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Abstract. The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya
high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to intermediate mass mag-
netic monopoles, with masses 10° GeV < Mj; < 10'2 GéV. From the analysis of the full detector exposed
for more than 4 years a flux upper limit of 1.3 x 107 em 25 sr! for downgoing fast intermediate mass

monopoles was established at the 90% C.L.

PACS. 14.80.Hv; 29.40.Wk; 29.90.+r

1 Introduction

In 1931 Dirac introduced magnetic monopoles (MMs) in
order to explain the quantization of the electric charge,
obtaining the formula eg = nfic/2, from which g = ngp =
nhc/2e = n68.5¢ = n3.29 x 10~8 in the c.g.s. symmetric
system of units [1]; n is an integer,n = 1,2, 3, ... MMSs pos-
sessing an electric charge and bound systems of a magnetic
monopole with an atomic nucleus are called dyons. An ex-
tensive bibliography on MMs is given in [2]. Relatively low
mass classical Dirac monopoles have been searched for at
high energy accelerators [3—8].

Magnetic monopoles are present in a variety of unified
gauge models with a wide range of masses.

Grand unified theories (GUT) of the strong and elec-
troweak interactions at the mass scale Mg ~ 1014-10° GeV
predict the existence of magnetic monopoles, produced
in the early Universe at the end of the GUT epoch,
with very large masses, My; > 106 GeV. Such monopo-
les cannot be produced with existing accelerators, nor

a e-mail: miriam.giorgini@bo.infn.it

with any foreseen for the future. In the past, GUT poles
were searched for in the cosmic radiation. These poles are
characterized by low velocities and relatively large energy
losses [9-13]. The MACRO experiment set the best lim-
its on GUT MMs with g = gp, 2¢p, 3gp and dyons at
thelevel of ~1.4x 107 ecm™2s tsr !t for4x 105 < B =
v/e<0.7[14-17].

Some GUT models and some supersymmetric models
predict intermediate mass monopoles (IMMs) with masses
105 GeV < Mjs < 10'2 GeV and with magnetic charges of
multiples of gp; these MMs may have been produced in
later phase transitions in the early Universe and could be
present in the cosmic radiation [18—22].

IMMSs may be relativistic since they could be acceler-
ated to high velocities in one coherent domain of the galac-
tic magnetic field. In this case one would have to look for
downgoing, fast (8 > 0.03), heavily ionizing MMs'.

The main purpose of the SLIM (search for light mono-
poles) experiment at the Chacaltaya laboratory in Bolivia

1 The interest in MMs was also connected with the possibility
that they could yield the highest energy cosmic rays [21, 22].
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Fig. 1. Accessible regions (above lines) in the plane (mass, 3)
for monopoles with magnetic charge g = gp coming from above
for an experiment at altitudes of 20000 m, 5230 m, and for an

underground detector at the Gran Sasso Lab. (average rock
overburden of 3700 m.w.e.)

at 5230 m a.s.l., was the search for IMMs [23,24]. An ex-
posure at a high altitude laboratory allows to search for
MMs of lower masses, higher magnetic charges and lower
velocities, see Fig. 1.

The searches for IMMs by Earth based detectors are
essentially limited to downgoing particles [25,26]. Water
Cherenkov detectors are limited to fast downgoing IMMs
(with 8> 0.5), and a search can be done if the detectors are
able to discriminate against the large background of cosmic
ray muons [27].

The SLIM detector was also sensitive to strange quark
matter nuggets [28—33] and Q-balls [34—36]. The results on
these dark matter candidates will be discussed elsewhere.

In the following, we present a short description of the
SLIM apparatus, the calibrations of the nuclear track de-
tectors (NTDs), the etching and analysis procedures, and
the limits obtained by the experiment on IMMs and GUT
magnetic monopoles.

2 Experimental procedure

The SLIM experiment was an array of NTDs? with a total
surface area slightly greater than 400 m? [23, 24]. The array
was organized into 7410 modules, each of area 24 x 24 cm?.
All modules were made up of: three layers of CR39®3, each
1.4mm thick; 3 layers of Makrofol DE®4, each 0.48 mm
thick; 2 layers of Lexan each 0.25 mm thick and one layer
of aluminum absorber 1 mm thick (see Fig. 2 right). The

2 Another 100 m? of NTDs were installed at Koksil (Pak-
istan, 4275 m a.s.l.) since 2002 and were not used in the present
analysis.

3 The SLIM CR39 was produced by the Intercast Europe Co.,
Parma, Italy according to our specifications.

4 Manufactured by Bayer AG, Leverkusen, Germany.

CR39 used in about 90% of the modules (377 m?) was of
the same type used in the MACRO experiment [14-17].
The remaining modules, 50 m?, utilized CR39 containing
0.1% of DOP additive, CR39(DOP).

Each module (stack) was sealed in an aluminized plas-
tic bag (125 pm thick) filled with dry air at a pressure of
1 bar. The modules were transported to La Paz, Bolivia,
from Italy in wooden boxes and their position with respect
to the other modules in the shipping crate was recorded.
The stacks were deployed under the roof of the Chacaltaya
Laboratory, roughly 4 m above ground (see Fig. 2 left). The
installation of the SLIM detectors started in February 2000
and ended in February 2002. The return of the material to
Italy was organized in batches, after the completion of the
4 years exposure.

The atmospheric pressure at Chacaltaya is about
0.5 bar; before shipping to Chacaltaya, in Bologna we
checked the air tightness of the envelopes sealed with air
at a pressure of 1 bar by placing a sample of them in an
airtight tank at a pressure of 0.3 atm for a few months; no
significant leakage was detected.

From the experience gained with the MACRO Nu-
clear Track Subdetector [14—-17], we know that the used
CR39 does not suffer from “aging” or “fading” effects for
exposure times as long as 10 years [37]. Further calibra-
tions with 1 A GeV Fe?%* ions in 1999 and 2005 and with
158 A GeV In*?* in 2003 confirmed the quality and the sta-
bility of the CR39 used in the SLIM experiment [38—41].

2.1 Environmental measurements

During the first phases of the detector deployment we eval-
uated possible effects of climatic conditions on the detec-
tor response and possible backgrounds. Previous tests had
shown that the CR39 response does not depend on the time
elapsed from its production and the passage of the par-
ticle if the ambient temperature ranges between —20°C
and +30°C. The minimum and maximum values of the
air temperature in each detector hall in Chacaltaya was
recorded 3 times a day over the lifetime of the experiment.
The temperature values usually ranged from 0 to 30°C
with an average value of 12 °C for the whole year and from
one year to the other; however in the summer months in
very few cases temperatures down to —5 °C were measured
in the early morning. Therefore, no significant variations
were expected in the detector response over the exposure
period.

We performed measurements of the radon concentra-
tion in different locations of the experimental rooms where
the SLIM detectors were placed. We used for this purpose
E-PERMP® radon dosimeters. The measured radon activity
was about 40-50 Bq/m? of air. According to our previous
experience with the MACRO NTDs, we concluded that
this level of radon induced radioactivity did not present
a problem for the experiment, even in case of radon diffu-
sion into the module bags.

Two different types of neutron detectors (BTI bubble
counters and a BF3 counter detectors) were used to meas-
ure the neutron flux at Chacaltaya, during the first instal-
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lation shift of 2001 over the energy range of a few hundred
keV to about 20 MeV [42,43]. Neutrons of these energies
interacting inside the detectors could induce background
tracks, and their density could affect the scanning speed
and efficiency. Both types of neutron detectors measured
the accumulated dose. Consistent results were obtained by
both types of detectors. The accumulated dose measured
in open air and near the detectors was very similar. The
absolute neutron flux was computed using the BTI bub-
ble counters for which the efficiency is known. A value
of (1.7£0.8) x 1072cm~2s™! was obtained, which is in
agreement with other reported neutron flux data at the al-
titude of Chacaltaya and with more recent measurements
at the same location [44]. The necessity to reduce the neu-
tron induced background in CR39 required us to study
special etching procedures, mainly based on the addition
of ethyl alcohol to the etching solutions. As discussed in
the next section, the addition of alcohol reduces the back-
ground tracks on the detector sheets and improves the sur-
face quality (i.e. greater transparency), at the expense of
a higher threshold [38—41].

2.2 Etching procedures

The passage of a magnetic monopole in NTDs, such as
CR39, is expected to cause structural line damage in the
polymer (forming the so called “latent track”). Since IMMs
have a constant energy loss through the stacks, the subse-
quent chemical etching should result in collinear etch-pit
cones of equal size on both faces of each detector sheet. In
order to increase the detector “signal to noise” ratio differ-
ent etching conditions [37-41] were defined. The so-called
“strong etching” technique allows better surface quality
and larger post-etched cones to be obtained. This makes
etch pits easier to detect under visual scanning. Strong
etching was used to analyze the top-most CR39 sheet in
each module. “Soft etching” was applied to the other CR39
layers in a module if a candidate track was found after the
first scan. This process allows to proceed in several etching
steps and study the formation of the post-etched cones.
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the 7410 modules; each mod-
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For CR39 and CR39(DOP) the strong etching con-
ditions were: 8N KOH+ 1.5% ethyl alcohol at 75°C for
30 h. The bulk etching velocities were vg = 7.2+ 0.4 pm/h
and vg =5.9+£0.3 um/h for CR39 and CR39(DOP),
respectively.

The soft etching conditions were 6N NaOH + 1% ethyl
alcohol at 70°C for 40h for CR39 and CR39(DOP).
The bulk etching rates were vg = 1.25+0.02 um/h and
vg = 0.98+0.02um/h for CR39 and CR39(DOP),
respectively.

Makrofol NTDs were etched in 6N KOH + 20% ethyl
alcohol at 50°C for 10h; the bulk etch velocity was
vg = 3.4 um/h.

2.3 NTD calibrations

The CR39 and Makrofol nuclear track detectors were
calibrated with 158 A GeV In*®* and Pb®2" beams at
the CERN SPS and 1A GeV Fe?6* at the Brookhaven
National Laboratory (BNL) Alternating Gradient Syn-
chrotron (AGS). The calibration layout was a standard
one with a fragmentation target and CR39 (plus Makrofol)
NTDs in front of and behind the target [45]. The detector
sheets behind the target detected both primary ions and
nuclear fragments of decreasing charge.

We recall that the formation of etch-pit cones (“tracks”)
in NTDs is regulated by the bulk etching rate, vg, and
the track etching rate, v, i.e. the velocities at which the
undamaged and damaged materials (along the particle
trajectory), are etched out. Etch-pit cones are formed if
vt > vp. The response of the CR39 detector is measured by
the etching rate ratio p = v /vp.

After etching the standard calibration procedure was
the following:

1. Measure the base area of each track in NTDs with an au-
tomatic image analyzer system [46]. The projectile frag-
ments carry the same § and approximately the same di-
rection of the incident ion; the Z of each resolved peak is
identified via the base area spectrum. The average base

area distributions of the In*?* ions and of their fragments
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Fig. 3. Calibrations of CR39 nuclear track detectors with
158 A GeV In**T ions and their nuclear fragments with decreas-
ing charge. The base areas (1 pixel2 =0.3 um2) of the etched
cones were averages over 2 faces. The CR39 was etched in a soft
and b strong etching conditions

in CR39, etched in soft or strong conditions, are shown in
Fig. 3aand b (1 pixel? = 0.3 um?).

2. For each calibration peak the Z/3 is obtained and the
reduced etch rate (p—1) is computed. The restricted
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energy loss (REL) due to ionization and nuclear scat-

tering is evaluated, thus arriving to the calibration

data of (p—1) vs. REL shown in Fig. 4 for both strong
and soft etching conditions for CR39 and CR39(DOP).

For soft etching the threshold in CR39 is at Z/8~ 7

corresponding to REL ~ 50 MeV cm? g~!. For strong

etching the threshold is at Z/ ~ 14, corresponding to

REL ~ 200 MeV cm? g 1. The extrapolation of the cal-

ibration curves to p =1 gives REL < 40 MeV cm? g !

for soft etching and REL < 160 MeV cm? g~! for strong
etching. For CR39(DOP) the threshold in soft etch-
ing conditions is at Z/8 ~ 13 corresponding to REL ~

170 MeV cm? g~ 1; the threshold in strong etching con-

ditions is at Z/B8 ~ 21 corresponding to REL ~

460 MeV cm? g~!. The extrapolation of the calibration

curves to p = 1 gives REL < 240 MeV cm? g~ ! for strong

etching.

For magnetic monopoles with g = gp, 2¢gp, 3gp we com-
puted the REL as a function of § taking into account elec-
tronic and nuclear energy losses, see Fig. 5 [47].

With the used etching conditions, the CR39 allows the
detection of
1. MMs with g = gp for 3~ 10~* and for 8 > 10~2;

2. MMs with g =2gp for 3 around 10~* and for 3 >
4x1073

3. The whole 3-range of 4 x 1075 < 3 < 1 is accessible for
MMs with g > 2¢gp and for dyons.

For the Makrofol polycarbonate the detection thresh-
oldisat Z/(3 ~ 50 and REL ~ 2.5 GeV cm? g1 [38—41]; for
this reason the use of Makrofol is restricted to the search
for fast MMs.

2.4 Analysis

After exposure at Chacaltaya the modules were brought
back by air flights to Italy in order to be etched and
analyzed in the Bologna laboratory. Three “reference”
holes of 2 mm diameter were drilled in each module with
a precision machine (the hole locations were defined to
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Fig. 4. Reduced track etch rate (p— 1) vs. REL for the CR39 (left) and CR39(DOP) (right) detectors, exposed to the 158 A GeV
indium ion beam, etched in soft and strong etching conditions
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Fig. 5. REL vs. beta for magnetic monopoles with g = gp,
29D, 39p. The dashed lines represent the CR39 thresholds in
soft and strong etching conditions and the Makrofol threshold
(see Sect. 2.2)

within 100 ym). This allowed us to follow the passage of a
“candidate” through the stack. The bags (envelopes) were
opened, the detectors were labeled and their thicknesses
were measured, using a micrometer, in 9 uniformly dis-
tributed points on the foil surface.

The analysis of a SLIM module started by etching the
uppermost CR39 sheet using strong conditions in order to
reduce the CR39 thickness from 1.4 to ~ 0.9 mm. After
the strong etching, the CR39 sheet was scanned twice,
with a stereo microscope, by different operators, with a 3 x
magnification optical lens, looking for any possible corres-
pondence of etch pits on the two opposite surfaces. The
measured single scan efficiency was about 99%; thus the

double scan guarantees an efficiency of ~ 100% for finding
a possible signal.

Further observation of a “suspicious correspondence”
was made with an optical 20-40 x stereo microscope and
classified either as a defect or a candidate track. This latter
was then examined by an optical microscope with 6.3, X
25, magnification and the axes of the base-cone ellipses in
the front and back sides were measured.

A track was defined as a “candidate” if the computed p
and incident angle € on the front and back sides were equal
to within 20%. For each candidate the azimuth angle ¢
and its position P referred to the fiducial marks were also
determined. The uncertainties A, Ay and AP defined a
“coincidence” area (< 0.5 cm?) around the candidate ex-
pected position in the other layers, as shown in Fig. 6.

In this case the lowermost CR39 layer was etched in
soft etching conditions, and an accurate scan under an op-
tical microscope with high magnification (500 x or 1000 x)
was performed in a square region around the candidate ex-
pected position, which included the “coincidence” area. If
a two-fold coincidence was detected, the CR39 middle layer
was also analyzed.

The bottom CR39 sheet was etched in about 50 cases;
the third CR39 sheet was etched only in few cases, when
there was still a possible uncertainty, and for checks
(~ 16 times). Some Makrofol foils were etched for reasons
similar to the previous point and for other checks concern-
ing the Makrofol itself (~ 12 times).

3 Results

From the detector calibration we computed the SLIM ac-
ceptance for downgoing IMMs with g = gp, 2gp, 3gp and
for dyons. For the ¢th module of area S; the acceptance was
computed as

(02); = S, (1 - %) . (1)

Fig. 6. Illustration of the procedure used to define the “confidence” area where the possible continuation of a candidate track
inside two (or more) sheets of the same module was searched for (see text for details)



62 S. Balestra et al.: Magnetic monopole search at high altitude with the SLIM experiment

o

|5 [ T T IIIIIII T T IIIIIII T T IIIIIII T T IIIIIII T T IIII:

+m B %o _

€ - _

L

e 14 ]

610 E =

. E ]

E — —

= B _

g — 39 T

Q

=, 15 I I I I

X1O 75I 1 IIIIII74I 1 IIIIII73I 1 IIIIII72I 1 IIIIII71I 11 11111

Z 10 10 10 10 10 1
B=v/c

Fig. 7. 90% C.L. upper limits for a downgoing flux of IMMs
with g = gp, 2¢gp, 39p and for dyons (M +p , g = gp) plotted
vs. B (for strong etching). The poor limits at 3~ 1072 arise
because the REL is below the threshold (for gp and 2gp) or
slightly above the threshold (for 3gp and dyons), see Sect. 2.3

The total acceptance is the sum of all the individual
contributions.

Since no candidates were found, the 90% C.L. upper
limit for a downgoing flux of IMMs and for dyons was com-
puted as

2.3
0= Sa)Ak

(2)
where At is the mean exposure time (4.22y), S{2 is the
total acceptance, € is the scanning efficiency estimated to
be ~ 1.

The global 90% C.L. upper limits for the flux of down-
going IMMs and dyons with velocities 3 > 4 x 107° were
computed, as shown in Fig. 7. The flux limit for 3 > 0.03 is
~1.3x10" % em™2s tsr 1

Two “strange events” were observed and were finally
classified as manufacturing defects in a small subset of
CR39 NTDs. These “strange events” are discussed in detail
elsewhere [48].

4 Conclusions

We etched and analyzed 427 m? of CR39, with an aver-
age exposure time of 4.22 years. No candidate passed the
search criteria. The 90% C.L. upper limits for a downgo-
ing flux of fast (8> 0.03) IMM’s coming from above are
at the level of 1.3 x 1075 cm~=2sr~!s~!. The complete §-
dependence for MMs with g = gp, 2¢gp, 3gp and for dyons
is shown in Fig. 7.

Superheavy GUT magnetic monopoles in the cosmic
radiation can traverse the Earth. Therefore the SLIM
limit on their flux is one half of the IMM flux: ¢guT <
6.5x 1076 ecm 2571 sr~! for B> 0.03 for g = gp [14-17].

Figure 8 shows the flux upper limits for MMs of charge
g=gp and (3> 0.05 vs. monopole mass. Note that the
SLIM limit is 1.3x 107" cm2sr~'s~! for MM masses
smaller than~ 5 x 103 GeVand 0.65 x 10715 ecm=2sr~1s!
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Fig. 8. Flux upper limits for cosmic MMs of charge g = gp
and 3 > 0.05 vs. monopole mass. The figure shows the 90%
C.L. limits obtained by the SLIM, MACRO [14-17] and
OHYA {49] experiments. MMs with masses smaller than
~5x 1013 GeV are detected only if coming from above; MMs
with masses larger than ~ 5 x 10'2 GeV can traverse the Earth,
so an isotropic flux is expected. The Parker bound [54], ob-
tained from the survival of the galactic magnetic field, and the
limit obtained from the mass density for a uniform density of
monopoles in the Universe [55] are also plotted

for masses larger than ~ 5 x 103 GeV. In Fig. 8 are also
shown the limits obtained by the MACRO [14-17] and
OHYA [49] experiments for g = gp magnetic monopoles
with 8 > 0.05.

SLIM is the first experiment to extend the cosmic radi-
ation search for Magnetic Monopoles to masses lower than
the GUT scale with a high sensitivity.

The addition of SLIM data to the MACRO data would
improve the MACRO limits by only 18%.

Large scale underwater and under ice neutrino tele-
scopes (Amanda, IceCube, ANTARES, NEMO) have the
possibility to search for fast IMMs with 3 > 0.5 to a level
lower than the Parker bound [27, 50—53].
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