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ABSTRACT: 

Within coastal systems, sand dunes are the only natural barriers able to counteract erosive processes. Since their equilibrium is often 

threatened by human activities and high vulnerability of the coastal environment, dunes require increasing attention and specific 

monitoring. Located between the mainland and the sea, dunes are unique residue habitats for some plant and animal species. In 

particular, their vegetation is important because it has a consolidation function and promotes the vertical dune accretion. A 

georeferenced vegetation classification can be useful to define the advancements or erosion stage of the dune, usually based only on 

the geometric reconstruction. 

The proposed study aims to compare the classifications performed with some combinations of two of the last generation sensors and 

traditional image processing techniques. High spectral resolution satellite image (WorldView-2) and a multispectral orthophoto, 

obtained from data acquired by an unmanned aerial vehicle, were used. Objects and pixel algorithms were applied and the results 

were compared by a statistical test. Using the same bands, the findings show that both data are suitable for monitoring the 

evolutionary dune status. Specifically, the WorldView-2 pixel-based classification and UAV object-based classification provide the 

same accurate results. 

1. INTRODUCTION

The coastal dunes are the dynamic and vital transition zones 

between the sandy shorelines and the continental environment, 

characterized by high geological and ecological values. In 

proportion to their size, their continuity, and to their 

geomorphological conditions, the dunes play different physical 

and ecological-naturalistic functions (Martínez et al., 2008): 

1) Within the coast’s dynamic equilibrium, the dunes represent

a resilience factor, which gives the system a greater ability to

restore balance lost due to disturbances. These sand reserves

allow natural sediment exchanges without a pronounced

erosion of the coast (Giambastiani et al., 2017).

2) They play an important hydrogeological function, hosting

fresh groundwater lenses with piezometric levels above sea

level. These lenses limit soil and groundwater salinization due

to natural and anthropic causes (Cozzolino et al., 2017).

3) Due to their elevated morphology above the surrounding

territory, dunes are the only natural defense from seawater

during storm surges. This effect is more relevant in areas that

are highly vulnerable to natural and/or anthropic subsidence.

(Roelvink et al., 2009).

4) The dunes protect the inland areas from marine spray and

sand from the sea, preventing phenomena of vegetation decay

that can affect large areas (Tengberg, 1995).

5) Lastly, coastal dunes represent a unique habitat for

specialized plant communities and many animal classes
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 (mammals, reptiles and birds), (Acosta et al., 2009). 

However, in spite of their environmental roles, the dune 

systems, over the last half century, have been reduced or 

demolished by uncontrolled urbanization and mass tourism. The 

resorts built on the beach interfere with the morpho-dynamic 

processes of the dune, preventing their development and 

causing uncontrolled erosion (Sytnik and Stecchi, 

2015).Therefore, an accurate monitoring of dune evolution is 

needed. Today, there are different tools and techniques available 

for the environmental monitoring of dune systems: botanic and 

topographic field surveys (Lu et al., 2012), aerial and satellite 

image analysis (Hugenholtz et al., 2012), Terrestrial Laser 

Scanning surveys (Mancini et al., 2013), aerial Laser Scanning 

acquisition (Stockdon et al., 2009), ground DGPS (Differential 

Global Positioning System) measurements (Navarro et al., 

2011).  

Every evolutionary stage of the sand dune is also correlated to 

its vegetation cover (Provoost, et al., 2011). The vegetation 

makes dunes less susceptible to erosive processes (Munson et 

al., 2011). These delicate systems can be classified as mobile or 

fixed according to the presence of vegetation. Precisely, sand 

dunes are classified as “free of vegetation and active”, or as 

“partly vegetated and active”, and “totally vegetated and fixed” 

(Tsoar, 2005). The reciprocal interaction between the dunes and 

their vegetation influences the geomorphological development 

of the coast (Miller et al. 2010). 

This study fits in the context of the development and application 

of innovative methods to analyse the morphological dynamics 

of coastal systems. High spectral and spatial resolution satellite 

data, already widely used in the bibliography (Durán & Moore, 
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2013), were compared with orthophotos obtained from 

multispectral frames acquired by an unmanned aerial vehicle 

(UAV). Several studies report the use of aerial or satellite 

images and data provided by UAV platforms in order to: 

compare their elaboration results (Matese et al., 2015), integrate 

the different information extracted (Solazzo, 2016), combine 

two kinds of data for a multiscale analysis (Duro et al., 2015) 

and to classify the natural or agricultural coverage (Gini et al., 

2017). Within the proposed work, a WorldView-2 (WV-2) 

image and a UAV orthophoto, built using several photograms 

acquired by Tetracam ADC Micro, were elaborated through 

pixel and object-based algorithms. The main aim is to verify the 

best combination between data and methodology in order to 

classify dune vegetation, extending the knowledge about 

potentiality and limits of these two classification techniques, 

using different high-resolution data with various costs and 

availability. Finally, the obtained vegetation maps could be a 

valid support for the coastal protection plans. 

2. STUDY AREA

Figure 1. Casal Borsetti dune (Ravenna, Italy) 

The selected study area (Fig. 1) is the coastal dune of Casal 

Borsetti (Ravenna, Italy). The whole site lies in an area where 

both natural and anthropic subsidence caused an intensification 

of all the risks arising from the interaction between coast and 

marine environment (Giambastiani et al., 2017). 

The N-S length of the dune is almost 300 m, while the 

maximum W-E width is about 60 m. The maximum altitude is 

5.5 m a.s.l. 

The dune is included in the Natura 2000 Network, and  named 

"Pinewood Casalborsetti, Pineta Staggioni, Duna di Porto 

Corsini" IT4070005. Moreover, the area falls within the Po 

Delta Regional Park, classified as SCI (Site of Community 

Interest) and SPA (Special Protection Area). Artificial rocky 

barriers parallel to the shore are present in front of the dune and 

a transverse jetty is located at the south. All of them aim to 

protect the beach and the dune from marine erosion. 

Many authors described the typical vegetation cover for the 

North-Adriatic coastal dunes (Sburlino et al. 2013; Merloni et 

al., 2015). Based on the Directive 92/43/EEC "Habitat", moving 

from the sea inland, the theoretical vegetation belts are:  

 1210: Annual vegetation of drift lines (following AP, i.e.

annual pioneer species). 

 2110: Embryonic shifting dunes (following ED, i.e. embryo

dune vegetation). 

 2120: Shifting dunes along the shoreline with Ammophila

arenaria (following WD, i.e. white dune), where the 

dunes become more stable. 

 2230: Malcomietalia dune grasslands.

 2130: Fixed coastal dunes with herbaceous vegetation

(following GD, i.e. grey dune). 

 2250: Coastal dunes with Juniperus spp. (following B, i.e.

brush). 

 2270: Wooded dunes with Pinus pinea and/or Pinus pinaster

(following P, i.e. pinewood). 

However, the vegetation distribution on the Casal Borsetti dune 

is more complex and confused compared to the aforementioned 

description. During the UAV flight, a contemporary botanic 

survey was carried out for ground truth data collection and 

reported the following situation: 

1) The area colonized by pioneer and embryonic community is

systematically swept during the mechanical beach cleaning

operations that occurs before and during the tourist season, in

order to remove waste carried by storms. The consequence is

the drastic reduction of the pioneer and embryonic community

distribution and the presence of embryonic plants in areas

generally occupied either by Ammophila arenaria or even

further inland, confining often directly with the GD.

2) The Ammophila arenaria is generally absent and, where

present, is grouped in small clusters without spatial continuity.

The GD and ED are often adjacent or mixed, occupying ranges

that are not typically associated to these habitats. As a result, the

areas identified as a WD are very poor and discontinuous.

3) The Malcolmietalia grassland is widespread in various areas

of the dune, from the ED to the GD. This condition is probably

due to the scarcity of Ammophila arenaria and due to the

footpaths that cause erosion areas without vegetation

(Semeoshenkova et al., 2016), in correspondence to the accesses

to the beach. In some cases footpaths cause the formation of

furrows, called blowouts, where the wind increases sand

transportation and dune erosion. Part of the sediment eroded in

a blowout is moved inland causing an advancement in the

opposite direction (Giambastiani et al., 2017).

4) Considering that there are no typical plant communities of

the interdunal lowlands, the grey dune is adjacent to retrodunal

woods.

3. METHODS

The description of data used is reported in Table 1. 

Data WorldView-2 
UAV 

Orthophoto 

Spatial resolution 
2 m 

(multispectral) 
5 cm 

Spectral resolution 
8 bands 

(Visible-NIR) 

3 bands 

(Red-Green-NIR) 

Time of acquisition 05/29/2011 10/09/2014 

Altitude 770 km 80 m 

Table 1. Data 
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3.1 WorldView-2 data 

Concerning the WorldView-2 orthoimage, atmospheric 

correction and georeferencing were applied before the 

classification algorithms. ENVI image processing software 

(version 5.1) was used. The first pre-elaboration reduced the 

atmospheric interference differences due to dissimilar revisiting 

geometry and time acquisition (Tab. 1). The radiative transfer 

model FLAASH (Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes) was applied. It is an implementation of 

MODTRAN4. 

Since the UAV orthoimage was georeferenced according to the 

Italian national cartography ETRF2000 UTM-33N, the original 

WV-2 reference system, WGS84 UTM-33N, was thus 

converted in the same system to make the classifications results 

comparable. In addition, the WV-2 data was not well geo-

referenced because there were no easily recognizable and stable 

points within the study area. Therefore, in order to compare the 

WV-2 image to the UAV orthophoto their co-registration was 

necessary. 

3.2 UAV orthophoto 

A total number of 82 frames were acquired by the commercial 

multispectral camera Tetracam ADC Micro, installed on the 

hexacopter ESAFLY A2500_WH (SAL engineering, Italy). The 

GSD (Ground Sample Distance) was set equal to 3 cm and the 

overlap between images (both axial and lateral) was fixed to 

75%. 4 Ground Control Points (GCPs) were placed on the study 

area and their coordinates were measured by a geodetic-dual 

frequency GNSS receiver in rapid-static mode. Io order to 

locate the GCPs in the ETRF2000 system, the EUREF 

(European Reference) permanent station of Porto Garibaldi 

(Ferrara, Italy) and the IGS (International GNSS Service) 

permanent station of Medicina (Bologna, Italy), were used. 

Thus, the coordinates were projected to UTM 33N. 

The ADC Micro has a single sensor Aptina CMOS (6.55 mm × 

4.92 mm, pixel size of 3.12 micron) shielded by a Bayern filter. 

However, since the camera has an optical low-pass filter that 

stops blue band, it acquires in the green (G), red (R), and NIR 

bands. Due to the Bayer filter, each pixel corresponds to only 

one of these bands and the images are initially single matrices 

of Digital Numbers (DN) stored in RAW format. Therefore, it is 

necessary to reconstruct the two missing bands for all pixels, 

interpolating the observed values of the adjacent pixels. The 

camera software, PixelWrench2 (PW2), was used and, for each 

frame, a tri-band TIFF file was exported. 

In order to take into account the actual condition of exposure, 

PW2 was calibrated using its Teflon tag, acquired under the 

same lighting conditions of the frames. Since this procedure 

does not convert the sensor output to reflectance (Candiago et 

al., 2015), the subsequent analysis was based on the DN values. 

The TIFF frames were employed as the input for the 

photogrammetric pipeline based on a Structure from Motion 

algorithm (Ullman, 1979), implemented in Agisoft Photoscan. 

The output was a three-dimensional model of the scene from 

which orthophoto and DSM were extracted. In the first step, the 

approximate positions and orientations of the camera were 

determined for each frame and a sparse point cloud model was 

created. Subsequently, the model was geo-referenced 

collimating the GCPs centroid and inserting their coordinates. 

At this stage, the software operates a 7-parameter similarity 

transformation and the optimization phase (self-calibrating 

bundle adjustment) using the GCPs coordinates (Mancini et al., 

2013). This step ensures a correct scaling, through the external 

orientation parameters of the frames, and the geo-location, 

improving the reliability of the camera interior parameters 

(focal length, principal point, lens distortion parameters). Then, 

a dense point cloud was built and a polygonal mesh was 

generated. Finally, the Digital Surface Model (DSM) and the 

orthoimage were extracted with a resolution of 5 cm. The 

orthoimage preserves the G, R, and NIR bands that were used in 

the subsequent vegetation analysis. 

3.3 Data Analysis 

Once the two data were co-registered, the same area including 

the Casal Borsetti dune was resized over both images using a 

mask tool. 

Subsequently, supervised classification techniques, pixel-based 

and object-based, were applied using the same bands (G, R, 

NIR) for both data. Therefore, an outlining of the training site 

was required. However, the discrimination of the single habitat 

samples has been very difficult because many species are 

similar to each other and they are mixed within different 

habitats. This situation made the allocation of dune portions to a 

specific class complicated, especially where there are disturbing 

factors that modify the development of the natural habitat. 

Based on the study area description, some dune habitats were 

grouped within classes that continue to represent the 

evolutionary state and the stability of the dune. In particular, the 

ED and AP were merged into a single class due to: the lack of 

vegetation cover, mutual interpenetration and their similar 

correlation to the dune’s stability. 

It was not possible to consider the WD because the Ammophila 

arenaria, the unique feature able to discriminate the WD from 

the ED, consists of isolated and small groups and not by a 

continuous formations. Moreover, the Ammophila arenaria is 

very similar to Agropyron, which instead identifies the ED. 

Also, the Malcolmietalia grasslands, although widespread on 

the dune, were not identified by a different class because they 

are not easily discoverable, since they are mixed with different 

habitats. 

Instead, the DG, mainly covered by mosses, is a relatively 

homogeneous and distinguishable formation. Lastly, the other 

two classes recognizable on the scene are the pine forest and the 

nude sand. 

In order to understand how many classes it was possible to 

discriminate, the ISODATA and NDVI were applied. Therefore, 

based on all previous considerations, the classes considered for 

the next elaboration phases were: 

 Pinewood and Brush vegetation (PAB)

 Grey dune vegetation (GD)

 Annual Pioneer and Embryo dune vegetation (APED)

 Sand (SAND)

Concerning the pixel-based method, the Maximum Likelihood

algorithm was applied, because it provided the most accurate

results among all the tested algorithms. Both WV-2 and UAV

Orthophoto were processed by ENVI software.

Instead, the object-based classification was conducted using the

software eCognition. For the WV-2 image the segmentation

parameters were: equal weight to the spectrum layers (NIR, red,

green) and the DSM, no weight for the NDVI layer, Scale

parameter equal to 50, Shape equal to 0.4, and Compactness

equal to 0.5. For the three-band UAV orthophoto the parameters

were: equal weight to the spectrum layers (NIR, red, green) and

the DSM, no weight for the NDVI layer, Scale equal to 7, Shape

equal to 0.6, and Compactness equal to 0.6. The Nearest

Neighbour algorithm was applied in the subsequent

classification.

Based on the segmentation obtained, for the WV-2 data

different training sites were chosen comparing previous cases,

even if they were located within the same zones.

Among the many object features initially chosen from the

classifier, a feature subset, able to optimize the class
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separability, was selected through the “Features space 

optimization” tool. The features used were: the mean and the 

standard deviation, calculated for each input layers; the 

“Brightness” and the “Max. Diff.”, which are related to the 

intensity of the original spectral layers (G, R, and NIR); the 

10th percentile and the median of the NDVI and DSM layers 

(DSM only for the UAV data); the minimum and the maximum 

pixel value of the NDVI; the “contrast to neighbour pixel” for 

the NDVI. 

To validate the obtained maps, the typical tools of classification 

theory were used, i.e. the confusion matrix, global accuracy and 

K coefficient (Rossiter, 2004). Also the K-Conditional 

coefficients were calculated to understand the accuracy of each 

single class. 

These accuracy parameters were computed based on the ground 

truth acquired by an NRTK survey along some transects 

perpendicular to the coastline, where the variability among the 

continuous habitats is at a maximum.  

Finally, the comparison between the classifications applied on 

the two remote sensed data was carried out checking which 

product had the lowest error rate on the map, i.e. through the K 

values. Thus, once established the null hypothesis that the 

expected K values of the two statistics (1=Pixel, 2=Object-

oriented) were the same and that the K1 e K2 were independent, 

Z-test was applied (Donner et al., 2004):

In order to calculate the needed variance values (σ1, σ2), 

associated to K and K-Conditional coefficients, a Fortran 

program was implemented using the σ formula proposed by 

Rossiter, 2004. 

Considering a significance level α=0.01, and consequently the 

confidence limit τ=2.6, the hypothesis was accepted when |z| ≤τ. 

2. RESULTS AND DISCUSSION

2.1 Pixel-based classification 

The WV-2 pixel classification (Fig. 2a) shows that the four 

considered vegetation classes are distributed along strips 

parallel to the coastline. From a qualitative point of view, the 

PAB is the most homogeneous class, while several pixels of 

APED are located inside the other three belts. From the 

quantitative point of view, the quite high overall accuracy 

(83%) and the K coefficient, equal to 0.78, indicate a good 

classification level (Tab. 2a). The few omitted pixels of the 

PAB class, were assigned to APED class, specifically along its 

east boundary. In fact, this slim strip corresponds to a footpath 

caused by continuous human passage. 

73% of the GD pixels are correctly classified while the 23% of 

its omitted pixels are assigned to APED. The APED class shows 

an agreement of 83% compared to the ground truth and most of 

its omitted pixels are assigned to SAND. Simultaneously, 13% 

of SAND pixels are associated to APED, even if the entire class 

is successfully classified (87%). This confusion, caused by the 

relative similarity between the reference spectral signatures, is 

also connected to the widespread presence of beach umbrellas 

close to the sea. They are large enough to influence the spectral 

signature of the pixels. 

The classification errors are more distributed along the 

boundaries between the various classes. For the SAND class, 

some noise is present near the APED class limit, probably due 

to the aforementioned beach umbrellas. 

Concerning the UAV orthophoto pixel classification (Fig. 2b), 

the trend of the bands relating to four classes has been generally 

identified by the classifier, but it is quite evident that the 

classification is less uniform compared the WV-2 pixel-based 

results.  

The APED and GD are more confused than SAND and PAB 

classes. The APED pattern is not always recognizable. These 

findings are consistent with the greater intrinsic heterogeneity 

and lower mutual separability of the APED and GD classes. 

In order to better understand the results, the analysis of the 

relationship between the orthophoto pixel size and the various 

components of the individual classes is needed. Different 

elements are included within the chosen covers, especially 

APED and GD. At the same time, the ground pixel size is so 

small that often it includes a single species of a vegetation class 

and its spectral signature cannot take into account the other 

components of the same category. In addition, single element of 

a vegetation class can belong to different classes. For example, 

a significant part of the APED class, formed by the union of two 

habitats with little vegetation cover, is constituted by sand, but 

the sand is the main element of the SAND category. It is clear 

that an APED pixel, which corresponds to only sand on the 

ground, is probably assigned to the SAND class. 

Summarizing, given that the observation scale to define the 

classes is larger than the pixel scale, the pixels may not be 

representative of the entire class, especially when it is 

heterogeneous. On the contrary, a larger pixel size that can 

include different elements, such as the WV-2 cells, allows for a 

classification that is less influenced by the individual objects 

that belong to various heterogeneous classes. In fact, for the 

orthophoto pixel-based classification, the overall accuracy and 

the k coefficient decrease to 70% and to 0.60 respectively (Tab. 

2b). The PAB is almost perfectly classified and the few pixels 

not assigned are mainly attributed to the GD. 

In turn, the GD is mostly confused with the PAB class, to which 

it loses 30% of its pixels. The reason is that both classes are the 

only ones totally covered by vegetation. Moreover, although the 

GD vegetation is completely different from the forest, the GD 

class also includes some small shrubs with a spectral behavior 

similar to the PAB vegetation. The remaining GD omitted 

pixels are almost all assigned to APED (14%). The absence of 

vegetation within the SAND class compared to GD cover 

explains the excellent separability of spectral responses. The 

APED class recognition is less accurate compared to other 

classes, probably because it is the most heterogeneous category, 

since it includes both sand and vegetation. Its omitted pixels are 

mainly assigned to GD (20%), while about 8% to PAB and 

another 28% to SAND. The confusion between APED and PAB 

is due to some types of plant species, present on the APED 

class, having a spectral signature similar to that of the forest 

behind the dunes.  

A similar reason generates the errors detected between APED 

and GD, which also include some common plant species. 

Instead, the SAND class is almost totally recognized (90%) and 

the remaining pixels, incorrectly assigned to APED, correspond 

to particularly low and sparse vegetation cover. 

Considering the overall accuracies, the K coefficient values and 

the K-Conditional coefficients (Tab. 3), the results obtained 

from the WV-2 are more reliable for the pixel-based 

classification. 

Finally, the classification shows the "paths" on the dune due to 

foot traffic. These eroded areas are mostly classified as APED,  

or sometimes also as SAND where the vegetation cover is 

sparse or absent. Even if some errors are distributed over the 

whole study area, as in the pixel-based classification case, the  
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Figure 2. Pixel-based classification of Casal Borsetti dune vegetation: Worldview-2 data (a) and UAV Orthophoto (b). 

Table 2. Confusion matrix concerning the pixel-based classification: Worldview-2 data (a) and UAV Orthophoto (b). 

highest concentration of wrongly classified pixels is located 

along class boundaries. 

The comparison between the K coefficients of the WV-2 and 

orthophoto pixel-based classifications, conducted by the Z-test, 

suggests that the equality hypothesis between two results is 

rejected.  

In fact, the |Z| value (10.1) exceeded the limit τ=2.6 

corresponding to the significance level of α=0.01 conservatively 

assumed for the test (Tab. 3). This difference is primarily due to 

the different spatial resolution of the two original data. The 

spatial overlap between the two classification maps highlights 

that the mismatch is more widespread on the APED zone. As 

shown by K-Conditional coefficients (Tab. 3), this class is less 

recognized on the UAV 

Table 3. Pixel: K-Conditional coefficients and Z-test results 

data, but discreetly classified in the WV-2 data. Only the PAB 

and SAND classes can be considered as equally classified by 

the two algorithms. 

a) Confusion Matrix WV-2 (Pixel Classification)

Ground Truth (Pixels) 

Class PAB GD APED SAND Total 

Unclass. 0 0 0 0 0 

PAB 244 9 0 0 253 

GD 4 215 12 0 231 

APED 20 68 233 31 352 

SAND 0 1 34 208 243 

Total 268 293 279 239 1079 

Overall Accuracy=83.41%; K Coefficient=0.78 

b) Confusion Matrix UAV Ortho (Pixel Classification)

Ground Truth (Pixels) 

Class PAB GD APED SAND Total 

Unclass. 127 7 0 362 496 

PAB 384363 136542 35152 82 556139 

GD 28293 248334 85158 7 361792 

APED 3072 63862 197397 35716 300047 

SAND 18 1161 120703 352922 474804 

Total 415873 449906 438410 389089 1693278 

Overall Accuracy=69.86%; Kappa Coefficient=0.60 

K-Conditional coefficient (Pixel-based

Classification) 

Class WV-2 UAV Ortho 
Z Value 

(τ=2.6) 

PAB 0.88 0.89 -0.2

GD 0.66 0.43 7.7

APED 0.76 0.33 13.5

SAND 0.83 0.87 -1.5

K-coefficient 0.78 0.60 -10.1

a) b) 
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2.2 Object-based classification 

Compared to the pixel-based classification, the main difference 

with the WV-2 object-based classification (Fig. 3a) concerns the 

APED class. Several pixels are assigned to GD and SAND 

classes. Moreover, the previous APED pixel line located along 

the PAB boundary disappears. 

The overall accuracy is equal to 81% and the k coefficient is 

almost 0.75 (Tab. 4a). The PAB is still the best ranked category, 

with an almost total agreement (94%) between pixels attributed 

to the class and those included in the sample. The GD has an 

accuracy of 84%, with the remaining pixels which are divided 

similarly between PAB and APED classes. Concerning the 

APED class only 60% of the total pixels are recognized 

correctly, while 28% are assigned to SAND, and the remaining 

11% are mistakenly assigned to GD. The APED category is 

mainly affected by omission errors.  

Finally, SAND accuracy is equal to 85% and the majority of the 

omission errors are assigned to the APED class. As already 

reported for the WV-2 pixel-based classification, this disorder is 

due to the presence of beach umbrellas. 

The distribution of classification errors is very similar to that 

obtained for WV-2 pixel-based classification. The reason is that 

the objects created by the segmentation do not include enough 

pixels and the results do not appreciably change compared to 

the pixel-based classification. Instead, for the UAV orthophoto, 

the segmented objects include numerous high spatial resolution 

pixels, improving the results of the classification (Fig. 3b). 

Compared to the UAV pixel classification, the classes are much 

more uniform and the errors are referred to objects and not to a 

widespread multitude of misclassified pixels. In addition, in this 

case, the trend of the four categories is clearer, with the greater 

confusion zones located along the transition areas from one 

class to another. 

The northern part of the dune, assigned to the APED class, 

largely belongs to SAND cover. Here, the activity of some 

blowouts moved sand inland close to forest. This error is 

probably from an orthophoto reconstruction problem in that 

zone. In fact, the same area also appears particularly confused 

with the pixel method. 

In general, the quality of the orthophoto classification is 

improved compared to the pixel approach, as confirmed by the 

overall accuracy that is increased by 21% and by the k 

coefficient of almost 32% (Tab. 4b). The PAB remains the best 

discriminated class with an accuracy of 96%, as confirmed by 

table 5. 72% of the total GD pixels are correctly recognized and 

the other pixels are confused especially with PAB (9%) and 

APED (19%). These last omission errors are partly linked to the 

eroded zones within the GD, located along the footpaths and the 

accesses to the beach. 

Concerning the APED class, the agreement between the 

classification and the ground truth transect map is 77%. 

The fraction of incorrectly classified pixels is mainly attributed 

to the SAND class, due to the presence of  areas with extremely 

reduced plant cover. The SAND category is almost totally 

classified correctly (94%), giving a few pixels to APED class 

only. 

However, the erroneous attribution from APED to SAND is 

more accentuated than the opposite. 

Figure 3. Object-based classification of Casal Borsetti dune vegetation: Worldview-2 data (a) and UAV Orthophoto (b). 

a) b) 
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b) Confusion Matrix UAV Ortho (Object Classification)

Ground Truth (Pixels) 

Class PAB GD APED SAND Total 

Unclass. 127 7 0 362 496 

PAB 397764 42779 3741 0 444284 

GD 16259 321273 36468 0 374000 

APED 1723 84536 338114 21326 445699 

SAND 0 0 58710 367356 426066 

Total 415873 448595 437033 389044 1690545 

Overall Accuracy=84.26%; Kappa Coefficient=0.79 

Table 4. Confusion matrix concerning the object-based classification: Worldview-2 data (a) and UAV Orthophoto (b). 

From the spatial error distribution point of view, the zones 

affected by error are modest compared to the overall study area 

and to the pixel classification of UAV orthophoto. As already 

mentioned above, the errors focus for the vast majority on the 

boundaries between the classes. 

The comparison between the K coefficients of the WV-2 and 

orthophoto object-based classifications, conducted by the Z-test, 

suggests that the equality hypothesis is accepted (Tab. 5). In 

fact, the Z value, equal to 2.3, does not exceed the limit 

corresponding to the assumed significance level. However, the 

analysis of K-Conditional coefficients (Tab. 5) shows that only 

PAB class was classified the same way by two algorithms, 

while the other Z test results are slightly higher than the limit. 

The differences between the GD and APED classifications are 

mainly due to the discrimination of footpaths in the UAV 

Orthophoto only, where they are associated to APED cover. 

Instead, within the WV-2 map, the GD class is more 

homogeneous and compact because these elements were not 

recognized. 

Considering the overall accuracies, the K coefficients and the 

K-Conditional coefficients, the results obtained from the UAV

orthophoto are more reliable for the object-based classification.

Table 5. Object: K-Conditional coefficients and Z-test results 

Finally, the similarity between UAV orthophoto object-based 

classification and the WV-2 pixel-based classification is rather 

remarkable.The most evident differences are: 

(i) the northern beach area mistakenly not assigned to SAND in

the orthophoto, is well recognized in the WV-2.

(ii) the most confusion in the SAND class found in the WV-2

pixel classification, partially due to the presence of umbrellas.

The comparison, conducted by the Z-test, between the K

coefficients and the K-Conditional coefficients object-based

classifications, excludes the SAND class, confirms the equality

hypothesis among the two classification (Tab. 6).

CONCLUSIONS 

The main aim of this study was to find the best combination 

between remote sensing data and classification techniques to 

Table 6. K-Comparison between the WV-2 pixel classification 

and the UAV orthophoto object classifications 

automatically classify the dune vegetation. The results obtained 

by applying pixel and object-based methods to the WorldView-

2 image and the orthophoto generated by UAV frames, showed 

that both data are potentially usable to classify dune vegetation 

at the selected levels. 

Concerning the UAV orthophoto, the object-oriented approach 

provided a better classification compared to the pixel 

classification. The last result was not entirely reliable due to the 

fact that a single pixel may not fully represent the class 

heterogeneity. The WV-2 image did not have this problem since 

its pixel size can include all the elements of the single classes. 

Indeed, the pixel-based classification is very good and 

comparable to object based method results. 

The statistical comparison between the two best approaches, i.e. 

the UAV orthophoto object-oriented classification and the WV-

2 pixel-based classification, showed that they are equivalent. 

Thus, they can be integrated and used to develop conservation 

strategies for the dunes, the last natural defence systems that 

protects inland areas from increasingly frequent swings due to 

climate change. If the remote sensing surveys are repeated in 

time, the obtained vegetation maps can also represent a valid 

support to analyse the evolutionary state of coastal dunes. 

The methods, tested on the Casal Borsetti dune, are exportable 

in similar coastal environments and it is repeatable over time. 

The present study is the first step of a project that aims to 

monitor the coastal dune system through three-dimensional 

vegetation maps. Currently, our research also involves the use 

of other advantages of two data, namely the 8 bands available 

for WV-2 image and the Digital Surface Model provided by 

UAV frame elaboration. 
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