
An Intrusion and Fault Tolerant Forensic Storage for a SIEM System

Muhammad Afzaal, Cesario Di Sarno, Salvatore D’Antonio, Luigi Romano

Department of Technology
University of Naples “Parthenope”

Naples, Italy
muhammad.afzaal,cesario.disarno,salvatore.dantonio,luigi.romano@uniparthenope.it

Abstract—Current Security Information and Events Man-
agement (SIEM) solutions lack a data storage facility which is
secure enough - i.e. stored events related to security incidents
cannot be forged and are always available - that it can be used
for forensic purposes. Forensic storage used by current SIEM
solutions uses traditional RSA algorithm to sign the security
events. In this paper we have analyzed the limits of current
forensic storages, and we have proposed an architecture
for forensic storage, implementing a threshold-based variant
of the RSA algorithm, that outperforms state of the art
SIEM solutions in terms of intrusion- and fault-tolerance.
We show by experiments that our forensic storage works
correctly even in the presence of cyber-attacks, although with
a performance penalty. We also conduct an experimental
campaign to evaluate the performance cost of the proposed
scheme as a function of the threshold.

Keywords-Forensic Storage; Threshold Cryptography;
Critical Infrastructure Protection; Fault- and Intrusion-
Tolerant Architecture;

I. RATIONALE AND CONTRIBUTION

Nowadays, the widespread use of Information Tech-

nology (IT) has led to growth in the number of at-

tacks to which the systems are exposed [1] [2] [3]. The

consequences of these attacks depend upon the envi-

ronment in which the systems operate. For example, a

successful attack against a critical infrastructure may have

catastrophic impacts upon human life, environment and

economy of a country, to mention a few. Critical systems

are favourite of attackers because their malfunction can

generate huge loss [4]. According to a report published

recently by US Department of Homeland Security, the

number of attempted and successful cyber-attacks against

Critical Infrastructures (CI), such as dams, energy and

water systems rose more than 383% from 2010 to 2011

[5]. In order to mitigate these attackes, the research has

been focused on following main aspects:

• finding new techniques to provide the best possible

protection

• working on how to produce and retain valid evidence

from legal point of view when there is a violation of

security rules.

A Security Information and Event Management (SIEM)

[6] is a solution that covers both the above research

areas by providing the following collection of services:

Log Management, IT regulatory compliance, Event cor-

relation, Active response, Endpoint security and Forensic

Storage. The presence of forensic storage in a SIEM is

very necessary because it helps to retain digital evidence

against malicious parties responsible for security breaches.

Many free versions of SIEM solutions do not implement

any technique to forensically store the security events,

although some of them offer this service in their commer-

cial version. Having a forensic storage means to create

an infrastructure capable of ensuring the integrity and

unforgeability of stored data.

In order to ensure integrity and unforgeability, the

forensic storage of the current SIEM solutions use classic

RSA1 algorithm based on a pair of public and private keys

to sign the security events. The strength of RSA is based

on the problem of factorization of large numbers which is

a hard problem and no algorithm exists to solve it in real

time. The easiest way to compromise the security provided

by RSA algorithm is through the compromise of its secret

key. So the easy search of secret key from a hard disk drive

[7] used in RSA algorithm can nullify the admissibility of

digitally signed messages for forensic purposes. Also if an

attacker successfully compromises the signing module, he

can stop the signing of security related events.

In this paper, we propose an architecture that overcomes

the limitations mentioned above, i.e. it works correctly

even when it is under attack and possibly some com-

ponents are compromised. In order to do so, we have

analyzed the state of the art of two SIEM solutions

in terms of techniques that they use to store the data

forensically. Then, we describe the architecture and the

implementation of our forensic storage. The solution we

propose relies on the combination of threshold cryptog-

raphy and replication with diversity to achieve fault- and

intrusion tolerance. In order to evaluate the performance

cost of the threshold scheme (and of the replication),

we have implemented the architecture in an experimental

testbed based on a widely used open source SIEM, namely

OSSIM [8]. The performance comparison is done in terms

of number of signatures generated by OSSIM with our

forensic storage and OSSIM with forensic storage based

on classic RSA. Results show that the cost can be as little

as 5% if system parameters (specifically: number of nodes

n and threshold value k) are configured properly. Also

through another test, we show the comparison between

times taken by Forensic Storage in normal and faulty

situations. In particular when Forensic Storage works in

faulty situations, it takes about 72% more time than when

1Rivest, Shamir, Adleman (RSA) a famous public key crypto-
algorithm

2012 Eighth International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-4911-8/12 $26.00 © 2012 IEEE

DOI 10.1109/SITIS.2012.89

579



it works in normal conditions. Finally using the threshold

anomaly criteria that we have introduced, we can reduce

this overhead to 7.2%.

II. BACKGROUND

A. Threshold Cryptography

Threshold Cryptography is not a crypto-system itself

but a technique that uses already existing crypto-systems

with minor changes. These changes include the distribu-

tion of secret key into different shares. It provides more

flexibility to the signing process due to the fact that this

scheme works correctly also when some secret shares are

compromised.

In 1979, Adi Shamir [9] and Blackley [10] proposed

independently the first secret sharing scheme. According

to this scheme the secret information can be divided

in different parts in such a way that all or a certain

number of these shares are necessary to construct the

secret. Formally, let S be the secret to be split among

n participants called shareholders. We want S divided in

n shareholders in such a way that k < n shareholders are

necessary to construct S but no fewer than k shareholders

can. In particular an adversary who gets control of at most

k−1 shares has zero knowledge of the secret key. Such a

scheme is called a (k, n) threshold scheme. The threshold

number k is defined such that it is impossible to build the

secret if less than k shareholders cooperate together.

In this paper we have used the RSA threshold signa-

ture scheme proposed by Shoup [11] because while the

previous work is theory oriented, this work is the first

practical scheme that provides also implementation details.

It is explained mathematically how to generate the secret

key shares (SKS) from secret key, the verification key

shares (VKS) and complete verification key (VK). So, the

SKSs can be used by different shareholders in order to

create partial digital signatures of a message. Moreover,

the output of a digital signature algorithm in its threshold

mode must be equivalent to the digital signature produced

when this algorithm is used in a traditional way. Shoup

has also explained the mathematical operations necessary

to put together the signature shares so to obtain a complete

signature equivalent to the standard RSA signature. The

VKSs provide a way to check the correctness of each

signature share whereas VK is used to check the validity

of complete signature.

B. SIEM: State of the Art

SIEM [6] solutions are a combination of the formerly

disparate product categories of Security Information Man-

agement (SIM) and Security Event Management (SEM).

In particular, SEM systems are focused on the aggrega-

tion of data into a manageable amount of information

with the help of which security incidents can be dealt

with immediately, while SIM primarily focuses on the

analysis of historical data in order to improve the long

term effectiveness and efficiency of information security

infrastructures [12].

At the time of writing this paper, there are about 85

existing SIEM solutions [13] some of which are free-

ware whereas others are commercially available. In this

paper our interest is focused on the intrusion and fault

tolerant system and integrity and unforgeability of data

stored so that it can be used for forensic purposes. So

we have analyzed two main SIEMs in order to under-

stand what they offer from the point of view of these

requirements. These two SIEMs are Assuria Log Manager

(ALM) and OSSIM SIEM system. The forensic storage

of ALM is based on digital signatures of the security

events with classic RSA [14] with SHA-256 hash function

[15]. OSSIM SIEM developed by AlienVault [8] offers

a forensic storage component called Logger only in its

commercial version. The user manual of OSSIM shows

that the Logger uses the classic RSA algorithm to sign

the important events.

III. LIMITS OF CURRENT SIEMS AND ANALYSIS OF

TECHNIQUES FOR FORENSIC STORAGE

As described in section II-B, most of the current SIEM

solutions use traditional RSA to sign the security events.

In order to improve the state of the art, we have compared

various techniques to sign the security events. Since the

purpose is to provide an architecture of forensic storage,

our analysis is focused on integrity and unforgeability

of data and intrusion and fault tolerant architecture. So

we have analyzed three techniques to sign the security

events: RSA classic scheme, parallel RSA scheme and

Threshold Cryptography scheme. For parallel scheme we

mean multiple RSA modules deployed in parallel.

The forensic storage which uses classic RSA algorithm

to sign the security events may face a single point of

failure problem. In fact, an attacker could perform a

DoS attack if he knows the IP address of the signing

module, so to stop it from signing the events. So the

attacker will be able to bring down the system. Also, an

attacker could compromise the node that generates RSA

signatures through a malicious software installed on this

node and can forge the signatures. In this case, the RSA

module works but in a wrong way so the integrity of data

stored is not ensured. Also, these data are unacceptable for

forensic purposes. The advantage to use the RSA classic

module is that it is fast due to the fact that it does not

involve huge usage of memory. In fact, when the module

receives the input, it provides an output (signature) without

maintaining any intermediate information.

A simple variant of traditional RSA can include the

usage of multiple RSA modules working in parallel to sign

the same message. All RSA modules use different public

and secret key pairs. Each module signs the incoming

security event with its own private key and sends the signa-

ture to an elector element. In order to improve the security

level the elector must receive at least k (threshold number)

signatures for the same event before verifying the integrity

of data. When at least k (quorum) signatures arrive, the

elector verifies them through their corresponding public

keys and when the quorum of valid signatures is reached

580



the elector chooses one of them and stores it with the data

and the public key in the storage media.

The parallel RSA scheme is slower than the classic RSA

scheme because the elector, in this case, must maintain an

internal state for each security event. The state related to

each event is represented by the signatures received that

are less than k. In this case the elector also cannot store

the event with the selected signature. Another performance

penalty compared to the classic RSA scheme is due to

the process to verify each received signature. In fact this

process is repeated k times for each security event. The

advantage of multiple RSA modules deployed in parallel

over single RSA module is that the former is tolerant to

intrusions and faults. With the attack scenarios described

above for single RSA module, this new architecture works

correctly. In fact if one RSA module is corrupted by the

attacker it will send a wrong signature to the elector. The

elector simply verifies and discards this wrong signature

and waits for next one. Instead, when module is under a

DoS attack, the architecture also works correctly because

other modules still send their signatures to the elector.

Finally we have analyzed the Threshold Cryptography

scheme. In this scheme the secret key is divided in dif-

ferent shares and given to different parties or shareholders

where each shareholder signs the incoming message with

its secret share and sends the signature shares to another

module called combiner. The combiner element combines

all the signature shares and produces a complete signature.

Then, the combiner verifies the complete signature and

stores in the storage media after successful verification.

When compared to the classic RSA scheme, threshold

cryptography has the same advantages and disadvantages

of RSA parallel scheme as previously described. In partic-

ular, compared to RSA parallel mode, threshold cryptogra-

phy is faster because in the former scheme the elector must

verify at least k signatures of the same message in order to

select one of these verified signatures. On the other hand,

in threshold cryptography only complete signature must be

verified. This is because at first the combiner combines

the signature shares and then it verifies the complete

signature. The dynamic of combining process is much

faster than the verification process, so it can be considered

negligible. If a complete signature is not verified, it means

that a shareholder has sent invalid signature share. So,

the combiner can verify all the signature shares with

the help of VKSs in order to identify the shareholders

responsible for sending wrong signature shares. In this

case the behaviour of threshold cryptography approach

is equivalent to the RSA parallel scheme. But in the

normal case when there is no any faulty shareholder, the

combiner verifies only one complete signature providing

better performance. For these motivations, we have used

threshold cryptography scheme to build our architecture

of forensic storage.

Figure 1. Full architecture of forensic storage

IV. HIGH LEVEL VIEW OF FORENSIC STORAGE

ARCHITECTURE

In this section we describe the architecture of forensic

storage. Since the application domain is SIEM, the foren-

sic storage will contain the critical security events, which

require properties like integrity and unforgeability, in order

to be used for forensic purposes. The architecture of the

forensic storage is shown in Figure 1. The Security Events

generated from SIEM system are the input data to the

architecture. The incoming data carry information about

the events related to a security incident. We assume that

the events source is trusted and reliable. After the secret

key is divided into shares and distributed to all nodes,

the incoming message (containing information about the

security breach) is sent to the controller component. The

controller component relays the events coming from SIEM

to all nodes and to the combiner element. An attacker may

compromise the controller and modify the events before

they are sent to all nodes. In order to avoid this weakness

we use the principles of redundancy and diversity together

with voting technique [16] [17]. In fact, we have more than

one controller to receive the same event. Then only one

event is provided as input to the shareholders after the

decision is made through the voting mechanism.

So, each node or shareholder that has received the

event computes a hash function of the same message.

This function returns a digest for this message, represented

by h in Figure 1. The next step is to encrypt the digest

with secret key share in order to produce a signature

share (or partial signature) and send it to the combiner.

The combiner is responsible for assembling all partial

signatures of the same message received from the partici-

pants of the threshold crypto-system in order to generate a

complete signature. After verification, complete signature

is attached to the original message, thus forming a signed

security record, i.e. a forensic record and is stored for

future forensic analysis.

In Figure 1 Forensic Services provide a forensic analysis

that is able to determine when the intrusion occurred,

which data were altered, and also, who the intruder was,

through the information obtained by the recorded events.

581



Figure 2. An example of binding and lookup of a service.

The Access Control System is the service that controls

who can interact with resources and how. For example,

only the system administrator can change the threshold

value k or add a new node to the architecture.

In order to improve the intrusion and fault tolerance of

forensic storage, replication and diversity are employed. In

fact, the combiner and the storage are replicated through

a set of software replicas, which are deployed on a set

of independent servers. The replication introduces well-

known data consistency issues that have been extensively

studied but are beyond the scope of this paper.

V. LOW LEVEL VIEW OF FORENSIC STORAGE

ARCHITECTURE

A distributed approach has been used in the design

and implementation of forensic storage. The basic idea

is to join the advantages of the threshold cryptography

with the advantages of classic distributed systems in

order to obtain a system that guarantees security of data

and tolerance to both intrusions and faults. In fact, the

threshold cryptography guarantees the integrity of data if

less than k out of n shareholders are corrupted or down for

any reason. Also, the distributed system is easily scalable

allowing enhancement in the performance.

The design of the forensic storage has been composed

in several steps. The first was to identify the main compo-

nents of the architecture and to export them as a service.

In Figure 2 the mechanism of binding is shown between

a component that offers a service and a component that is

in search of a service. The Object1 aims to offer a service,

so it registers its service in the registry. Object2 does

not know anything about Object1 but it knows only the

name of the service that it needs. Object2 searches for the

service into the registry by using the name of the service

as a search key. If the specified service exists, registry

sends a reference to Object2 to contact service provider,

Object1 in this case.. The registry is the only component

that maintains a list of all services, so it can be a single

point of failure in the architecture. To avoid this weakness,

the Reliable Registry of Alberto Montresor is used in the

implementation phase [18]. In Figure 3 the main services

during initialization phase are shown. More details about

the implementation of components are available in [19].

When the combiner is started, it registers its service

at the registry and then establishes a connection to the

database. When the shareholders are started, they also

register their services at the registry.

Figure 3. During the initialization phase, the controller sends a request
to the dealer to generate and send key shares to all the shareholders and
combiner.

In the initialization phase, the controller searches in

the registry which component offers the secret key shares

generation and distribution service. The registry sends

the controller the reference of a remote object that of-

fers the requested service, dealer in this case. Then the

controller asks the dealer to generate and send n SKSs

to sharesholders and one VK and n VKSs to combiners.

Before generating all the keys, the dealer searches for the

intended shareholders in the registry that will participate

to the threshold cryptography scheme and the components

which will provide the service of combining the signature

shares. So, the dealer directly distributes each SKS to each

shareholder, and it gives the VKSs and the VK to the

combiner. When a shareholder receives its key share, it

sends the acknowledgment to the dealer. After receiving

the acknowledgments, the dealer erases the memory that

was used to store the keys. The erasure of the SKSs is

very important so that if the dealer is compromised in the

future, the adversary will not be able to recover the SKSs

from its memory. So we consider to trust the dealer only

during the key generation and distribution phase. After this

point the initialization phase is complete.

In Figure 4 the normal working of the system when

a new security event arrives is shown. The controller

distributes the new event to all nodes and combiner. Each

node when receives security event, generates a digest value

and encrypts this digest values with its SKS creating a

signature share. Finally the node sends the signature share

to the combiner. When the combiner receives at least k sig-

nature shares for each event, it combines them generating

a complete signature. Then, the combiner checks if the

complete signature is valid though the VK. If complete

signature is valid, a new record, containing the original

message, complete signature and corrupted nodes (if any)

will be created and stored in storage by the combiner.

If the complete signature verification fails, the combiner

checks each signature share with the correct verification

key share in order to recognize which node has sent wrong

signature share. The combiner sets a flag true if a signature

share is valid otherwise the flag is set to false. So the next

time when new signature shares are available for a security

event the combiner chooses a set of k signature shares

among newly received and signature shares whose flags

582



Figure 4. This figure shows how the forensic storage works when it
receives a security event.

are set to true. If this time, the process of combining and

verification of the complete signature is valid the forensic

record is created, otherwise the process is repeated when

new signature shares are available.

The technology used to implement the architecture of

forensic storage is Java-RMI2. In order to improve the

level of security when the different services communicate

with each other, communication is allowed only through

SSL. The authentication mode choice is bilateral. Certifi-

cate management in Java is made possible through the use

of key-store and trust-store. So all certificates have been

pre-generated and stored in the key-store and trust-store.

The length of SKS, VKS and VK is 1024 bit. The hash

function that each node uses to calculate digest is SHA-

256.

VI. INTEGRATION OF FORENSIC STORAGE WITH

OSSIM SIEM AND VALIDATION

In order to show the performance of the system and fea-

tures of intrusion and fault tolerance of forensic storage in

presence of attacks, we have integrated it in OSSIM SIEM.

Generally SIEMs produce a huge amount of events per

second (EPS), so it is not possible to store all events but

only those related to security breaches and can be used for

forensic purposes. In the SANS study [20] a benchmark

is reported measuring the number of events collected by

SIEM solution deployed in a mid-sized organization. In

this study the authors show that the average EPS generated

in normal conditions are 149.79. When two subnets are

attacked the EPS value is 8,118.80. So if we consider all

the events generated in a large span of time, e.g. 6 months,

we have in normal conditions (without any attack) 2.4

billion events. If we use 300 bytes as the average message

size, 6 months of data will require about 670 GB of space

(if there are no security attacks).

In OSSIM, in order to reduce the number of events,

it is possible to correlate and aggregate the events in

order to detect real security breaches and attacks. This

is possible using the correlation directives [21]. Each

correlation directive is composed of correlation rules. All

2Java - Remote Method Invocation. More details are available at http:
//www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

the events are compared with the correlation rules in order

to find the pattern of attack. In fact when all correlation

rules of one correlation directive are activated, a new event

is generated. This event has an associated risk value which

can be calculated as:
RISK of the event = (Asset value * Event Priority *

Event Reliability) / 25 [22]
where:

• Asset value (0-5). The assets are: Host, Host Groups,

Networks and Network Groups

• Event priority (0-5). The Priority is the importance

of the event itself

• Event reliability (0-10). Reliability determines the

probability of a security event being effectively re-

lated to an attack or not.

So only new events generated with a risk value greater

than a fixed threshold are significant and must be stored

forensically because they are supposed to have information

related to attack. When a new event with a risk value

greater than threshold is generated, this event contains

also the chain of events that previously has matched

every single correlation rule belonging to the correlation

directive. So, in the forensic storage we store the events

related to security breach and the chain of events which

has generated them. To integrate the forensic storage in

OSSIM we have created a new policy that allows to send

the events that have a risk value greater than a certain

threshold to a specific server (in our case the controller

of the forensic storage). So they will be stored using the

architecture described above. OSSIM SIEM offers a foren-

sic storage component called Logger which is available

only in the commercial version. Since the Logger is not

available in OSSIM free version, we have developed a new

module using Java API that signs the events with classic

RSA algorithm in order to simulate the behaviour of

Logger. We have used the RSA implementation provided

by the java.security package that offers the necessary

methods to generate a pair of keys and sign the events.

Then we have integrated this module in another instance

of OSSIM as we have done for our forensic storage. So

we have deployed OSSIM with our forensic storage and

OSSIM with RSA module to sign the events as shown in

Figure 5 which also shows the points where the readings

have been taken in order to compare the performance in

terms of signature generation time taken by two systems.

The setup of the systems used is the following:

• RSA threshold scheme with n=5 and k=3

• hash function used to calculate the digest is SHA-

256 both for the nodes of our forensic storage and

for classic RSA module

• all keys in our forensic storage and RSA module have

a size of 1024 bits.

Each event sent from OSSIM to forensic storage has a

size of 1024 bytes and each node has an I3-2330M CPU

and 2 GB of RAM. Indeed, the average size of each event

is about 300 bytes, but each event contains also the chain

of events that has triggered this event. Figure 6 shows the

comparison of performance of RSA classic and forensic

583



Figure 5. Deployment of OSSIM with two different modules integrated

storage in terms of complete signature generation time.

Classic RSA reaches an average signature rate of 510

signatures per second, while forensic storage reaches an

average signature rate of 489 signatures per second. So

the forensic storage has a penalty in terms of signature

rate of about 5%.

This delay is due to the extra time that the combiner

takes as compared to the RSA module. The combiner

must maintain the signature share of each event until

the threshold is reached. When the threshold is reached,

the combiner combines the signature shares in order to

create a complete signature and after combining process,

complete signature must be verified. Instead, in RSA

module this overhead is not present. These readings have

been taken when there is no any attack. On the other

hand, this little overhead that forensic storage takes if

compared to RSA classic produces some benefits such as

being tolerant to the intrusions and faults.

In order to better explain these features of our system

and to validate our architecture, we consider the attack

scenario whose time-line is shown in Figure 7(b). We

assume the first successful attack occurs after 2 hours

of correct functioning of forensic storage. In particular,

the attacker compromises a node by using a malicious

software hidden in an update of the software pre-installed

on the node. So, he can forge the signature share of each

security event sent from this node to the combiner. We

suppose that the system administrator views logs at the

end of each day. The attacker tries to compromise another

node with the same technique. Since we have implemented

diversity at operating system level and software installed

in each machine, the attacker cannot use the same discov-

ered vulnerability. So, we suppose that the attacker takes

another 2 hours (time-line now is 4 hours) in order to

discover a new vulnerability in another node e.g. he has

found a weak password for a user with administrator rights

for remote access. We limit our analysis to two attacks

because in the setup we have used threshold cryptography

scheme with n = 5 and k = 3, so we can tolerate until

k − 1 = 2 compromised nodes as described in section

II-A.

In our analysis we consider the following scenarios: 1) a

compromised node always sends incorrect signature share

for each event. Later we explain our strategy of remedia-

tion in order to improve the performance when the system

Figure 6. Performance of the forensic storage module and of the RSA
standard module

is under attack; 2) the k signature shares chosen for the

signing process include all incorrect signature shares. So,

the process of verification of complete signature fails and

the combiner takes additional time to find a valid complete

signature; 3) all the signature shares arrive almost together

because they are sent in parallel from each node. The time

taken by signature shares to arrive from node to combiner

is very small and negligible as compared to the dynamics

of the system.

(a)

(b)

Figure 7. An attack model showing the effect of compromised nodes
on the performance of forensic storage.

Figure 7(a) shows the overhead in terms of generation

and verification time of 1000 complete signatures. In fact

using the setup described above in normal conditions

584



(without faulty behaviour) to generate and verify 1000

complete signatures the forensic storage takes 2.639 sec-

onds while RSA takes 2.5350 seconds. In Figure 7(a)

we show that the forensic storage, when is under first

attack, takes about 4.539 seconds in order to generate

and verify 1000 complete signatures. So we take 72%

more time as compared to the 2.639 seconds required in

normal working conditions. The classic RSA algorithm

under the same attack keeps on working with the same

signature generation rate but in an incorrect way. In fact it

generates bad signatures (dashed red line in Figure 7(a)).

Also, when the second attack occurs the forensic storage

takes the same time as before to generate and verify 1000

complete signatures. In order to explain the cause of this

extra time and why it remains constant when the number

of attacks increases, we show in Figure 8 the behaviour

of the combiner.

The combiner has two tasks: to combine the signa-

ture shares into a complete signature; and to verify the

complete signature. In normal conditions (without attacks)

the verification process of a complete signature completes

successfully and the combiner processes the signature

shares for the next event. If the verification process fails,

the combiner verifies through the VKSs all k signature

shares that have participated to the combining process.

Also, the combiner sets a flag to true or false value for

each signature share in order to identify if it is valid

or invalid respectively. Next time the combiner takes the

previous valid signature shares and the new signature

shares until it reaches the threshold (k) and repeats the

process of combining and verification. So the time that

the only combiner takes for generation and verification of

C complete signatures is:

[(t∗(k+1))+(A+B)]∗Cerr+[t+(A+B)]∗Ccorr (1)

where:

• Cerr is the number of events to be signed in faulty

situations

• Ccorr is the number of events to be signed when no

faulty signature shares have to be considered

• t is the verification time of each signature

• k is the number of signature shares that must be

verified when some nodes are under attack. The term

+1 is referred to the verification of complete signature

that is always present

• A is the time when a new signature share reaches the

combiner. We take this time as negligible

• B is the time necessary in order to combine k
signature shares and is negligible for small values

of k as in our case

• C is the total number of events to be signed (C =
Cerr + Ccorr).

In our experiment we consider a block of 1000 events to

be signed in faulty conditions i.e. when an attacker starts

sending two wrong signature shares for each event (C =
Cerr = 1000). We can see from formula 1 that the extra

time the combiner takes in faulty situations is due to the

Figure 8. Behaviour of combiner in presence and absence of wrong
signature shares

k signature shares that must be verified and the number of

events involved Cerr. So in order to reduce this time in real

testbed, we have fixed a threshold of anomalous signature

shares for each node. In fact, if a node sends, for example,

one wrong signature share and after that it shows a correct

behaviour, probably it is not a compromised node. So it

is not useful to exclude this node immediately from list

of nodes that are considered to be sending valid signature

shares. On the other hand if we allow one node to send

high number of wrong signature shares the performance

penalty is very high. So the choice of the value of the

threshold of anomaly is a trade-off between the acceptable

performance penalty and the possibility to recognize an

incorrect behaviour immediately.

In our case we consider an event window, for example

C = 1000 and we choose a threshold value of 10%,

that is Cerr = 100. In this case, when the threshold

value is reached, the combiner stops accepting signature

shares from this node for example for the next 4 hours

and sends an alert event to the system administrator. Of

course the size of events window to consider, the value

of the threshold anomalous signature shares, and the time

to stop accepting signature shares from a node are set by

the system administrator. With this solution the forensic

storage under attack takes an extra time of only 7.2% as

compared to its own functioning under normal condition.

When a second node is compromised, nothing changes in

the formula 1. So from one faulty node until k−1 the extra

time in order to calculate the valid complete signature is

constant.

VII. CONCLUSIONS

In this work we have shown a comparison in terms

of advantages and disadvantages of various techniques in

order to use one of them as base of the forensic storage

architecture. From our analysis we have found that the

best technique that can be used to sign security events is

the threshold signature scheme. Also, we have explained

the architecture and the implementation of our forensic

storage. Then we have integrated the forensic storage in

OSSIM SIEM in order to estimate the performance of

585



our system in terms of signatures generation time. Also

in order to show the advantages of our architecture in

terms of intrusion and fault tolerance we have described

an attack model and we have shown that our architecture

works correctly. Finally through a test we show the extra

time in terms of generation of valid complete signature

when the forensic storage is under attack. In order to

optimize the performance penalty we have introduced a

criteria based on threshold of anomalous signature shares.

The financial cost of our architecture depends upon

level of security that must be achieved. In fact, the

replication and diversity of components of the architecture

have an additional cost that increases with the number of

components deployed. Also, if we want to ensure a higher

level of integrity we can, for example, add other nodes

and raise the threshold k. In each case there will be an

additional cost due to new nodes that are deployed and

configured. But we must remember that there is a trade-

off between security and performance. In fact, in order to

ensure the integrity it is possible to add other nodes and to

raise the threshold k. So when there are no attacks there is

only a greater cost in the combining operation whereas in

the presence of compromised nodes, the greater part of the

performance penalty is because of verification process of

signatures. So the trade-off is among cost, level of security

and acceptable performance.

In the future we plan to investigate the possible op-

timization in order to reduce the performance penalty

between our forensic storage and the module based on

RSA classic algorithm. Also, we plan to remove the trusted

dealer for generation and distribution of keys. Finally, we

plan to investigate more attack scenarios i.e. the worst case

in which there are z attackers (z = k−1) and each of the

wrong signature shares is taken into account in a different

set of k signature shares.

ACKNOWLEDGMENTS

The research leading to these results has received fund-

ing from the European Commission within the context

of the Seventh Framework Programme (FP7/2007-2013)

under Grant Agreement No. 257644 (MAnagement of

Security information and events in Service Infrastructures,

MASSIF Project).

REFERENCES

[1] White Paper, Symantec R©Intelligence Quarterly Report:
October-December, 2010, “Targeted Attacks on Critical In-
frastructures”

[2] White Paper, Global Energy Cyberattacks:“Night Dragon”,
McAfee R©Foundstoner Professional Services and McAfee
Labs, (February 10, 2011)

[3] Capasso, V.: “Top Cyber Security Trends, Breaches,
and Observations”. http://www.myitview.com/security/
top-cyber-security-trends-breaches-and-observations Last
Accessed 31st August 2012

[4] Symantec R©Applied Research. Symantec 2010 Critical In-
frastructure Protection Study (Global Results). Oct. 2010.

[5] US Department of Homeland Security, Incident Response
Summary Report, http://www.us-cert.gov/control systems/
pdf/ICS-CERT Incident Response Summary Report 09
11.pdf, June 2012

[6] Carr, D.F.: Security Information and Event Management.
Baseline, No. 47, 2005, p. 83.

[7] Shamir, A., Someren, N.: Playing “Hide and Seek” with
Stored Keys. Proceedings of the Third International Con-
ference on Financial Cryptography, Springer-Verlag, 1999,
118-124

[8] OSSIM, the Open Source SIEM http://communities.
alienvault.com/community/

[9] Shamir, A.: How to share a secret. Commun. ACM, ACM,
1979, 22, 612-613

[10] Blakley, G. R.: Safeguarding cryptographic keys. Managing
Requirements Knowledge, International Workshop on, IEEE
Computer Society, 1979, 0, 313

[11] Shoup, V.: Practical Threshold Signatures. EURO-
CRYPT’00, 2000, 207-220

[12] A. Williams, “Security Information and Event Management
Technologies”, Siliconindia, Vol. 10, No. 1, 2006, pp. 34-35

[13] Log Management & Security Information and
Event Management (SIEM), Mosaic Security
Research. https://mosaicsecurity.com/categories/
85-log-management-security-information-and-event-management
Last Accessed 26th April 2012

[14] Rivest, R. L., Shamir, A., Adleman, L.: A method for
obtaining digital signatures and public-key cryptosystems.
Commun. ACM, ACM, 1978, 21, 120-126

[15] Assuria Log Manager (ALM), Assuria Ltd.
http://www.assuria.com/products-new/assuria-log-manager/
features.html Last Accessed 27th April 2012

[16] A. Saidane, V. Nicomette, and Y. Deswarte, “The De-
sign of a Generic Intrusion-Tolerant Architecture for Web
Servers” Dependable and Secure Computing, IEEE Trans-
actions on , vol.6, no.1, pp.45-58, Jan.-March 2009 doi:
10.1109/TDSC.2008.1

[17] Li Wang, Zheng Li, Shangping Ren, and K. Kwiaty,
“Optimal voting strategy against rational attackers,” Risk
and Security of Internet and Systems (CRiSIS), 2011 6th
International Conference on , vol., no., pp.1-8, 26-28 Sept.
2011 doi: 10.1109/CRiSIS.2011.6061841

[18] Montresor, A.: A Reliable Registry for the Jgroup Dis-
tributed Object Model. University of Bologna, 1999

[19] M.Afzaal, C. Di Sarno, L. Coppolino, S. D’Antonio, L.
Romano, “A Resilient Architecture for Forensic Storage of
Events in Critical Infrastructures”, Hase 2012, in press.

[20] J. Michael Butler, “Benchmarking Security Informa-
tion Event Management” http://www.sans.org/reading room/
analysts program/eventMgt Feb09.pdf

[21] OSSIM, Correlation Directives http://www.alienvault.com/
wiki/doku.php?id=user manual:correlation#correlation
directives

[22] AlienVault Risk Metrics http://www.alienvault.com/wiki/
doku.php?id=user manual:dashboards:risk:risk metrics

586


