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ABSTRACT Electroencephalography (EEG) is a common and significant tool for aiding in the diagnosis
of epilepsy and studying the human brain electrical activity. Previously, the traditional machine learning
(ML)-based classifier are used to identify the seizure by extracting features from the EEG signals manually.
Although the effectiveness of these contributions have already been proved, they cannot achieve multiple
class classification with automatic feature extraction. Meanwhile, the identifiable EEG segment is too long
to limit the capability of real-time epileptic seizure detection. In this paper, a novel deep convolutional
long short-term memory (C-LSTM) model is proposed for detecting seizure and tumor in human brain and
identifying two eyes statuses (open and close). It achieves to predict a result in every 0.006 seconds with a
short detection duration (one second). By comparing with other two types deep learning approaches (DCNN
and LSTM), the presented deep C-LSTM obtains the best performance for classifying these five classes. All
of the obtained total accuracy are over 98.80%.

INDEX TERMS deep learning, C-LSTM, epileptic seizure, high-dimension electroencephalogram (EEG).

I. INTRODUCTION

EPILEPSY is the most common severe neurological dis-
order, and nearly 50 million people are diagnosed with

epilepsy worldwide [1]. The statistical results from the World
Health Organization (WHO) display that 2.4 million people
have epilepsy annually. The patients might injure themselves,
develop other medical problems, and life-threatening emer-
gencies during seizure activity. More seriously, they will
broken bones, concussions, head injury with bleeding into the
brain, and breathing difficulty [2]. The overall risk of dying
for a person with epilepsy is 1.6 to 3 times higher than for
the general population. Sudden unexpected death in epilepsy
(SUDEP) is likely the most common disease-related cause
of death in epilepsy. It is not frequent, but it is a genuine
problem, and people need to be aware of its risk [3]–[6].

The electroencephalogram (EEG) signal is generally used

for epileptic detection as it is a condition related to the
brain’s electrical activity. Analysis of EEG signal can also be
adopted to fascinate advanced human robot interaction [7]–
[9]. EEG recordings are recorded digitally for viewing on
a computer display unit, which also lends themselves to
be automatically analyzed. Using a common language for
seizure classification also makes it easier to communicate
among clinicians caring for people with epilepsy and doing
research on epilepsy. An epileptic seizure can be detected by
analyzing the EEG signals, due to large numbers of brain
cells are activated abnormally at the same time in the brain
during a seizure. Since the treatment of seizures depends
on an accurate diagnosis, it is essential to make sure that
a patient has epilepsy and knowing what kind of disorder.
Separating seizures into different types helps guide further
testing, treatment, and prognosis or outlook. The challeng-
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ing is locating the ictal spikes and seizures during EEG
recording. It is a time-consuming process for an expert to
analyze the entire length of the EEG recordings, in order to
detect epileptic activity [10]. The possibility of the expert
misreading the data and failing to make a proper decision
would also be narrowed down due to both massive amounts
and increased usage of long-term EEG recordings.

Epilepsy is characterized by the occurrence of recurrent
seizures in the EEG signals. During the last decades, many
methodologies are proposed to detect epileptic seizures and
tumors in the brain based on EEG signals. Although these
presented classifiers have achieved perfect classification ac-
curacy, some drawbacks limit their performance. First, most
of the previous works only consider binary classification
problems because it is difficult to establish a multiple-class
model based on the EEG signals, which might decrease the
accuracy. Second, few of the contributions consider pre-
dicting the seizure with a short-time segment. Traditional
classification methods, where the most EEG is reviewed
by a trained professional, are very time-consuming when
applied to recordings of this length [11]. Traditional feature
extraction algorithms will miss several useful information so
that decreasing the classification accuracy.

In this paper, we proposed a novel deep C-LSTM neural
network structure for epileptic seizure and tumor detection.
The main contributions of this paper can be summarized as
follows:

1) The deep C-LSTM model can classify five brain sta-
tuses, including eyes open and close, seizure activity,
and two seizure free statuses.

2) It enhances the accuracy and achieves noise robustness.
3) It can predict the result using a short EEG signal

segment (1 second).
The paper is organized as follows: Section II list the

previous contributions for seizure detection. The adopted
data is described in Section III and the problem statement
is introduced in Section IV. Section V describes the data
reconstruction, DCNN, LSTM and the proposed deep C-
LSTM approaches. Experimental protocol are detailed in
Section VI and the acquired comparison results are discussed
in Section VII. Moreover, Section VIII drew the conclusions
and future works.

II. RELATED WORK
During last decade, several feature extraction methods and
classification approaches are present to improve the perfor-
mance of the built classifier and enhance the seizure de-
tection ability. The Continuous Wavelet Transform (CWT)
and Discrete Wavelet Transform (DWT) are the two general
methods to extract features for building a classifier [23]. The
epileptic seizure recognition dataset which is published on
the UCI machine learning website is mostly used. However,
few of the studies consider to classify all of the five classes.
Table 1 list several significant contributions for epileptic
seizure detection using the traditional machine learning (ML)
classification methods and feature extraction approaches.

Most of them consider to classify the seizure activity and nor-
mal brain as a binary classification problem. In general, the
selected features have three aspects, time-domain, frequency-
domain, and time-frequency-domain [24]. The most popu-
lar features are Approximate Entropy (ApEn), Sample En-
tropy (SampEn), Phase Entropy, Average Frequency (AF),
Spectral Entropy (SE), Normalized Spectral Entropy (NSE),
Spike Rhythmicity (SR), and Relative Spike Amplitude
(RSA) [13]. Meanwhile, the most popular and useful ML
methods for identifying the seizure by EEG signals are Fuzzy
Sugeno (FS), Support Vector Machine (SVM), k-Nearest
Neighbour (k-NN), Probabilistic Neural Network (PNN),
Decision Tree (DT), Gaussian Mixture Model (GMM), and
Naive Bayes (NB) [19].

Recently, many epileptic seizure detection methods based
on deep learning (DL) neural network are proposed for
enhancing accuracy and automatic feature selection. Table 2
list four current studies using different deep learning meth-
ods. All of them get a higher accuracy than the traditional
ML approaches, but there are some limitations have not be
considered. First, the detection length is too large to achieve
a real-time monitoring. Second, few of them can classify
multiple classes. Hence, we proposed a novel deep learning
based structure to solve the above problems. The deep C-
LSTM approach is a popular method applying on many
research fields, such as text classification [36], [37], fast
biomedical volumetric image segmentation [38], web traffic
anomaly detection [39]. This model has proved to obtain
a higher classification accuracy by comparing with several
previous DL models, such as DCNN and LSTM.

Although all of list previous contributions achieve a high
classification accuracy (over 84%), most of the recognized
classes number are less than four. Hence, the obtained accu-
racy are limited. On the other hand, most of the detection
length are longer than 2 seconds, which limits the perfor-
mance of real-time monitoring. Furthermore, noise interfer-
ence is another problem which will affect the recognition
rate. However, none of them consider to solve this problem.

III. DATA DESCRIPTION
The EEG signals for epileptic seizures and tumors are
adopted from the UCI machine learning website. The raw
data are recorded with the same 128-channel amplifier sys-
tem, using an average common reference [40]. The dataset
consists of five file sets which represent two activities (i.e.,
eyes open in set A and eyes closed in set B) and three
diseases in set C, D, and E. They originated from the EEG
archive of presurgical diagnosis. The EEGs are selected from
five patients who have achieved complete seizure control
after resection of one of the hippocampal formations. Set
C record from the opposite hemisphere of the brain within
the hippocampal formation, while set D is captured from
the epileptogenic zone. However, both of them consider
measured the seizure of free intervals. Set E is the epileptic
seizure activity. The sampling rate of the data acquisition
computer system is 173.61Hz with a 0.53-40Hz (12dB/oct)
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Year Cite Methodology Accuracy Class DurationFeatures Classifier
2004 [12] self-organized mapping (SOM) artificial neural network (ANN) 97.2% 2 1s
2005 [13] frequency-domain, Time-Domain ANN 99.60% 2 3s
2005 [14] wavelet transform (WT) neuro-fuzzy inference system (ANFIS) 98.68% 5 5s
2006 [15] Lyapunov exponent Multilayer perceptron Neural Network

(MLPNN)
95.50% 3 4s

2007 [16] approximate entropy (AE) ANN 100% 2 1.36s
2008 [17] bispectrum, power spectrum Gaussian mixture model (GMM) 93.11% 3 2.98s
2011 [18] Genetic programming (GP) K-nearest neighbor (KNN) 99.20% 2 1.32s
2012 [19] entropy Fuzzy 98.10% 3 4s
2015 [20] Empirical Mode Decomposition

(EMD)
SVM 98.69% 2 2.98s

2016 [21] Dual-tree Complex Wavelet Transform
(DT-CWT)

Normal Inverse Gaussian (NIG) 100% 3 1.47s

2017 [6] Wavelet Packets (WPs) Support Vector Machine (SVM) 95.15%∼99.64% 2 1.36s
2017 [22] Multi-domain and nonlinear analysis SVM 99.25% 5 10s

TABLE 1: Related works on EEG-based epileptic seizure recognition using traditional machine learning approaches.

Year Cite Methodology Layer Accuracy Class Duration
2016 [25] CNN 2 87.51% 2 80ms
2016 [26] Cloud-based deep learning 5 91.11% 2 4s
2017 [27] Deep Neural Network 4 95% 2 10s
2018 [1] DCNN 13 88.67% 3 5s
2018 [28] channel-aware attention mechanism 23 96.61% 2 -
2018 [29] Long Short-Term Memory 2 99.86% 2 5s
2018 [30] CNN 29 84.2% 2 5min
2018 [31] pyramidal one-dimensional CNN 3 99.8% 2 10s
2019 [32] deep LSTM 80 nodes 100% 5 2s
2019 [33] DCNN 4 93.3% 2 5s
2019 [34] DCNN 3 95.7% 3 2s
2019 [35] DCNN 2 91.8% 3 20s

TABLE 2: Related works on EEG-based epileptic seizure recognition using deep learning approaches.

band-pass filter settings.
Fig. 1 shows the collected EEG signals representing the

mentioned five activities and diseases. Each original dataset
consists of 100 files, with each file representing a single
subject/person. Each file is a recording of brain activity for
23.6 seconds. The corresponding time-series is sampled into
4097 data points. Each data point is the value of the EEG
recording at a different point in time. So we have total of 500
individuals with each has 4097 data points for 23.5 seconds.

In this paper, we adopt a sliding window strategy with
fixed detection length and overlap to recognize the epileptic
seizure activities and identify the other classes.

IV. PROBLEM STATEMENT
The aim of the epileptic seizure and tumor detection can be
regarded as a multiple-class classification problem using 100
dimensions EEG signals. The following notations describe
the procedure of classifier establishing and prediction. Let’s
assume the labeled sequence as (si, yi), i = 1, 2, · · · , N .
N is the length of the whole collected dataset. As it is
described in Section III, each input matrix si ∈ R100×Ld .
Ld is the detection length. y ∈ Λ a discrete class label. In
this article, there are five classes (see Fig. 1), i.e., eyes open
(A), eyes close (B), seizure free Hippocampal (C), seizure
free Epileptogenic zone (D), and seizure activity (E).

The first step is to establish five classes classifier by the
proposed DL model based on the labeled training couples
(sp, yp), p = 1, 2, · · · ,M . M is the number of couples in

the training dataset and M ≤ N . The built DL classifier can
be denoted as:

yp = f(sp, θ) (1)

, where θ is the whole parameters of the DL model. The
testing procedure can be regarded as a supervised way. When
a new input st acquired, the DL classifier can predict the
result as ŷt = f(st, θ). The recognition error ε can be
calculated by comparing ŷt with truth label yt as follows:

ε(y, s) =
1

T

T∑
t=1

[yt 6= f(s, θ)] (2)

where

[yt 6= f(st, θ)] =

{
1, yt 6= f(st, θ)
0, yt = f(st, θ)

(3)

, where T is the length of testing dataset. The DL classifier f
aims to find the optimal parameter set θ by

argmin
θ∈Θ

ε(y, s). (4)

Θ is the overall set of DL parameters.

V. METHODOLOGY
A novel Deep C-LSTM structure is designed to implement a
multiple-target classifier for accuracy enhancement and noise
robustness. To achieve the claims, it needs to reconstruct
the raw EEG signals for preparing the training and testing
datasets and establish the C-LSTM neural network.
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FIGURE 1: The schematic diagram of the collected five EEG datasets. Set A and B are the awake state of eyes open and
close, respectively. Set C and D are the selected EEG signals from the hippocampal and epileptogenic zone during seizure-free
intervals. Set E is the seizure activity.

A. DATA RECONSTRUCTION
To build the DL-based classifier for identifying the five
brain status, specially epileptic seizure recognition, a sliding
window strategy [41] is adopted with the fixed detection
length Ld and overlap Lo. As it is described in Section III,
the raw EEG signals is a time-varying sequence with 100
dimensions. Hence, each EEG segment is reconstructed as
a st ∈ R100×Ld matrix. Finally, the inputs can be regraded
as a sequence {s1, s2, · · · , st} which changes over time (see
Fig. 2).

B. DEEP CONVOLUTIONAL NEURAL NETWORK
Fig. 2 shows the typical architecture of a deep convolutional
neural network (DCNN). In general, it includes five lay-
ers: convolutional, batch normalization (BN), rectified linear
(ReLU) function, dropout layer, full connection (FC) layer,
and a softmax layer.

FIGURE 2: The typical deep convolutional neural network
(DCNN) structure for EEG classification. It consists of a
convolutional layer, batch normalization layer, a rectified
linear (ReLU) function, a dropout layer, a full connection
(FC) layer, and a softmax layer for classification.

First, the patterns will be extracted from the reconstructed

input matrix st ∈ R100×Ld by the designed convolutional
layer with a filter F ∈ Rn×m. The convolution operation
is to obtain the features matrix ct ∈ R(100−n+1)×(Ld−m+1)

by computing the convolution results between st and F as
follows:

ci = (s ∗ F )i =
∑
k,p

(s[j−n+1:j,i−m+1:i] ⊗ F )kp (5)

where s[j−n+1:j,i−m+1:i] is a sub-matrix of size m along
the columns and the operator ⊗ is the element-wise multi-
plication. By sliding along the column dimension of s, each
component ci is acquired as an element-wise product, which
is a single value as shown in Fig. 2.

The single filter is used to compute a convolution by
implementing the input matrix. To form a more vibrant
representation of the EEG signals, the DCNN model applies a
set of filters to compute the convolutional matrices in parallel.
Then, the obtained multiple feature maps can be denoted
as c ∈ N@n × m, where N is the number of filters (also
shown in Fig. 2). Meanwhile, a bias vector b ∈ N is added to
the convolution results so that they can learn an appropriate
threshold.

However, the full whitening of the convolutional outputs
is costly and indistinguishable in every column. To solve
these problems, a typical DCNN model adopts two necessary
simplifications BN and ReLU. The BN layer aims to joint
the inputs and outputs and normalizes the computed features
independently. Especially, it is made as a sequence with the
mean of zero and the variance of one. More details, the d-
dimensional convolutional inputs c = {c1 · · · cd} can be
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normalized as follows:

ĉk =
ck − c̄k√
σ(ck)

(6)

This step speeds up convergence even though some features
are not decorrelated [42]. However, the representation of the
layer might be changed due to the merely normalizing each
input of a layer. Notably, it will constrain the inputs to the
linear regime of the nonlinearity by a sigmoid normalizing
operation. Hence, a pair of parameters γk and βk are intro-
duced to scale and shift the normalized value:

yk = γk ĉk + βk (7)

Then, the representation power of the network can be restored
by learning along with these parameters. y ∈ Λ is a discrete
class label.

The non-linear activation function is adopted to enable the
learning of non-linear decision boundaries. In this paper, we
use the ReLU function to build the DCNN model to enhance
accuracy and accelerate calculation.

To prevent the DCNN model from overfitting, we add a
dropout layer with a rate of 0.3 before passing to the FC and
softmax layer. The probability distribution over the classes
can be computed as follows:

P (y = q|c, w, b) = softmaxq(c
>w + b)

=
ec

>wq+bq∑V
v=1 e

c>wq+bq

(8)

, wherew and b are the weights and bias of the v-th label [43].

C. RECURRENT NEURAL NETWORK
As a special RNN structure, the LSTM network has proven
robust and powerful for modeling a general-purpose se-
quence with long-range dependencies in time-varying stud-
ies [44]. Due to the collected EEG signals are the time-
based sequence, the current status has a strong relationship
with the previous environment. The LSTM model is the best
choice to solve this problem. As shown in Fig. 3, the memory
cell ct in the LSTM module, can accumulate the state infor-
mation by accessing, writing, and clearing the several self-
parameterized controlling gates. If the gate is activated, the
information will be accumulated to the cell. If the forget gate
ft is not on, the past cell ct−1 will be saved. Otherwise, the
previous information could be “forgotten”. The output gate
ot can control whether it needs to propagate the latest cell
output ct and the final state ht.

The related equations can be expressed as follows:

it = σ(Ωi · [ht−1, xt] + bi)

ft = σ(Ωf · [ht−1, xt] + bf )

ot = σ(Ωo · [ht−1, xt] + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Ωc · [ht−1, xt] + bc)

ht = ot ◦ tanh (ct)

(9)

, where xt is the input sequences.

FIGURE 3: The diagram of long-short term memory (LSTM)
unit.

D. THE PROPOSED DEEP C-LSTM ARCHITECTURE
Although both DCNN and LSTM models are proven pow-
erful to hand time sequence and noise robustness, they can
not keep a high and stable classification accuracy while the
LSTM model contains too much redundancy resulting in
time-consuming. To address these problems, we proposed a
deep convolutional-LSTM (C-LSTM) model to classify the
five classes EEG signals. Fig. 4 display the architecture of the
designed deep C-LSTM network, which consists of a DCNN
module and LSTM networks. The DCNN structure aims to
extract the features and reduce the dimension of the raw EEG
signals. The LSTM layer is to enhance recognition accuracy.

In the DCNN module, two convolutional networks are
adopted with the same size of filter 8 × 8. The first CNN
layer has four filters, while the second one has eight. The rate
of dropout layer is 0.3, and the neurons of the FC layer is set
as 10. Hence, the size of the parameters matrix obtained from
the first FC layer is 10. The LSTM layer has 30 neurons, then
the parameters matrix of the second FC layer is 5× 30.

The parameters of each layer in the proposed deep D-
LSTM frame are described as follows:

• Inputs: As it is described in Section V-A, the input can
be regarded as a 100×Ld matrix, because the raw EEG
signal have 100 dimensions. Fig. 4 shows the an input
EEG matrix with 1 second, namely Ld ≈ 174.

• Deep Convolution Neural Network: In the DCNN
model, there are two similar convolutional modules
designed with different parameters. Both of them have
a convolutional layer, BN, and ReLU function. The two
2D CNN layers use the same size of filter, namely 8×8,
which have four and eight window sizes, respectively.
Hence, the size of yielded feature map are 93×(Ld−7)
and 86× (Ld−14). The BN layer aims to learn by each
layer of CNN operation independently of other layers.
The ReLU activation function is to avoid the problems
of vanishing gradient and exploding gradient [45]. To
process the problems of large data and parameters, we
use the "Adam" optimizer for adaptive estimates of
lower-order moments [46]. This method is proved to be
implemented straightforwardly and computationally ef-
ficient. Furthermore, it has little memory requirements.
We set the initial learn rate at 0.005. The learn drop
period and factor are 50 and 0.1, respectively.

• LSTM: A LSTM network with 30 nodes are used to
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FIGURE 4: The architecture of deep C-LSTM method for multiple classes classification. It includes a DCNN module to extract
features automatically and an LSTM layer for identifying the five labels.

learn the information from the time sequence. Similarly,
the LSTM model also adopts the "Adam" optimizer. The
learning rate is set as 0.005 with a 0.2 drop factor and 5
drop period.

• Dropout: To solve the over-fitting problem, two dropout
layers are adopted behind the ReLU function and LSTM
layer. Meanwhile, the dropout network aims to improve
the generalization error along with the increasing layers
of the neural networks [47]. It also can reduce the
training time so that avoiding the time-consuming phe-
nomenon. We set a 0.5 percentage of the two dropout
networks.

• softmax: After acquiring the output from the FC layer,
the softmax activation function is adopted to turn proba-
bilities to logic numbers. After obtaining the probability
of each input of nodes in softmax layer, the highest
values will be selected as the final classification re-
sults [48].

VI. EXPERIMENTAL PROTOCOL
A. DATASET SETTING
As it is described in Section III, the used EEG dataset
have 4097 × 5 samples (23.6 × 5 seconds). We choose
three types detection length (1s, 1.5s, and 2s) to evaluate
the classification accuracy. For each experiment, we adopt
two strategies for building the training and testing datasets,
namely 50% − 50% and 60% − 40%. For example, the
50% − 50% experiment means it uses half of EEG data to
train the classifier and the rest half data for evaluation. To
enhance the persuasiveness of the experiment, we selected
arbitrary 50% segments, and run the experiment over 20
times to obtain the average and standard deviation of the
classification results.

B. EVALUATION PARAMETERS
We adopt overall accuracy to evaluate the total classification
accuracy of classifiers. The computational equations are de-
fined by Eqs. 2 and 3. For evaluating the performance of each
binary classification task, sensitivity and F1-score are used.
Sensitivity aims to measure the proportion of actual positives
that are correctly identified. A high F1 score means that the
classifier has low false positives and low false negatives.
Sensitivity and F1-score can be calculated by the following

equations:

sensitivity = TP
TP+FN

precision = TP
TP+FP

F1-score = 2 sensitivity·precision
sensitivity+precision

(10)

, where TP and FP demote the number of true positives and
false positives, respectively. TP means the model correctly
predicts positive class, while FP indicates the model incor-
rectly predicts positive class. Similarly, FN and TN are the
numbers of false negatives, and true negatives, which means
the model incorrectly predicts negative class, and the model
predicts negative class correctly. The best value for F1-score
and sensitivity is 1.

VII. RESULTS AND DISCUSSION
A. CLASSIFICATION PERFORMANCE
The Epileptic detection performance of the proposed deep
C-LSTM model was evaluated by comparing the overall ac-
curacy, F1-score, and sensitivity. For avoiding the overfitting
problem of the neural network method, all of the experiments
are run more than 20 times. In table 3, the proposed deep C-
LSTM model obtains the high total accuracy than the other
two types of DL methods in both 50%−50% and 60%−40%
strategies. The comparison results also prove that the deep
C-LSTM approach can classify the five classes using a short
detection period (1s, 1.5s, and 2s) with a high recognition rate
(more than 98.80%).

However, the total accuracy cannot describe the perfor-
mance of the multi-class classification and the ability of the
classifier. As it is described above, F1-score and sensitivity
are the two main measurement parameters to evaluate the
classification ability of each class. Hence, both qualitative
and quantitative analyzing methods are adopted to evaluate
the sensitivity and robustness ability in Fig. 5. The DCNN
model with two layers of CNN modules is an unstable
classifier, which is unsuitable to be used for epileptic seizure
detection. The LSTM model shows a lower F1-score value
to recognize the seizure activity while the proposed deep
C-LSTM method acquired the best F1-score in each binary
classification task, which proves that it is the best method for
accuracy enhancement and robustness.
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Methods
Overall Accuracy

50%-50% 60%-40%
1s 1.5s 2s 1s 1.5s 2s

DCNN 78.65± 0.08 77.82± 0.24 76.42± 0.13 74.71± 0.15 85.50± 0.13 85.00± 0.16
LSTM 82.00± 0.03 69.47± 0.15 63.58± 0.05 85.22± 0.03 76.89± 0.03 62.69± 0.05

deep C-LSTM 99.74± 0 98.80± 0.02 99.14± 0.01 99.30± 0.01 99.83± 0 99.31± 0.02

TABLE 3: The comparison total accuracy among DCNN, LSTM and deep C-LSTM.

(a) (b)

(c) (d)

(e) (f)

FIGURE 5: The comparison F1-score among DCNN, LSTM, and deep C-LSTM approaches. From the top graph to the bottom
graph, the detection lengths are 1s, 1.5s, and 2s, respectively. The left column is the results testing on 50%-50% strategy, while
the 60%-40% strategy obtains the right three graphs.

Similarly, the average sensitivity of each class is computed
in Fig. 6. Although the proposed deep C-LSTM gets the
best sensitivity, the comparison results show that the DCNN
model is good at recognizing the seizure activity, while the
LSTM model cannot. Nevertheless, it gets a higher recogni-
tion rate for identifying the eyes open and close.

B. NOISE ROBUSTNESS

To implement this model to practical operation, it is neces-
sary to acquire the noise robustness. Hence, various Gaussian
noise sources are generated to the input at each epoch in
the network training [49]–[51]. It aims to estimate the noise
status of deep C-LSTM model by measuring standard devi-
ation of actual noise. In this experiment, the proposed deep
C-LSTM method is evaluated by comparing the DCNN and
LSTM approaches because noise robustness depends on the
regularization method and the selection of the hyperparame-

ter.

By using various Gaussian noise source, such as different
signal-noise rate (SNR), it can evaluate the noise robustness
with the proposed deep C-LSTM model. In this experiment,
we choose two SNR values, i.e., 10dB and 30dB. For more
details evaluation, the F1-score, sensitivity, and overall accu-
racy are compared. Table 4 displays that the proposed deep
C-LSTM model has a better ability of noise robustness. Most
of the F1-score and sensitivity are close to 1.

To enhance the persuasiveness of the experiment, we add
20dB SNR to compare the overall accuracy among DCNN,
LSTM, and C-LSTM. The proposed deep C-LSTM not only
obtains the highest average accuracy (over 99.38%) but also
gets the lowest standard deviation.
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Parameter Class 10dB 30dB
DCNN LSTM deep C-LSTM DCNN LSTM deep C-LSTM

F1-score

A 0.88± 0.29 0.99± 0 0.99± 0.03 0.69± 0.43 0.98± 0.01 0.99± 0.02
B 0.95± 0.14 0.99± 0.01 1± 0 0.86± 0.31 0.98± 0.01 0.99± 0.02
C 0.86± 0.31 0.98± 0.01 0.99± 0.03 0.81± 0.31 0.97± 0.01 0.98± 0.03
D 0.99± 0.01 0.97± 0.01 1± 0 0.99± 0.01 0.95± 0.01 1± 0
E 0.99± 0.02 0.92± 0.02 1± 0 0.96± 0.08 0.90± 0.02 1± 0

Sensitivity

A 0.90± 0.29 1± 0 1± 0 0.66± 0.44 1± 0 1± 0
B 0.97± 0.06 1± 0 1± 0 0.85± 0.33 1± 0 1± 0
C 0.84± 0.32 1± 0 0.98± 0.06 0.88± 0.30 0.98± 0.01 0.98± 0.05
D 0.99± 0.02 0.99± 0 1± 0 0.99± 0 0.97± 0.01 1± 0
E 1± 0 0.86± 0.03 1± 0 1± 0 0.84± 0.04 1± 0

TABLE 4: The comparison results among DCNN, LSTM, and deep C-LSTM with two SNR values (10dB and 30dB).

FIGURE 6: The comparison average values of sensitivity
among DCNN, LSTM, and deep C-LSTM models.

FIGURE 7: The comparison results of overall accuracy
among DCNN, LSTM, and deep C-LSTM models.

VIII. CONCLUSION
In this paper, we proposed a novel deep C-LSTM model to
detect epileptic seizures and tumors in the human brain. A
five classes dataset is adopted to evaluate the performance of
the deep C-LSTM method. Meanwhile, the ability of noise
robustness is proved by adding different white noises in the
raw EEG signals. The deep C-LSTM method is proved for
recognizing epileptic seizure with short detection length (1
second). By comparing with LSTM and DCNN approaches,
the deep C-LSTM model improves multiple-class classifica-
tion accuracy and noise robustness. However, these model-
based methods are generally vulnerable to model errors and
unexpected measurement noise, computationally expensive.
This aspect needs to be more investigated in the future.

The trained deep C-LSTM model is expected to be applied
to the practical operation of epileptic seizures and tumor
detection. Due to the limitation of the dataset, the built deep
C-LSTM model should be improved by training on a larger
dataset.

Despite some defects of the deep C-LSTM model, this
approach is still promising because an improved performance
can be achieved easily from the dataset, which simulates
various uncertain conditions such as measurement noise and
the classification accuracy.
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