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ABSTRACT
Markov Logic Networks (MLNs) combine Markov networks (MNs) and first-
order logic by attaching weights to first-order formulas and using these as
templates for features of MNs. Learning the structure of MLNs is performed by
state-of-the-art methods by maximizing the likelihood of a relational database.
This leads to suboptimal results for prediction tasks due to the mismatch
between the objective function (likelihood) and the task of classification
(maximizing conditional likelihood (CL)).

In this paper we propose two algorithms for learning the structure of MLNs.
The first maximizes the CL of query predicates instead of the joint likelihood of
all predicates while the other maximizes the area under the Precision-Recall
curve (AUC). Both algorithms set the parameters by maximum likelihood and
choose structures by maximizing CL or AUC. For each of these algorithms we
develop two different searching strategies. The first is based on Iterated Local
Search and the second on Greedy Randomized Adaptive Search Procedure. We
compare the performances of these randomized search approaches on real-
world datasets and show that on larger datasets, the ILS-based approaches
perform better, both in terms of CLL and AUC, while on small datasets, ILS and
RBS approaches are competitive and RBS can also lead to better results for AUC.

1 INTRODUCTION
Many applications of artificial intelligence require both probability and first-
order logic (FOL) to deal with uncertainty and structural complexity. For a long
time, research in this area has followed two distinct lines: one based on logic
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representations, and one on statistical ones. Logic approaches like logic
programming, description logics, classical planning, etc, tend to handle
complexity. Statistical approaches like Bayesian networks, hidden Markov
models, Markov decision processes, etc, tend to handle uncertainty. However,
intelligent systems must be able to deal with both for applications in the real
world. The first attempts to integrate logic and statistics in artificial intelligence
were the works in [1, 2]. Later, several authors began using logic programs to
specify Bayesian networks [3].

Recently, different approaches for combining logic and probability have
been proposed such as Probabilistic Relational Models [4], First-order
Probabilistic Models with Combining Rules [5], Relational Dependency
Networks [6], and others. The advantage of these models is that they can
represent probabilistic dependencies between attributes of related different
objects. Most of these approaches combine probabilistic graphical models with
subsets of FOL (e.g., Horn Clauses). In this paper we focus on Markov Logic
[7], a representation language that has finite FOL and probabilistic graphical
models as subcases. It extends FOL by attaching weights to formulas providing
full expressiveness as graphical models and FOL in finite domains and
remaining well defined in many infinite domains [7, 8].

Learning an MLN consists in structure learning (learning the logical clauses)
and weight learning (setting the weight of each clause). In [7] structure learning
was performed through the rule-induction system CLAUDIEN [9] followed by
a weight learning phase in which maximum pseudo-likelihood [10] weights
were learned for each clause. In [11] structure is learned in a single phase using
weighted pseudo-likelihood as the evaluation measure in a beam search. The
algorithm performs systematic greedy search being therefore very suscetible to
local optima. A state-of-the-art algorithm for generative structure learning is
that in [12] which follows a bottom-up approach trying to consider fewer
candidates for evaluation. This algorithm uses a “propositional” Markov
network learning method to construct “template” networks that guide the
construction of candidate clauses. In this way, it generates fewer clauses for
evaluation. Recently, another generative algorithm was proposed in [13] that
exploits randomized search guided by pseudo-likelihood.

Generative approaches optimize the joint distribution of all the variables. This
can lead to suboptimal results for predictive tasks because of the mismatch
between the objective function used (likelihood or a similar function based on it)
and the goal of classification (maximizing accuracy or conditional likelihood).
In contrast discriminative approaches maximize the conditional likelihood of a



set of outputs given a set of inputs [14] and this has often produced better results
for prediction problems. In [15] the voted perceptron based algorithm for
discriminative weight learning of MLNs was shown to greatly outperform
maximum-likelihood and pseudo-likelihood approaches for two real-world
prediction problems. Recently, the algorithm in [16], outperforming the voted
perceptron became the state-of-the-art method for discriminative weight learning
of MLNs. However, both discriminative approaches to MLNs learn weights for
a fixed structure, given by a domain expert or learned through another structure
learning method (usually generative). Better results could be achieved if the
structure could be learned in a discriminative fashion.

Unfortunately the computational cost of optimizing structure and parameters
for conditional likelihood is prohibitive. We present two algorithms that set
parameters by maximum likelihood and choose structures by maximum CLL
and AUC of PR curve respectively. For both algorithms, we present two search
strategies: the ILS-Discriminative Structure Learning (ILS-DSL) algorithm
which is based on the Iterated Local Search (ILS) metaheuristic [17, 18] and the
Randomized Beam Search DSL (RBS-DSL) algorithm which is inspired from
the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic
[19, 20]. ILS-DSL explores the space of structures through a biased sampling
of the set of local optima. The algorithm focuses the search not on the full space
of solutions but on a smaller subspace defined by the solutions that are locally
optimal for the optimization engine. RBS-DSL, following GRASP approach,
performs a randomized beam search in two phases: in the construction phase it
randomly constructs a beam of best candidates in terms of likelihood while in
the second phase it searches for a beam of candidates with highest CLL or AUC
score.

Through empirical evaluation, we discover that under some conditions
satisfied by the domain and the problem, one heuristic shows better behaviour
than the other. This is an important result, since it opens the way to identify for
Statistical Relational Models the proper search strategy according to the
properties of the domain.

2 LOGIC AND LEARNING
Because of the computational complexity, KBs are generally constructed using
a restricted subset of FOL where inference and learning is more tractable. The
most widely-used restriction is to Horn clauses, which are clauses containing at
most one positive literal. In other words, a Horn clause is an implication with all
positive antecedents, and only one (positive) literal in the consequent. A program
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in the Prolog language is a set of Horn clauses. Prolog programs can be learned
from examples (often relational databases) by searching for Horn clauses that
hold in the data. The field of inductive logic programming (ILP) [21] deals
exactly with this problem. The main task in ILP is finding an hypothesis H (a
logic program, i.e. a definite clause program) from a set of positive and negative
examples P and N. In particular, it is required that the hypothesis H covers all
positive examples in P and none of the negative examples in N. The
representation language for representing the examples together with the covers
relation determines the ILP setting [22].

Learning from entailment is probably the most popular rule-induction setting
(e.g., FOIL [23]). In this setting examples are definite clauses and an example
e is covered by an hypothesis H, w.r.t the background theory B if and only if
B ∪ H |= e. Most rule-induction systems in this setting require ground facts as
examples. They typically proceed following a separate-and-conquer rule-
learning approach [24]. This means that in the outer loop they repeatedly search
for a rule covering many positive examples and none of the negatives (set-
covering approach). In the inner loop such systems generally perform a general-
to-specific heuristic search using refinement operators [25, 26] based on θ-
subsumption [27]. These operators perform the steps in the search-space, by
making small modifications to a hypothesis. Prom a logical perspective, these
refinement operators typically realize elementary generalization and
specialization steps (usually under θ-subsumption). More sophisticated systems
employ a search bias to reduce the search space of hypothesis.

In the rule-induction setting of learning from interpretations, examples are
Herbrand interpretations and an examle e is covered by an hypthesis H, w.r.t the
background theory B, if and only if e is a model of B ∪ H. A possible world is
described through sets of true ground facts which are the Herbrand
interpretations. Learning from interpretations is generally easier and
computationally more tractable than learning from entailment [22]. This is due
to the fact that interpretations carry much more information than the examples
in learning from entailment. In learning from entailment, examples consist of a
single fact, while in interepretations all the facts that hold in the example are
known. The approach followed by ILP systems learning from interpretations is
similar to those that learn from entailment. The most important difference
stands in the generality relationship. In learning from entailment an hypothesis
H1 is more general than H2 if and only if H1 |= H2, while in learning from
interpretations when H2 |= H1. A hypothesis H1 is more general than a
hypothesis H2 if all examples covered by H2 are also covered by H1. ILP
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systems that learn from interpretations are also well suited for learning from
positive examples only [9].

3 MARKOV LOGIC NETWORKS
A MN (or Markov random field) represents a model for the joint distribution of
a set of variables X = (X1,X2,... ,Xn) [28]. The model has an undirected graph
G and a set of potential functions. There is a node for each variable and a
potential function φk for each clique in the graph. A potential function is a non-
negative real-valued function of the state of the corresponding clique. The joint
distribution defined by a MN is given by the following:

(1)

where x{k}is the state of the kth clique (i.e., the state of the variables that appear
in that clique). Z is known as the partition function and is given by:

(2)

MNs are often represented as log-linear models, by replacing each clique
potential with an exponentiated weighted sum of features of the clique state.
This replacement gives the following:

(3)

A feature f may be any real-valued function of the state. The focus of this paper
is on binary features, fj ∈ {0,1}. Thus, if we translate from the potential-
function form, the model will have one feature for each possible state xk. of each
clique and its weight will be log(φ(x{k}). This representation is exponential in
the size of the cliques, but however, we can specify a much smaller number of
features in a more compact representation than the potential-function form. This
is the case when large cliques are present and MLNs try to take advantage of
this.

A first-order knowledge base (KB) can be considered as a set of hard
constraints on a set of possible worlds: if a world violates a single formula, it
will have zero probability. The idea in Markov Logic is to soften these
constraints: when a world violates a formula in the KB it will be less probable,
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but not impossible. The fewer formulas a world will violate, the more probable
it will be. Each formula has an attached weight that represents how hard a
constraint it is. A higher weight of a formula means there is a greater difference
in log probability between a world that satisfies that formula and one that does
not, all other things being equal.

An MLN [7] T is a set of pairs (Fi; wi), where Fi is a formula in FOL and wi
is a real number. Together with a finite set of constants C = {c1, c2,..., cp} it
defines a MN MT;C as follows:

1. There is a binary node in MT;C for each possible grounding of each
predicate appearing in T and the value of the node is 1 if the ground
predicate is true, and 0 otherwise.

2. There is one feature in MT;C for each possible grounding of each formula
Fi in T and the value of this feature is 1 if the ground formula is true, and
0 otherwise. The weight wi of the formula Fi in T becomes the weight of
this feature. There is an edge between two nodes of MT;C iff the
corresponding ground predicates appear together in at least one grounding
of a formula in T.

An MLN can be viewed as a template for constructing MNs. The probability
distribution over possible worlds x defined by the ground MN MT;C is given by:

(4)

where F is the number of formulas in T and ni(x) is the number of true
groundings of Fi in x. When formula weights increase, an MLN will resemble
a purely logical KB and in the limit of all infinite weights it becomes equivalent
to it.

The focus of this paper is on MLNs with function-free clauses assuming
domain closure in order to ensure that the MNs generated will be finite. In this
case, the groundings of a formula are formed by replacing the variables with
constants in all possible ways.

4 LEARNING MARKOV LOGIC NETWORKS
4.1 Generative Learning of MLNs
One of the approaches for learning MN weights is iterative scaling [28].
However, in [29], maximizing the likelihood using a quasi-Newton
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optimization method was found to be faster. Regarding feature induction, a
possible approach is that [28], where the authors start with a set of atomic
features (the original variables), conjoin each current feature with each atomic
feature, add to the network the conjunction that most increases likelihood, and
repeat. The work in [30] extended this to the case of conditional random fields,
which can be seen as MNs trained to maximize the conditional likelihood of a
set of output variables given a set of input variables.

The first approach to induce features of MLNs was proposed in [7], where
the authors used the CLAUDIEN system to learn the MLNs clauses and then
learned weights by maximizing pseudo-likelihood. In [11] another method was
proposed that combines ideas from ILP and feature induction of MNs. This
algorithm, that performs a beam or shortest first search in the space of clauses
guided by a weighted pseudo-likelihood (WPLL) measure [10], outperformed
that of [7]. Recently, in [12] a bottom-up approach was proposed in order to
reduce the search space. This algorithm uses a propositional MN learning
method to construct template networks that guide the construction of the
candidate clauses. In this way, it generates much fewer candidates for
evaluation. Even though it evaluates fewer candidates, after initially scoring all
them, the algorithm attempts to add the candidates one by one to the current
MLN, thus changing the MLN at almost each step. This greatly slows down the
computation of the optimization measure WPLL. For each candidate structure,
in both [11, 12] the parameters that optimize the WPLL are set through L-BFGS
[31] that approximates the second-derivative of the WPLL by keeping a running
finite-sized window of previous first-derivatives.

4.2 Discriminative Learning of MLNs
Learning MLNs in a discriminative fashion has produced for predictive tasks
much better results than generative approaches as the results in [15] show. In
this work the voted-perceptron algorithm was generalized to arbitrary MLNs by
replacing the Viterbi algorithm with a weighted satisfiability solver. The new
algorithm is gradient descent and uses an MPE approximation for the expected
sufficient statistics which in this case are the true clause counts. In practice,
these can vary widely between clauses, causing the learning problem to be
highly ill-conditioned which makes gradient descent very slow. In [16] a
preconditioned scaled conjugate gradient approach is shown to outperform the
algorithm in [15] in terms of learning time and prediction accuracy. This
algorithm is based on the scaled conjugate gradient method and good results
were obtained with a simple approach: per-weight learning weights, with the
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weight’s learning rate being the global one divided by the corresponding
clause’s empirical number of true groundings.

However, for both these algorithms the structure is supposed to be given by
an expert or learned previously and they focus only on the parameter learning
task. This can lead to suboptimal results if the clauses given by an expert do not
capture the essential dependencies in the domain in order to improve
classification accuracy. On the other side, since to the best of our knowledge,
no attempt has been made to learn the structure of general MLNs
discriminatively, the clauses learned by generative structure learning algorithms
tend to optimize the joint distribution of all the variables and applying
discriminative weight learning after the structure has been learned generatively
may lead to suboptimal results since the initial goal of the learned structure was
not to discriminate query predicates. The only approach to learning the structure
of MLNs discriminatively is that of [32] which is different from the approach
we propose. In fact, their approach is restricted to only MLNs structures built
with non-recursive definite clauses which is a very restricted subset of FOL
(only in this case exact inference used in [32] is possible). While here we use
full FOL expressiveness and propose a number of heuristics to make
approximate inference tractable in the general MLNs case.

5 HYBRID RANDOMIZED METAHEURISTICS
Many widely known and high-performance local search algorithms make use of
randomized choice in generating or selecting candidate solutions for a given
combinatorial problem instance. These algorithms are called stochastic local
search (SLS) algorithms [18] and represent one of the most successful and
widely used approaches for solving hard combinatorial problem. Many
“simple” SLS methods come from other search methods by just randomizing
the selection of the candidates during search, such as Randomized Iterative
Improvement (RII), Uniformed Random Walk, etc. Many other SLS methods
combine “simple” SLS methods to exploit the abilities of each of these during
search. These are known as Hybrid SLS methods [18]. ILS and GRASP are
among these metaheuristics because they can be easily combined with other
SLS methods.

5.1 Iterated Local Search
One of the simplest and most intuitive ideas for addressing the fundamental
issue of escaping local optima is to use two types of SLS steps: one for reaching
local optima as efficiently as possible, and the other for effectively escaping
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local optima. ILS methods [18, 17] exploit this key idea, and essentially use two
types of search steps alternatingly to perform a walk in the space of local optima
w.r.t the given evaluation function. Algorithm 1 works as follows: the search
process starts from a randomly selected element of the search space. From this
initial candidate solution, a locally optimal solution is obtained by applying a
subsidiary local search procedure. Then each iteration step of the algorithm
consists of three major steps: first a perturbation method is applied to the
current candidate solution S*; this yields a modified candidate solution S’ from
which in the next step a local search is performed until a local optimum S’* is
obtained. In the last third step, an acceptance criterion is used to decide from
which of the two local optima S* or S�* the search process is continued. The
algorithm can terminate after some steps have not produced improvement or
simply after a certain number of steps.

In general, it is not straightforward to decide whether to use a systematic or
SLS algorithm in a certain task. Systematic and SLS algorithms can be
considered complementary to each other. SLS algorithms are advantageous in
many situations, particularly if reasonably good solutions are required within a
short time, if parallel processing is used and if knowledge about the problem
domain is rather limited. In other cases, when time constraints are less
important and some knowledge about the problem domain can be exploited,
systematic search may be a better choice. Structure learning of MLNs is a hard
optimization problem due to the large space to be explored, thus SLS methods
are suitable for finding solutions of high quality in short time.

5.2 Greedy Randomized Adaptive Search Procedure
GRASP [19, 20] is an approach for quickly finding high-quality solutions by
applying a greedy construction search method (that starting from an empty
candidate solution at each construction step adds the solution component ranked
best, according to a heuristic selection function) and subsequently a perturbative
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Algorithm 1 The Iterated Local Search metaheuristic
Procedure Iterated Local Search

s0 = GenerateInitialSolution
s = LocalSearch(s0)

repeat

s
′

= Perturb(s , history)

s
′

= LocalSearch(s
′
)

s = Accept(s
′
, s , history)

until termination condition is true
return s
end



local search algorithm to improve the candidate solution thus obtained. This type
of hybrid search method often yields much better solution quality than simple
SLS methods initialized at candidate solutions by Uninformed Random Picking
[18]. Moreover, when starting from a greedily constructed candidate solution,
the subsequent perturbative local search process typically takes much fewer
improvement steps to reach a local optimum. Since greedy construction methods
can typically generate a very limited number of different candidate solutions,
GRASP avoids this disadvantage by randomizing the construction method such
that it can generate a large number of different good starting points for a
perturbative local search method. In Figure 2, in each iteration, the randomized
constructive local search algorithm GreedyRandomizedConstruction and the
perturbative LocalSearch algorithm are applied until the termination criterion is
met. The algorithm GreedyRandomizedConstruction, in contrast to greedy
constructive algorithms, does not necessarily add the best solution component
but rather selects it randomly from a list of highly ranked solution components
(Restricted Candidate List) which can be defined by cardinality restriction or by
value restriction. In this paper we present a novel algorithm inspired from
GRASP that performs randomized beam search by scoring the structures through
maximum likelihood in the first phase and then uses maximum CLL or AUC for
PR curve in a second step to randomly generate a beam of the best clauses to add
to the current MLN structure.

6 DISCRIMINATIVE STRUCTURE LEARNING OF MLNS
In this section we describe our approach of tailoring the ILS metaheuristic to
the problem of learning the structure of MLNs. We also present a novel
algorithm inspired from GRASP together with some simple heuristics for
making tractable randomized beam searching. We describe how weights are set
and how structures are scored. The approach we follow is similar to [33] where
Bayesian Networks were learned by setting weights through maximum
likelihood and choosing structures by maximizing conditional likelihood. In
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Algorithm 2 The GRASP metaheuristic.
Procedure GRASP
S =
repeat

S0 = GreedyRandomizedConstruction(S)
S = LocalSearch(S0)
S = UpdateSolution(S,S )

until termination criteria is met
Return S
end



addition, we propose a number of heuristics to make the computation of CLL
tractable for the very large number of potential candidates.

6.1 Space Exploration Strategy
Algorithm 3 iteratively adds the best clause to the current MLN until S
consecutive steps have not produced improvement (however other stopping
criteria could be applied). It can start from an empty network or from an
existing KB. Like in [7, 11] we add all unit clauses (single predicates) to the
MLN. The initial weights are learned in LearnWeights through L-BFGS and the
initial structure is scored in ComputeScore through MC-SAT. MC-SAT takes in
input a MLN, a query predicate and evidence ground facts and computes for
each grounding of the query predicate, its probability of being true. From these
values in ComputeScore, the CLL is computed as the average of CLL over all
these groundings. DSLQLL scores directly the candidate clauses by CLL, while
DSLAUC computes the AUC of the PR curve by using the package of [34].

The search for the best clause is performed in the SearchBestClause
procedure (Algorithm 4). It performs an iterated local search to find the best
clause to add to the current MLN. It starts by randomly choosing a unit clause
CLC in the search space. Then it performs a greedy local search to efficiently
reach a local optimum CLS. At this point, a perturbation method is applied
leading to the neighbor CL�C of CLs and then a greedy local search is applied to
CL�C to reach another local optimum CL�S . The accept function decides whether
the search must continue from the previous local optimum CLC or from the last
found local optimum CL�S (accept can perform random walk or iterative
improvement in the space of local optima).
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Algorithm 3 The structure learning algorithm
Input: (P:set of predicates, MLN:Markov Logic Network, RDB:Relational Database, QP: Query
predicate)
CLS = All clauses in MLN ∪ P;
LearnWeights(MLN,RDB);
BestScore = ComputeScore(MLN,RDB,QP);
repeat

BestClause = SearchBestClause(P,MLN,BestScore,CLS,RDB,QP);
if BestClause �= null then

Add BestClause to MLN;
BestScore = ComputeScore(MLN,RDB,QP);

end if
until BestClause = null for consecutive steps
Return MLN
For DSLCLL ComputeScore computes the average CLL over all the groundings of the query
predicate QP
For DSLAUC ComputeScore computes the AUC of PR curve
If Iterated Local Search: SearchBestClause = ILS-SearchBestClause (Algorithm 4)
If Randomized Beam Search: SearchBestClause = RBS-SearchBestClause (Algorithm 6)



Careful choice of the various components of SearchBestClause is important
to achieve high performance. The clause perturbation operator (flipping the sign
of literals, removing literals or adding literals) has the goal to jump in a different
region of the search space where search should start with the next iteration.
There can be strong or weak perturbations which means that if the jump in the
search space is near to the current local optimum the subsidiary local search
procedure LocalSearchII (Algorithm 5) may fall again in the same local optimum
and enter regions with the same value of the objective function called plateau,
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Algorithm 4 The SearchBestClause component of ILS
Input:(P: set of predicates, MLN: Markov Logic Network, BestScore: CLL of AUC score, Best-
WPLL: WPLL score, CLS: List of clauses, RDB: Relational Database, QP: Query predicate)
CLC = Random Pick a clause in CLS ∪ P;
CLS = LocalSearchII(CLS ,BestScore,BestWPLL);
BestClause = CLS ;
repeat

CL’C = Perturb(CLS);
CL’S = LocalSearchII(CL’C ,MLN,BestScore,BestWPLL);
if ComputeScore(BestClause,MLN,RDB,QP) ComputeScore(CL’S ,MLN,RDB,QP) then

BestClause = CL’S ;
Add BestClause to MLN;
BestScore = ComputeScore(CL’S ,MLN,RDB,QP)

end if
CLS = accept(CLS ,CL’S);

until k consecutive steps have not produced improvement
Return BestClause
For ILSCLL ComputeScore computes the average CLL over all the groundings of the query
predicate
For ILSAUC ComputeScore computes the AUC of PR curve

Algorithm 5 The subsidiary procedure LocalSearch and the Step function of
ILS

LocalSearchII(CLS ,BestScore,BestWPLL)
wp: walk probability, the probability of performing an improvement step or a random step
repeat

NBHD = Neighborhood of CLC constructed using the clause construction operators;
CLS = StepRII(CLC ,NBHD,wp,BestScore,BestWPLL);
CLC = CLS ;

until two consecutive steps do not produce improvement
Return CLS ;
StepRII(CLC ,NBHD,wp,BestScore,BestWPLL)
U = random(]0,1]); random number using a Uniform Probability Distribution
if U wp) then

CLS = stepURW (CLC ,NBHD)
Uninformed Random Walk: randomly choose a neighbor from NBHD

else
CLS = stepII(CLC ,NBHD)
Iterative Improvement: among the improving neighbors in NBHD that improve BestWPLL,
choose the one that maximally improves BestScore in terms of CLL or AUC.
If there is no improving neighbor choose the minimally worsening one

end if
Return CLS



but if the jump is too far, LocalSearchII may take too many steps to reach another
good solution. In our algorithm we use only strong perturbations, i.e., we always
re-start from unit clauses. Regarding the procedure LocalSearchII, we decided to
use an iterative improvement approach (the walk probability is set to zero and
the best clause is always chosen in StepII) in order to balance intensification
(greedily increase quality) and diversification (randomness induced). Finally, the
accept function always accepts the best solution found so far.

For Randomized Beam Search, Algorithm 6 starts with a beam of the initial
clauses (in case there are other clauses previously learned) and unit clauses.
Prom this beam, by using the clause construction operators, the algorithm
constructs in GenerateCandidates all the potential candidate clauses to be
scored for adding to the current structure. Then for each of these candidates the
gain in WPLL is computed. In the next step, the algorithm performs a
randomized construction of candidate clauses in the RandomizedConstruction
procedure (Algorithm 7). In this procedure, similar to a GRASP approach, it is
first defined the Restricted Candidate List (RCL) in a random fashion by
cardinality value of WPLL. All candidates with a gain in WPLL greater than
minGain + α * (maxGain � minGain) (where α is a random number from a
uniform probability distribution), are considered to be included in the RCL. To
induce randomness in the algorithm the parameter α has an important function
and is called the RCL parameter. It determines the level of randomness or
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Algorithm 6 The SearchBestClause procedure of the RBS-DSL algorithm
SearchBestClause(P: set of predicates, MLN: Markov Logic Network, BestScore: CLL or AUC
score, BestWPLL: WPLL score,CLS: List of clauses, RDB: Relational Database, QP: Query
predicate)
Beam = CLS;
repeat

Candidates = GenerateCandidates(Beam,P);
for Each Clause C in Candidates do

Add C to the current MLN; LearnWeights(MLN,RDB);
CWPLL = Score of C by WPLL; WPLLGain of C = CWPLL - BestWPLL;

end for
BestWPLLClauses = RandomizedConstruction(Candidates,BestWPLL);
scoredList: list of candidates scored in terms of CLL (or AUC);
for Each Clause C in BestWPLLClauses do

Add C to the current MLN;
ComputeScore(MLN,RDB);
Add C to scoredList;

end for
NewBeam = RandomizedBeam(scoredList,BestScore);
BestClause = Best Clause in NewBeam;
Beam = NewBeam;

until two consecutive iterations have not produced improvement
Return BestClause
For RBSCLL ComputeScore computes the average CLL over all the groundings of the query
predicate
For RBSAUC ComputeScore computes the AUC of PR curve



greediness in the construction. In some GRASP implementations the parameter
is fixed while in others it is adapted dynamically. The case α = 0 corresponds
to a pure greedy algorithm, while α = 1 is equivalent to a random construction.

The similarity of our algorithm with GRASP is that randomization is applied
not only to the choice of the candidates from the RCL but also to the
construction of the RCL. On the other side, the difference with GRASP is that
in GRASP only one candidate is randomly chosen from the RCL in order to
continue the search, while in our algorithm a list of clauses is randomly
constructed by choosing them from the RCL. Another difference is that we
introduce the following heuristic: only candidates with a positive gain in WPLL
are to be considered for scoring of CLL. Thus, in case there are candidates with
no gain (minGain ≤ 0), we set the value threshold to zero. In order not to loose
randomness in case of threshold = 0, a random choice among the RCL
candidates follows. Once the potential candidates for the RCL are randomly
constructed, the algorithm randomly chooses among these according to the
random number rand and the paramater λ. In our experiments we found
empirically that the value λ = 0.5 * beamSize/100 induces enough randomness
in the choice from RCL candidates. This value depends on the size of the beam
which is a parameter of the main algorithm. In most cases, the number of
candidates in the RCL and those that are chosen from this list can be very high.
This can cause intractable computation times because most of these candidates
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Algorithm 7 Randomized Construction of the best WPLL candidate list
RandomizedConstruction(CandidateClauses,BestWPLL)
BestWPLLClauses: Randomized List of best WPLL candidates;
maxNumClauses = maximum number of clauses to choose from RCL;

= random([0,1]); random number using a Uniform Probability Distribution
threshold: value to use as limit;
minGain = minimumWPLLGain(CandidateClauses);
maxGain = maximumWPLLGain(CandidateClauses);
if minGain > 0 then

threshold = minGain + * (maxGain - minGain) ;
else

threshold = 0;
end if
for Each Clause C in CandidateClauses do

if WPLLGain(C) > threshold then
rand = random([0,1]); random number using a Uniform Probability Distribution
if rand > then

Add C to BestWPLLClauses;
end if
if size of BestWPLLClauses = maxNumClauses then

break;
end if

end if
end for
Return BestWPLLClauses



have to be scored again in terms of CLL (or AUC). For this reason, it is
reasonable to pose a limit in the size of the clauses to be evaluated in the next
step. This is achieved by setting the parameter maxNumClauses which
determines the number of potential candidates to be scored by CLL (or AUC).

After the procedure RandomizedConstruction returns the list BestWPLL-
Clauses, all the candidates in this list are scored for CLL (or AUC) and given
in input to the RandomizedB earn procedure. In this procedure it is performed
the same randomized process on the candidates but this time based on their CLL
(or AUC) values. Differently from the RandomizedConstruction procedure, the
randomized construction of the beam does not exclude negative values for the
gain of the candidates. The value of the parameter λ is the same as for the
RandomizedConstruction procedure.

7 EXPERIMENTS
Through experimental evaluation we want to compare the behaviour of the two
randomized search strategies.

7.1 Datasets
All the experiments were carried out on two publicly available benchmark
databases: the UW-CSE database used by [11, 7, 12] and the CORA dataset
used by [11, 35, 16]. Both databases represent standard relational domains that
have been used for two important relational problems: CORA on Entity
Resolution and UW-CSE on Social Network analysis. For CORA we used the
cleaned version from [35]. The published version of the UW-CSE database has
15 predicates of 10 types. Types include: publication, person, course, quarter
etc, while predicates include: Student (person), Professor(person),
AdvisedBy(personl, per-son2), TaughtBy(course, person, quarter), Publication
(paper, person) etc. The dataset has in total 2673 tuples which represent the true
ground atoms, assuming the remainder as false (under closed-word
assumption). The CORA dataset has 1295 citations of 132 different computer
science papers, drawn from the CORA Computer Science Research Paper
Engine. The original task was to predict which citations refer to the same paper,
given words in their author, title, and venue fields. Moreover, the labeled data
specify which pairs of author, title, and venue fields refer to the same entities,
thus we performed experiments for each field in order to evaluate the ability of
the model to deduplicate fields as well as citations. The number of equivalences
for CORA may become very large, and to render this problem tractable, we
used the canopies found in [35].
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7.2 Systems and Methodology
We implemented all the algorithms in the Alchemy package [36]. We used the
implementation of L-BFGS and Lazy-MC-SAT in Alchemy to learn maximum
WPLL weights and compute CLL during clause search.

For both datasets, for all our algorithms we used the following parameters:
the mean and variance of the Gaussian prior were set to 0 and 100, respectively;
maximum variables per clause = 4; maximum predicates per clause = 4;
penalization of weighted pseudo-likelihood = 0.01 for UW-CSE and 0.001 for
CORA. beamSize = 5 for UW-CSE and 10 for CORA. For L-BFGS we used the
following parameters: maximum iterations = 10,000 (tight) and 10 (loose);
convergence threshold = 10�5 (tight) and 10�4 (loose). For Lazy-MC-SAT
during learning we used the following parameters: for iterated local search
algorithms memory limit = 300MB for both datasets, for randomized beam
search algorithms, memory limit = 600MB for UW-CSE and 1GB for CORA,
maximum number of steps for Gibbs sampling = 100, simulated annealing
temperature = 0.5. For ILS based algorithms, the parameter k (number of
iterations without improvement) was set to three, while the parameter S was set
to 2 for ILS and 1 for RBS based algorithms. All these parameters were set in
an ad hoc manner and per-fold optimization may lead to better results. In
particular the memory requirements of Lazy-MC-SAT were set higher for RBS
based algorithms because we empirically observed that a larger number of

304 Modelling and Searching of Combinatorial Spaces Based on Markov
Logic Networks

Algorithm 8 Randomized choice of the best CLL (or AUC) candidate list to
form the new beam.

RandomizedBeam(ListClauses,BestScore)
ListClauses: list of clauses scored for CLL (or AUC)
newBeam: new list of clauses to randomly generate from ListClauses;
beamSize = Size of beam for the algorithm RBS-DSL;

= random([0,1]); random number using a Uniform Probability Distribution
threshold: value to use as limit;
minGain = minimumGain(ListClauses);
maxGain = maximumGain(ListClauses);
threshold = minGain + * (maxGain - minGain) ;
for Each Clause C in ListClauses do

if Gain(C) > threshold then
rand = random([0,1]); random number using a Uniform Probability Distribution
if rand > then

Add C to newBeam;
end if
if size of newBeam = beamSize then

break;
end if

end if
end for
Return newBeam;
For RBSCLL minimumGain returns the minimum gain in CLL among all candidates
For RBSAUC minimumGain returns the minimum gain in AUC among all candidates



potential clauses compared to ILS, required larger memory requirements. This
is due to the nature of RBS which evaluates more clauses than ILS during
search. However, as can be noted from the results of the experiments a larger
memory spent by Lazy-MC-SAT to score the structures in the RBS based
algorithms did not produce much higher results than the ILS based versions.

For both datasets we performed cross-validation (in the UW-CSE each area
is considered as a fold). For each system on each test set, we measured the CLL
and the area under the AUC for all the predicates. With CLL, we directly
measure the quality of the probability estimates produced, while on the other
side, the advantage of AUC is that it is insensitive to the large number of true
negatives. The CLL of a query predicate is computed as the average over all its
groundings of the ground atom’s log-probability The precision-recall curve for
a predicate is computed by varying the CLL threshold above which a ground
atom is predicted to be true; i.e. the predicates whose probability of being true
is greater than the threshold are positive and the rest are negative.

7.3 Results
After learning the structure discriminatively, we performed inference on the test
fold for both datasets by using MC-SAT with number of steps = 10000 and
simulated annealing temperature = 0.5. For each experiment, on the test fold all
the groundings of the query predicates were commented: advisedBy for the
UW-CSE dataset (professor and student are also commented) and sameBib,
sameTitle, sameAuthor and same Venue for CORA. MC-SAT produces
probability outputs for every grounding of the query predicate on the test fold.
We used these values to compute the average CLL over all the groundings and
to compute the PR curve.

We denote the two versions of each algorithm as ILSCLL, ILSAUC and RBSCLL,
RBSAUC. For the algorithms that optimize AUC of PR curve during search, we
scored each structure by using the package of [34]. The results for all
algorithms on the UW-CSE dataset are reported in Table 1 for CLL and Table 2
for AUC. In Table 1, CLL is averaged over all the groundings of the predicate
advisedBy in the test fold.

As the results of Table 1 show, the ILSCLL algorithm performs better than
RBSCLL in terms of CLL. The better solution found by ILSCLL, leads to the
conclusion that in this domain for this optimizing measure, this algorithm
performs a better exploration of the search space compared to RBSCLL. The
other two versions, ILSAUC and RBSAUC achieve the same result, which means
that for this measure both these algorithms are equivalent to use.
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However, from Table 2, we can see that RBSCLL, produces much better results
than ILSCLL in terms of AUC. And overall, the RBS-based algorithms perform
better than the ILS-based approaches. The inverse situation is verified in Table
3, where ILS-based approaches provide much better solutions in terms of CLL.
The same happens also in Table 4 where the ILS-based algorithms achieve
higher results in terms of AUC.

In general, it is not straightforward to provide sound analysis of the behaviour
of randomized search approaches. It becomes even more difficult to arrive at
conclusions when functions to be optimized are complex such as those in
Statistical Relational Models. However, we try here to characterize the searching
problem based on the properties of the dataset. The UW-CSE dataset with a total
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Table 1: CLL Results for the query predicate advisedBy in the UW-CSE domain

Alg. language graphics systems

ILSCLL �0.048±0.016 �0.016±0.003 �0.020±0.003

RBSCLL �0.043±0.015 �0.026±0.004 �0.058±0.002

ILSAUC �0.028±0.008 �0.015±0.003 �0.017±0.002

RBSAUC �0.025±0.007 �0.015±0.003 �0.017±0.003

Alg. theory ai Overall

ILSCLL �0.020±0.005 �0.022±0.003 �0.025±0.006

RBSCLL �0.019±0.004 �0.032±0.005 �0.036±0.006

ILSAUC �0.018±0.004 �0.019±0.003 �0.019±0.004

RBSAUC �0.018±0.004 �0.020±0.003 �0.019±0.004

Table 2: AUC results for the query predicate advisedBy in the UW-CSE domain

Alg. language graphics systems theory ai Overall

ILSCLL 1.011 0.006 0.007 0.010 0.006 0.008

RBSCLL 0.034 0.009 0.010 0.012 0.008 0.015

ILSAUC 0.016 0.005 0.007 0.005 0.008 0.008

RBSAUC 0.073 0.005 0.005 0.005 0.007 0.019



of 2673 tuples can be considered of much smaller size compared to CORA that
has 70367 tuples. The results of Table 2 show that on the UW-CSE dataset, the
RBS-based algorithms perform better in terms of AUC, and Table 1 shows they
are competitive in terms of CLL since they underperform the other ILS-based
algorithms only because of the low results in the systems fold of the dataset.

On the other side, on the larger dataset CORA, the ILS-based approaches
perform better, both in terms of CLL and AUC. The superiority of ILS towards
RBS is evident and leads us to the conclusion that on small datasets, ILS and
RBS approaches are competitive and RBS can also lead to better results (for
AUC), while for larger datasets ILS approaches produce much better results.

The performance comparison between different search strategies and our
findings regarding the dimension of the domain, provide additional development in
the field of Statistical Relational Learning where exploration of combinatorial
spaces is necessary. Further analysis is needed to understand how ILS can be further
improved in small domains where RBS achieves sometimes better performance.

Moreover, due to the general language that MLNs represent, it is possible to
express a very large class of problems which need the expressiveness power of
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Table 3: CLL results for all query predicates in the CORA domain

Alg. sameBib sameTitle sameAuthor sameVenue Overall

ILSCLL �0.087�0.001 �0.077�0.006 �0.148�0.009 �0.121�0.004 �0.108�0.005

RBSCLL �0.222�0.003 �0.120�0.008 �0.126�0.008 �0.129�0.005 �0.149�0.006

ILSAUC �0.168�0.002 �0.117�0.010 �0.158�0.011 �0.101�0.004 �0.136�0.007

RBSAUC �0.254�0.002 �0.077�0.007 �0.133�0.011 �0.172�0.005 �0.159�0.006

Table 4: AUC results for all query predicates in the CORA domain

Alg. sameBib sameTitle sameAuthor sameVenue Overall

ILSCLL 0.603 0.428 0.371 0.315 0.429

RBSCLL 0.265 0.546 0.600 0.233 0.411

ILSAUC 0.334 0.470 0.688 0.252 0.436

RBSAUC 0.322 0.423 0.534 0.175 0.364



logic. Combinatorial spaces characterize a large variety of problems which
could be expressed in MLNs and the algorithms proposed here could be
exploited without restrictions on the applicability due to the power of logic to
represent most of the existing real-world problems. However, it is not always
necessary to use MLNs to express problems since in many cases relations are
not needed (in this case MNs would be sufficient) or there is no uncertainty in
the domain (in this case the pure logic approach is sufficient), and MLNs can
deal with both these as special cases.

Overall, regarding scalability, since the problems we treat here represent
benchmark tasks in learning in relational uncertain domains, we can confirm
that the proposed algorithms are powerful exploring methods for large spaces.
In particular, the CORA domain is very large and a deterministic approach
would require much more computational effort. The results on this dataset show
that very large datasets can be processed in reasonable time with randomized
strategies by preserving solutions quality.

8 RELATED WORK
Recently many works related to hybrid languages have addressed the problem of
discriminative learning. Our discriminative method falls among those approaches
that tightly integrate rule-induction and statistical learning in a single step for
structure learning. The earlier works in this direction are those in [37, 38] that
employ statistical models such as maximum entropy modeling in [37] and logistic
regression in [38]. These approaches can be computationally very expensive. A
simpler approach that integrates FOIL and Naive Bayes is nFOIL proposed in
[39]. This approach interleaves the steps of generating rules and scoring them
through CLL. In another work [40] these steps are coupled by scoring the clauses
through the improvement in classification accuracy. This algorithm incrementally
builds a Bayes net during rule learning and each candidate rule is introduced in
the network and scored by whether it improves the performance of the classifier.
In a recent approach [41], the kFOIL system integrates rule-induction and support
vector learning. kFOIL constructs the feature space by leveraging FOIL search for
a set of relevant clauses. The search is driven by the performance obtained by a
support vector machine based on the resulting kernel. The authors showed that
kFOIL improves over nFOIL. Recently, in TFOIL [42], Tree Augmented Naive
Bayes, a generalization of Naive Bayes was integrated with FOIL and it was
shown that TFOIL outperforms nFOIL.

Regarding the two steps integration, the most closely related approach to the
proposed algorithms is nFOIL (and TFOIL as an extension) which is the first
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system in literature to tightly integrate feature induction and Naive Bayes. Such
a dynamic propositionalization was shown to be superior compared to static
propositionalization approaches that use Naive Bayes only to post-process the
rule set. The approach is different from ours in that nFOIL selects features and
parameters that jointly optimize a probabilistic score on the training set, while
our algorithms maximize the likelihood on the training data but select the
clauses based on the tuning set. This approach is similar to SAYU [40] that uses
the tuning set to compute the score in terms of classification accuracy or AUC,
with the difference that DSLCLL uses CLL as score instead of AUC. SAYU is
similar only to DSLAUC. From the point of view of steps integration,
MACCENT [37] follows a similar approach by inducing clausal constraints
(one at a time) that are used as features for maximum-entropy classification.

Finally, from the point of view of search strategies, our algorithms are also
similar to approches in ILP that exploit SLS [43]. The algorithms that we
propose here are different in that they use likelihood as evaluation measure
instead of ILP coverage criteria. Moreover, our algorithms differ from those in
[43] in that we use Hybrid SLS approaches which can combine other simple
SLS methods to produce high performance algorithms.

9 CONCLUSIONS AND FUTURE WORK
Markov Logic Networks are a powerful representation that combines first-order
logic and probability by attaching weights to first-order formulas and using
these as templates for features of Markov networks. In this paper we have
introduced two algorithms that learn discriminatively first-order clauses and
their weights. The algorithms score the candidate structures by maximizing
conditional likelihood or area under the Precision-Recall curve while setting the
parameters by maximum pseudo-likelihood. For each algorithm, we have
proposed two versions based respectively on the Iterated Local Search and
Greedy Randomized Adaptive Search Procedure metaheuristics. Empirical
evaluation with real-world data in two domains show that on larger datasets, the
ILS-based approaches perform better, both in terms of CLL and AUC, while on
small datasets, ILS and RBS approaches are competitive and RBS can also lead
to better results for AUC.

Directions for future work include adapting dynamically the nature of
perturbation in the ILS procedure; adapting dynamically the randomization
parameter of GRASP; finding heuristics to select, among clauses that do not
improve WPLL, potential candidates that can improve CLL. Finally, we would
like to apply our algorithms to other complex structural uncertain domains.
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