplementary material to this paper the reader can find the results of a
series of simulation studies in order to validate the properties of the new constraints,
to check goodness of fit of the pairwise overlaps to their theoretical distribution and
to investigate the degree of coverage of parameter space.
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6 Conclusions and next steps

In this paper we have extended the capabilities of MixSim, a framework which is use-
ful for evaluating the performance of clustering algorithms, on the basis of measures of
agreement between data partitioning and flexible generation methods for data, outliers
and noise. Our contribution has pointed at several improvements, both methodologi-
cal and computational. On the methodological side, we have developed a simulation
algorithm in which the user can specify the desired degree of variability in the overlap
among clusters, in addition to the average and/or maximum overlap currently avail-
able. Furthermore, in our extended approach the user can control the ratio among the
lengths of the ellipsoids axes associated with the groups and the relative cluster sizes.
We believe that these new features provide useful tools for generating complex cluster
data, which may be particularly helpful for the purpose of comparing robust clustering
methods. We have focused on the case of multivariate data, but similar extensions to
generate clusters of data along regression lines is currently under development. This
extension is especially needed for benchmark analysis of anti-fraud methods (Cerioli
and Perrotta 2014).

We have ported the MixSim R package to the MATLAB FSDA toolbox of Riani
et al. (2012), thus providing an easy-to-use unified framework inwhichdata generation,
state-of-the art robust clustering algorithms and principled routines for their evaluation
are now integrated. Our effort to produce a rich variety of robust and computation-
ally efficient methods for the analysis of complex data has also lead to an improved
algorithm for approximating the distribution function of quadratic forms. These com-
putational contributions aremainly described in “Appendix1” and “Appendix 2”below.
Furthermore, we have provided some simulation evidence on the performance of our
algorithm and on its ability to produce “sensible” clustering structures under differ-
ent settings. Although more theoretical investigation is required, we believe that our
empirical evidence supports the claim that, under fairly general conditions, fixing the
degree of overlap among clusters is a useful way to generate experimental data on
which alternative clustering techniques may be tested and compared.
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Appendix 1: Davies’ algorithm

Many test statistics and quadratic forms in central and non-central normal vari-
ables (e.g. the ratio of two quadratic forms) converge in distribution toward a finite
weighted sum of non central χ2 random variables U j , with n j degrees of freedom
and δ2j non-centrality parameters, so the computation of its cumulative distribution
function
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pr(Q < x) for Q =
r∑

j=1

a jU j + σ N (0, 1) a j ∈ � (11)

is a problem of general interest that goes beyond Eq. (9) and the scope of this
paper. Duchesne and De Micheaux (2010) have compared the properties of several
approximation approaches to problem (11) with “exact” methods that can bound the
approximation error and make it arbitrarily small. All methods are implemented in
C language and interfaced to R in the package CompQuadForm. Numerical conclu-
sions, in favor of exact methods, confirm the appeal of Davies’ exact algorithm. Our
porting of the algorithm from C to MATLAB, in the routine ncx2mixtcdf, gives to
the statistical community the possibility of testing, experimenting and understanding
this method in a very easy way.

The accuracyofDavies’ algorithm relies on the numerical inversion of the character-
istic function (Davies 1973) and the control of its numerical integration and truncation
errors. For this reason, the call to our routine

[qfval,tracert] = ncx2mixtcdf(x,df,lb,nc,‘lim’,lim,‘tol’,tol)

optionally returns in tracert details on the integration terms, intervals, convergence
factors, iterations needed to locate integration parameters, and so on, which are useful
to appreciate the quality of the cdf value returned in qfval.

Figure 8 plots a set of qfval values returned for the same x point and for com-
binations of tolerance on the integration error (‘tol’ option) and integration terms
(‘lim’ option) specified in the tolerance and integration_terms arrays.
The right panel of the figure also specifies the parameters of the mixture of two χ2

distributions used (the degrees of freedom df of the 2 distributions, the coefficientslb
of the linear combination and the non centrality parameters nc of the 2 distributions).
From the figure it is clear that the tolerances on the integration error impact on the esti-
mates more than the number of integration terms used, here reported in reverse order.
However, for the two stricter tolerances (the sequences of triangles ‘�’ and crosses

1010 109 108 107 106 105 104
0.3126

9.638e-09
1.079e-07

1.081e-06
x = -2.39;

df = [1;1];
lb = [-0.97 ; -0.68];
nc = [0.2 ; 0.3];

tolerance = ...
[1e-08 ; 1e-07 ; 1e-06 ; 1e-05];

integration_terms = ...
[10^10 ; 10^9 ; 10^8 ; 10^7 ; ...
10^6 ; 10^5 ; 10^4];

Fig. 8 Cumulative distribution function (cdf) values returned by ncx2mixtcdf for various tolerances
on the integration error and various integration terms. The value at the bottom left of the figure is the cdf
for the best combination (tolerance = 10−8, integration terms=1010). The other values are differences
between this optimal value and those obtained with other tolerances
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‘×’ symbols at the bottom of the plot) some estimates have not been computed: this
is because the number of integration terms was too small for the required precision.
In this case, one should increase the integration terms lim or relax the tolerance tol
options.

Appendix 2: Time complexity of MIXSIM

The computational complexity of MixSim depends on the number of calls to Davies’
algorithm in Eq. (9), which is clearly quadratic in k asMixSim computes the overlap
for all pairwise clusters. Unfortunately the time complexity of Davies’ algorithm, as
a function of both k and v, has no simple analytic form but Melnykov and Maitra
(2011) found empirically that MixSim is affected more by k than by v. We followed
their time monitoring scheme, for various values of v and two group settings (k = 10
and k = 100), to evaluate the run time of our FSDA MixSim function. Figure 9
compares the results, in the table, with those obtained with the MixSim R package
implementation (solid lines vs dotted lines in the plots). The gap between the two
implementations is due to the fact that R is mainly based on C compiled executables.
However, the relevant point here is a dependence of the time from v that may not
be intuitive at first sight: computation is demanding for small v and becomes much
easier for data with 3–100 variables. This is one of the positive effects of the course
of dimensionality, as the space where to accommodate the clusters rapidly increases
with v.
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v 1 2 3 5 7 10 15 20
k = 10 23.05 12.30 9.91 8.68 8.32 7.96 8.36 9.86
k = 100 1905.94 1446.81 1207.34 855.72 920.10 803.33 734.26 794.11

v 30 40 50 60 70 80 90 100
k = 10 9.77 7.99 8.16 8.29 8.29 8.94 9.15 8.57
k = 100 813.80 766.93 803.97 747.69 778.26 789.70 771.41 710.03

Fig. 9 Time (in seconds) to run MixSim. In the figures the solid and dotted lines refer respectively to
the FSDA and R implementations. The table reports the FSDA timing for some choices of v. The results
for k = 10 are the median of 25 replicates, while the results for k = 100 are for one run monitored with
timeit, a MATLAB function specifically conceived for avoiding long tic-toc replicates
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