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Abstract 

Cross-ties are employed on cable-stayed bridges to reduce wind-induced stay vibration. The occurrence of a number of failures 
has motivated investigations on the nonlinear dynamics of these systems. The non-linear behavior is possible at incipient failure 
of the cross-tie. This paper combines the features of the Equivalent Linearization Method, recently derived to study non-linear 
behavior in the cross-ties at moderate stay vibration amplitudes, with implementation of the Stochastic Approximation (SA) to 
account for the presence of parameter variability during aeroelastic vibration. The problem becomes an equivalent random 
eigenvalue problem with eigenvalues (equivalent frequencies) depending on a random vibration amplitude parameter. Novel 
implementations of the SA are considered to evaluate higher-order statistical moments of eigenvalue distributions; the 
consequent randomness in the eigenvectors is also examined.  
© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Wind-induced stay vibration on cable-stayed [1]and related cable-deck issues [2] can be reduced by deploying 
cross-ties, which are the building blocks of an in-plane cable network. Non-linear dynamics behaviour has been 
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observed in cable networks at incipient failure of the cross-tie. This interesting behaviour can be simulated by 
appropriate models of the restoring force transferred by the cross-tie[3]. Nevertheless, very few studies have 
addressed the relevant question of cable network performance under the influence of non-linear dynamics. In recent 
years, the authors have proposed the use of an Equivalent Linearization Method (ELM) to examine and 
approximately solve the nonlinear free vibrations of these cable systems[4].The ELM derives a set of equivalent 
natural frequencies (eigenvalues) and mode functions (eigenvectors), which depend on vibration amplitude. The 
main parameter, controlling the dynamics, is a vibration amplitude parameter, λ. Since the value of the initial 
vibration amplitude is affected by parameter variability, the problem becomes stochastic. Randomness reflects the 
uncertainty in the frequency estimation, which is a consequence of the inability to describe various aeroelastic 
mechanisms[1,5]. 

The resulting nonlinear random eigenvalue problem is subsequently solved by using implementations of the 
Stochastic Approximation (SA) method and the Robbins-Monro (RM) theorem [6,7], which are adaptive numerical 
techniques designed for stochastic environments. Adequate convergence properties of the SA are usually achieved 
in a number of applications [8]. Even though several methods are available to solve random eigenvalue problems, 
the SA has been selected because of its efficiency and simplicity. This paper examines a new application of the SA 
to calculate higher-order statistical moments of the eigenvalue distribution, following recent work [9]. The study 
makes use of a recently-developed numerical procedure, designated as “layered” SA algorithm to estimate the mean, 
standard deviation and skewness of the eigenvalue distribution. Numerical estimation of higher statistical moments 
is needed since the distribution of the random frequencies is often skewed. Furthermore, the method is employed to 
examine the tolerance bounds of the “eigenvector clouds”[9]. A benchmark three-stay cable network with variable 
cross-tie geometry is used in the numerical computations. The SA method is computationally efficient and 
adequately reproduces the main features of the random frequency distributions. 

2. Background on nonlinear cable – network dynamics 

The benchmark configuration is a three-cable system, installed on the Fred Hartman Bridge and labeled as BSL 
network in Fig. 1a (“B-line”, “South” tower, “Lower” network). The system is composed of three stays (BS13, 
BS14 and BS15) of the “B-line” on the south tower of the bridge and one cross-tie (Fig. 1b).  

 

 
Fig. 1.Case study:(a) prototype three-cable networks (refer to “Network BSL”) installed on the BS-line, South Tower, of the Fred Hartman 

Bridge, Houston, Texas, USA; (b) cable network model with nonlinear cross-tie. 

In the case of cable-cross-tie systems, flexural stiffness and nonlinear sag effects in the primary stays can be 
neglected [10], even though geometric non-linearity may influence the dynamics of “stand-alone” cables [11,12]. 
The properties of the stays (j={1,2,3}) are: tension Tj, length Lj and mass per unit length μj. The reference stay is 
BS15 with index j=1 (Fig. 1b). Description of the stay properties may be found in Table 1 of [13].Each segment of 
the stays is simulated as a continuous taut string, with transverse oscillation yj,p at a generic location xj,p along each 
segment with  j={1,2,3} and p={1,2} in Fig. 1b. The dynamic model employs the wave equation (time t):  

2 2 2 2
, , ,j j p j p j j pT y x y t       (1) 

The boundary conditions enforced at each end include nonlinearity. Nonlinearity simulates incipient failure in the 
cross-ties through the internal restoring force in the cross-tie. The internal force transferred between stays j and j+1 
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at Pj,1 and Pj+1,1 is: , 1 ,1 1,1 , ,1 1,1 ,1 1,1[ ( ) | | sign( )]j j j j j j j j j jF k y y y y y y
         ;yj,1 and yj,1+1 are the transverse 

vibrations of the main cables at Pj,1 and Pj+1,1. In the expression for Fj,j+1, justified by a series of experimental results 
[10], a linear spring of stiffness kj is used in parallel with a nonlinear element of “stiffness” εβ,j. The quantity 2≤β≤3 
is a positive integer number (power-law coefficient);εβ,j>0 simulates an increment of stiffness, a performance 
increase after initial imperfect installation of the wire, whereas εβ,j<0 simulates degradation in the cross-tie 
properties[14]. Pre-stressing in the cross-ties may readily be included [13] but is not considered in this study. 

The ELM [15]is used to examine the free-vibration dynamics of the system in Fig. 1b;the following properties 
are considered: restrainer position x1,1=ξ1,1L1; linear stiffness properties in both cross-tie segments with dk=dk,1=dk,2 
given by dk,1=T1/(k1L1), dk,2=T2/(k2L2); the quantity dk,j=Tj/(kjLj) (j={1,2}) is a dimensionless stiffness parameter [14]. 

Application of the ELM between anchorage points Pj,1 and Pj+1,1 in Fig. 1b leads to the linearization of Fj,j+1 and: 

  1 ( 1)1
, , , 1 ,1 1,11 / 2 ( 1) ,k ELM j j ELM j j j j j jd T k L L S S



   
 


      , , /

  j j j jL T  (2, 3) 

In Eqs. (2,3) dkELM,j and kELM,j are dimensionless and dimensional equivalent (linearized) stiffness parameters; 
νβ,jis a dimensionless nonlinear stiffness coefficient measuring the contribution provided by the nonlinear 
component of the cross-tie. Equation (2) also depends on the dimensionless amplitude parameter λ≥0 and the local 
displacement field at nodes Pj,1 andPj+1,1, designated by quantities Sj,1 andSj+1,1 and the “modal amplitude ratio δj” 
[14].The quantity λ is the ratio between anticipated vibration amplitude in the reference stay (j=1 or BS15), mode by 
mode, and the length L1;in the present setting, this approximation is acceptable at moderate amplitudes[15]. 

A total equivalent stiffness parameter dkEjof the parallel spring model for the cross-tie segment between Pj,1 
andPj+1,1is obtained by combining Eqs. (2,3) with dk,j. After full linearization [4]and Eq. (3), the dynamic free-
vibration wave equations[Eq. (1)] are converted to a system of homogeneous algebraic equations; this is an 
equivalent eigenvalue/eigenvector problem in terms of “equivalent frequency” αE and harmonic “modes”. Despite 
the linearization, harmonic oscillation still predominantly occurs. The quantity αE is usually normalized to 

 0.5
01 1 1 1/ /   L T , the fundamental “native-cable” pulsation of the reference stay (j=1, BS15 in Fig. 1b). The mode 

shapes Yj,p are real trigonometric functions. The ELM also requires linearization of initial free-vibration conditions, 
imposed through the definition of λ. For reference, the fundamental native cable frequencies of the stays in Fig. 1b 
are: 1.30 Hz [BS15, corresponding to ω01/(2π)], 1.36 (BS14) and 1.89 Hz (BS13). 

3. Stochastic dynamics and layered algorithms for SA 

In this section, the standard SA method and its application [15] are initially reviewed; the layered SA algorithm is 
subsequently introduced. The SA [6,7]is an iterative method for finding the root of a function, even if its exact 
formula is unknown because of the presence of statistical noise. The SA formulation has been used to solve many 
engineering and physics problems [8,16]. 

As outlined in the previous sections, the quantity λ is a random variable to account for the inadequate knowledge 
of the various stay vibration mechanisms, which are related to irregular wind load features and aeroelasticity. One 
plausible assumption for describing this modeling uncertainty is to consider λ as uniformly distributed in the interval 
0≤λ≤λu; the lower limit λ=0 corresponds to the linear solution whereas λ=λu can be inferred from the anticipated 
level of wind-induced aeroelastic vibration. The problem is consequently mapped into a random eigenvalue problem 
in terms of αE, which can be solved using the SA. The nature of the stochastic free vibration can be represented 
through the random sequence {λ1,λ2,...,λq,...,λn}, which generates a corresponding sequence of equivalent 
frequencies{αE,1,αE,2,...,αE,q,...,αE,n}. These roots are found by ELM from the roots of the characteristic polynomial 
associated with the equivalent eigenvalue/eigenvector problem, designated as Qλq(αE,q)=0. 

The true average value of the average frequency can be found from the roots of this sequence by SA (mode by 
mode) using a recursive approach [7] (with q the generic step of the algorithm): 

, 1 , ,( )
qE q E q q E qa Q        (4) 

Eq. (4) estimates the root of a function, which corresponds to the true value of the ensemble function of the 
characteristic polynomial, by avoiding expensive root finding for each Qλq from Qλq(αE,q)=0. The approximate 

E
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solution is iteratively found through Eq. (4), in which aq=a/(q+1)δSA is a damping parameter with a and δSA two 
arbitrary constants. In ordinary conditions [15], the values a=0.25 and δSA=0.95 are employed for convergence. 
Equation (4) also includes a “relaxation parameter” 0<ζ<1, which rescales aq to facilitate numerical convergence in 
special situations (e.g., closely-spaced frequencies [15]).  

In the present problem setting, efficient estimation of the standard deviation and higher-order statistical moments 
of αE is needed since the probability distributions of αE are asymmetrical. For this purpose, the layered SA algorithm 
is introduced as a direct derivation of the standard SA algorithm. The idea is to replace the continuous output 
distribution of αE by an approximate discrete equivalent random eigen-value variable (“DE”, αE

(DE)). The probability 
mass function (PMF) of the discrete output variable is approximately evaluated. If the nonlinear relationship 
between random λ and frequency is written as fα=|αE-Qλq(αE,q)| (zeros of the characteristic polynomial), the true 
functional relationship between input and output variables (λ and αE) is a transformation of random variables.  

In the layered SA setting, this relationship is replaced by an approximated fα of the stratified discrete equivalent 
variable αE

(DE). Furthermore, λ is sampled from m equal-probability independent intervals, Λr, or “sets” with 
r=1,..,m. In each Λr the frequency converges to a representative discrete point αE,r

(DE). Each discrete point αE,r
(DE) can 

be evaluated as the expected value of the continuous variable, with λ being exclusively sampled inside the set Λr: 
(DE)

, |E r E rE         (5) 

Eq. (5) is evaluated by SA and Eq. (4), i.e. the SA is applied m times by “layering” the sampling inside each set.  
In previous work [9], mean and standard deviations of αE have been estimated. In this work, the layered SA is 

extended to higher statistical moments(order g>2). The expressions for the mean, standard deviation and other 
moments of the continuous αE are approximately found from the moments of the discrete variable [Eq. (5)]: 

   (DE)
,

1
PMF

m

E E r
r

E  


  ,      
22 (DE)

,
1

PMF
m

E E r
r

E  


        ,      (DE)
,

1
PMF

m gg
E E r

r
E  



         (6,7,8) 

With PMF=1/m. The Fisher-Pearson coefficient of skewness [18]is determined from the first three moments (g=3). 

4. Numerical computations by Monte Carlo sampling 

The panels of Fig. 2 illustrate examples of empirical histograms of both input random amplitude parameter 
λ(uniformly distributed, generated synthetically) and two output equivalent frequencies αE of the third cable network 
mode (Mode III) evaluated for variable dk. The graphs are determined by Brute Force Method (BFM) via Monte 
Carlo sampling. 

   
Fig. 2.Empirical histograms of the input and output random variables, examining the behavior of the third mode (Mode III) of the BSL network 
with cubic-stiffness cross tie (β=3) at x1,1=0.66L1, positive nonlinearity (νβ,1=νβ,2=+250) and uniform stochastic vibration amplitude parameter 
0<λ<(1/400): (a) synthetically generated sample of the random input λ (uniform), (b) sample of random output corresponding to dk=0.40, (c) 
sample of random output corresponding to dk=0.90 (by BFM, Monte Carlo). 
 

Comparison of Fig. 2b and 2c suggests that the histogram of αE depends on the stiffness parameter dk; there is a 
clear asymmetry in the histograms, which confirms the need to further study the skewness of αE. The skewness 
coefficients of αE, found by BFM, are 0.59 and -0.56 in Figs. 2b and 2c. Fig. 3 examines of random eigenvectors 
(mode shape functions, Yr), generated from the random sample of αE in Fig. 2bby BFM and Monte Carlo sampling; 
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the sample is labeled as “eigenvector cloud” [15]. The eigenvector cloud (50 realizations) is compared against the 
linear solution that neglects input randomness (λ=0)in Fig. 3a, and the “mean” eigenvector, obtained from the 
singular system matrix with the mean value of αE found by SA (Robbins-Monro or RM Eigenvector) in Fig. 3b.In 
Section 5 the new algorithm is used (instead of BFM) to find the skewness of αE for various cross-tie configurations. 

(a)   (b) 
Fig. 3.Examination of the random eigenvector cloud, generated by BFM Monte Carlo, relative to the third mode (Mode III) of BSL network with 
cubic-stiffness cross tie (β=3) at x1,1=0.66L1, positive nonlinearity (νβ,1=νβ,2=+250) and random vibration amplitude parameter 0<λ<(1/400): (a) 
eigenvector cloud vs. linear solution (λ=0), (b) eigenvector cloud vs. mean RM eigenvector, derived from the mean value of αE by SA algorithm. 

5. Numerical results by layered SA algorithm 

This section briefly summarizes the results of a study exploring the applicability of the layered SA algorithm to a 
wider class of stochastic problems in cable network dynamics. In particular, a parametric investigation is conducted 
to examine the influence of the cross-tie location on the skewness of the output αE distribution by varying the 
quantity x1,1 in the following set x1,1={0.25L1, 0.52L1,0.66L1}.Figs. 4 and 5 illustrate numerical results(Mode III).

 
Fig. 4.Skewness coefficient of the random αE associated with the third mode (Mode III) of the BSL network with cubic-stiffness cross tie (β=3), 
negative nonlinearity (νβ,1=νβ,2=-250) and random vibration amplitude parameter 0 ≤ λ ≤ (1/400): (a)x1,1=0.25L1, (b)x1,1=0.52L1, (c) x1,1=0.66L1. 

 
Fig. 5.Skewness coefficient of the random αE associated with the third mode (Mode III)of the BSL network with cubic-stiffness cross tie (β=3), 
positive nonlinearity (νβ,1=νβ,2=+250) and random vibration amplitude parameter 0 ≤ λ ≤ (1/400): (a)x1,1=0.25L1, (b)x1,1=0.52L1, (c)x1,1=0.66L1. 
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In Figs. 4and 5 the results consider a cross-tie with both negative and positive non-linearity. In the figures the 
skewness of the frequency is presented as a function of the stiffness parameter dk. Frequency estimations, based on 
the layered SA algorithm and the RM theorem, are found by varying the number of the intervals Λr (m=4,6,8).  

The accuracy of the proposed method increases with the number of intervals m. Comparison between BFM and 
RM results suggests that already with m=6 or m=8 the layered SA algorithm tends to the “exact” BFM curve. 
Figures 4 and 5 also suggest that the precision deteriorates (in both of cases) with the decrement of the stiffness 
coefficient dk. This fact can be explained by noting that the skewness coefficient is normalized to the variance of the 
distribution, which tends to zero as dk tends to zero. 

6. Discussion and conclusions 

The main contribution of this study is the demonstration that the skewness coefficient of the eigen-frequency 
distribution can be adequately evaluated using a layered SA algorithm. Clearly, the method provides new efficient 
avenues for the computation of additional statistical descriptors, in particular higher statistical moments, in an 
attempt to better examine the probability distribution of the random eigenvalues of stochastic cable-network free 
vibrations. In addition, the concept of eigenvector cloud is introduced to study the stochastic variability in the mode 
shapes. More research is needed to understand current limitations of the layered SA algorithm, for example by 
improving its convergence in the presence of a negative-stiffness nonlinear restoring force in the cross-ties.  
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