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Emotion as an emergent phenomenon
of the neurocomputational energy
regulation mechanism of a cognitive
agent in a decision-making task
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Abstract
Biological agents need to complete perception-action cycles to perform various cognitive and biological tasks such as
maximizing their wellbeing and their chances of genetic continuation. However, the processes performed in these cycles
come at a cost. Such costs force the agent to evaluate a tradeoff between the optimality of the decision making and the
time and computational effort required to make it. Several cognitive mechanisms that play critical roles in managing this
tradeoff have been identified. These mechanisms include adaptation, learning, memory, attention, and planning. One of
the often overlooked outcomes of these cognitive mechanisms, in spite of the critical effect that they may have on the
perception-action cycle of organisms, is ‘‘emotion.’’ In this study, we hold that emotion can be considered as an emergent
phenomenon of a plausible neurocomputational energy regulation mechanism, which generates an internal reward signal
to minimize the neural energy consumption of a sequence of actions (decisions), where each action triggers a visual
memory recall process. To realize an optimal action selection over a sequence of actions in a visual recalling task, we
adopted a model-free reinforcement learning framework, in which the reward signal—that is, the cost—was based on
the iteration steps of the convergence state of an associative memory network. The proposed mechanism has been
implemented in simulation and on a robotic platform: the iCub humanoid robot. The results show that the computa-
tional energy regulation mechanism enables the agent to modulate its behavior to minimize the required neurocomputa-
tional energy in performing the visual recalling task.
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1. Introduction

Environmental changes (e.g. food depletion and wor-
sening climatic conditions) continuously force biologi-
cal agents to evaluate a tradeoff between the optimality
of the decision making, the time, and the computational
load needed for making such decisions. Managing this
tradeoff comes at a cost in environments in which pre-
dators are plentiful, but the computational power is
scarce. One of the outcomes of managing this tradeoff,
albeit not fully understood, is ‘‘emotion.’’ It plays
potent roles in various cognitive functions of biological
agents, like attention, memory recall, decision making,
and reward extraction (Arbib & Fellous, 2004; Murray,
2007).

In this study, we build upon the idea that the emer-
gence of emotion can be explained by the neurocompu-
tational energy regulation need of an organism. To be
concrete, we propose the following hypothesis: the
computational shortcut mechanisms on cognitive pro-
cesses to facilitate energy economy give rise to what we
define as emotions (Kirtay & Oztop, 2013). Here, we
use the term emotion to indicate high-level emotions
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(e.g. boredom) which play a role in low-cost computa-
tions rather than basic (reflex-like) emotions such as
disgust, fear, and surprise. By leveraging this idea, we
aim to show that the consumption of neurocomputa-
tional energy (i.e. the neural cost of cognitive process-
ing) for visual recalling can be employed to generate an
internal reward signal for action selection. As such, the
selection of an optimal action can be carried out by
minimizing the neural energy consumption over a
sequence of decisions (actions) (Kirtay, Vannucci,
Falotico, Oztop, & Laschi, 2016).

To test the proposed system and its interactions with
a set of cognitive components (i.e. as information pro-
cessing modules), we adopted a model-free reinforce-
ment learning (RL) framework to guide the behavior of
a simulated agent and a humanoid robot: a simple cog-
nitive architecture involving the functions of visual per-
ception, memory recall, action learning, and decision
making. In this architecture, the actions performed by
the agent to explore the environment are, for the
robotic agent, movements of the neck and the eyes to
direct the gaze, while for a simulated agent, they consist
in the visiting of state–action pairs.

As a cognitive task, we have considered visual recal-
ling, for three reasons. First, visual recalling is a task
that can be performed both in a simulation environ-
ment and on a robot platform; this enables us to imple-
ment the proposed methods in a virtual environment
and on an actual hardware setup. In this study, we
employed an auto-associative network to form visual
memories using visual patterns. However, other sensory
modalities with different types of associative networks
can also be integrated to process the stimulus in a mul-
timodal way. Second, in the cognitive science literature,
the roles of emotion are functionally linked in a number
of cognitive visual task mechanisms such as visual
attention, (visual) stimulus evaluation for action selec-
tion, and facilitating the storage and recalling memories
(Arbib & Fellous, 2004; Pessoa, 2008; Salzman & Fusi,
2010). Finally, we hold that the implementation of this
task on a physically embodied agent will enable us to
evaluate the conducted experiment from the onlooker’s
perspective. In this way, we can argue that the behavior
displayed by the robot can be perceived as an affective
state of the agent.

In a visual recalling setting, the goal of the agent is
to find a sequence of visual percepts (i.e. states) that
minimize the ‘‘neural cost’’ of performing visual recal-
ling as the cognitive task undertaken by an auto-
associative neural network. The network dynamics
allows the definition of a ‘‘neural cost’’ for the recall
process based on the prior experience of the agent and
the current visual stimulus. This neural cost is used by
the agent to learn the associations between energy and
stimulus and thereby guide the agent’s behavior. An
onlooker may interpret those visual patterns, whose
recall consumes less amount of energy—thus that are

more often preferred by the agent—as memories that
the agent itself has the more emotional affinity with.
This emergent affinity (the actions of the agent) even
though merely aimed at reducing the neural recall cost,
may be perceived as complex behavior regarding action
dynamics that depend on the visual memories of the
agent and the current visual input. As such, the neural
cost of the computation and its use as an internal
reward constitute the emergent emotion in our pro-
posed system.

The proposed internal reward method might also be
associated with the intrinsic motivation (or drive) of
the agent: to explore this connection, we analyzed the
differences between the concepts of emotion and intrin-
sic motivation, reviewing the relevant studies. Our
agent, in each iteration, will process the visual stimulus
to extract the stimulus-specific reward based on the
recalling cost. In doing so, it will avoid processing the
computationally expensive visual stimuli. Moreover, an
intrinsically motivated agent will concentrate on the
exploration of the decreasing numeric value of the
reward for the exploited states. In our experiment, we
used the term emotion for an emergent phenomenon
that prevents an agent from searching for the best pos-
sible, yet computationally expensive decision rather
than ‘‘driving’’ the agent to continuously engage itself
in an activity (e.g. searching salient stimulus in the envi-
ronment). More importantly, the intrinsically moti-
vated agent will perform the curiosity-driven activities
(e.g. play, seeking salient information) to satisfy the
predefined emotions such as joy and surprise (Barto,
2013; Moerland, Broekens, & Jonker, 2018; Oudeyer &
Kaplan, 2009; Ryan & Deci, 2000). On the contrary, in
our experiment, there is no predefined emotion influen-
cing the cognitive task. Instead, we observe ‘‘emotion’’
emerging from the behavior displayed by the agent in
trying to minimize the required computational energy
in making sequential decisions. That is why we inter-
pret these behaviors as emotion-guided; in the next sec-
tion we provide what is needed to support our claim,
drawing from neuroscience studies.

Furthermore, in the ‘‘Related works’’ section, to
emphasize the difference between our approach and the
state-of-art studies regarding internal reward genera-
tion, we have discussed the internal reward generation
methods from the intrinsic motivation and affective
computing literature.

Overall, the results point out that adopting a modu-
latory role for neurocomputational cost-based emotion
in decision making may pave the way for future designs
of cognitive robots that will have the need to optimize
for computational time and energy spent, both physical
and computational. In that, we suggest that our study
is the experimental indication that the cognitive robot
architectures of the future must involve an emergent
function of the emotion that is not only biologically
inspired but also computationally justified. Unlike
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existing studies, we do not adopt a fixed set of basic
emotion categories (e.g. fear, anger) or a weighted com-
bination of them, but look for possible evolutionary
arguments that might have acted to form neural struc-
tures for (high-level) emotional expressions as observa-
ble behaviors. We also do not consider any dimensional
approach to define the appraisal aspect of the emotion
(Scherer, 2001). Instead, we hold that emotion might be
a behavioral manifestation of the neurocomputational
energy regulation of the brain to facilitate fast and
cheap neural decision making in the face of computa-
tionally expensive problems (e.g. visual search).

On the basis of the results obtained, we have high-
lighted the contributions of this study as follows. First,
we proposed a novel way to extract a reward signal
relying on the agent’s internal (neural) system rather
than that arbitrarily assigned by the designer of the
experiment. Importantly, we present that the proposed
system with the same implementation procedure leads
to similar results in both simulation and real-world
environments. Second, in simulated and real experi-
ments, we observed that the behavior demonstrated by
the robot could be interpreted as emotion-guided and it
is nontrivial regarding stimulus-energy-reward associa-
tions. Finally, we emphasize that the hardware realiza-
tion of the proposed system is also an important aspect
of the conducted work. To be concrete, a nontrivial
behavior emerges from the robot’s internal mechanisms
(i.e. associative memories and internal reward) while
operating in a noisy environment; for example, reflec-
tions may substantially influence the processing of
visual inputs.

2. Biological background of the proposed
approach

Emotion and its mental processes constitute a vast
research area. In this work, we adopt the position
that—by accepting that it is not the only possible
explanation—some of the emotional mental states of
biological organisms may be explained by internal
reward mechanisms that regulate computational energy
consumption. To support our view, we first introduce
the biological literature on decision making with refer-
ence to emotion-energy and energy-reward associa-
tions. Then, we present the emulation of a similar
association mechanism within the perception-action
cycle of an artificial agent.

2.1. Emotion-energy and energy-reward associations

Our proposal postulated that certain emotional states
are due to the neurocomputational energy regulation
mechanism of the neural system of the agent.
Furthermore, this regulation mechanism is postulated
to be used for forming the internal reward signal for

making a series of decisions. To give support for this
proposal, we review several neuroscientific studies indi-
cating connections between emotion and internal
reward.

The neuroscientific studies on the reward mechan-
isms are often linked to the neurobiological (e.g. dopa-
mine) and physiological (e.g. learning, emotion (or
affect) motivation) components of the agent (Berridge
& Robinson, 2003; Dayan & Balleine, 2002). Here, we
mainly address the coupling between emotion and
reward. To be concrete, we have analyzed the decision
making and reward circuits in the mammalian brain
that has direct and indirect (reciprocal) interactions
among different areas, including the amygdala (Amy),
orbitofrontal cortex (OFC), sensory cortex, and basal
ganglia (Haber & Knutson, 2010; Paton, Belova,
Morrison, & Salzman, 2006). Some of these brain
regions—that is, the Amy and OFC—also play a
potent role in determining the affective (emotional)
state of the agent. In particular, in interacting with
other regions, they form positive or negative values for
a perceived visual stimulus and manage the expectancy
of the reward in a decision-making process (Moren,
2002; Paton et al., 2006).

Based on this review, we propose that an energy reg-
ulation mechanism might be a possible component
linking the agent’s emotional states with the reward
values in an RL framework. To ground our proposal
in neuroscience, we considered energy consumption
and its functions from an evolutionary perspective. The
bodily energy of living beings (e.g. primates) is a limited
resource to be sustained throughout their lifespans.
The brain consumes a considerable amount of this bod-
ily energy, which has been estimated at 20% (Laughlin,
de Ruyter van Steveninck, & Anderson, 1998). Since
the bodily energy is limited and the energy consump-
tion by the brain is non-negligible, the neurons, neuro-
nal codes, and neuronal circuits should have evolved to
reduce the (costly) metabolic demands (Laughlin et al.,
1998). In that, having a limited energy budget while
being exposed to a considerable amount of noisy sen-
sory inputs leads to selective pressure on the sensory
systems of the related areas in the brain (Niven &
Laughlin, 2008). For instance, the nervous system has
to manage the tradeoff between the need for energy
minimization and adaptive behavior generation as a
response to changes in an environment (Niven &
Laughlin, 2008). That is why, from these observations,
we infer that the primate brain, as a large and complex
organ, has been evolved to gain unique energy regula-
tory functions for maintaining the tradeoff between
metabolic cost, information processing, and neural-
bodily energy economy. For example, a biological
agent may not always be able to afford the search for
the best option during its lifespan; therefore, the agent
needs to adopt a mechanism to regulate neural and
bodily resources (Ross & Martin, 2006). For some
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animals, a mechanism to manage this tradeoff for deci-
sion making is already built into the perceptual system,
for example, in the tectum of the frog (Arbib & Lara,
1982). However, for higher functioning species such as
humans, the perceptual system must be able to work in
high fidelity where other top-down neural mechanisms
(e.g. visual attention) modulate its function and allow
for decision making based on the environmental con-
text and the state of the agent—that is crucial for a
perception-action cycle to sustain the wellbeing of the
organism. In addition to this review, we also noted that
further literature findings on the emotion-energy asso-
ciation were provided in our previous studies (Kirtay &
Oztop, 2013; Kirtay et al., 2016).

2.2. Emulation of the perception-action cycle

This study considers emotion as one of the fundamen-
tal mechanisms which emerge from managing this tra-
deoff (Kirtay & Oztop, 2013). To emulate the proposed
mechanism in the RL framework as a simple cognitive
architecture, we hold that the emotion emerges from
the interactions between visual perception, associative
memory, and the internal reward mechanism.

As illustrated in Figure 1, the agent employs five dif-
ferent cognitive components to carry out a visual recal-
ling task. Here, we refer to components as information
processing units in the designed architecture. The agent
perceives a visual stimulus, processes it via an associa-
tive network, extracts stimulus-energy and energy-
reward associations, selects an action to minimize the
neural energy consumption, and learns the environ-
ment to sustain its life cycle. The emulated information
flow among these components has been inspired by the
neural pathways of the primate brain, including direct
and indirect reciprocal interactions among the OFC,
the sensory cortex, and the Amya (Levine, 2009;
Moren, 2002; Murray, 2007).

The implementation of this framework presents how
an agent can utilize this mechanism in a simple

architecture to extract a reward value from a perceived
stimulus and subsequently take a series of actions to
find a region where a lesser amount of energy is
required to sustain its life cycle. In this way, the agent
learns the environment dynamics and how to regulate
its energy while performing visual memory recalling as
a cognitive task.

3. Related works

In this section, we first review, from an architectural
perspective, the studies of cognitive agents that include
emotion as part of their implementations. Then, we
evaluate intrinsic motivation studies that consider self
(internally) generated rewards in an RL framework.
For the interested reader, we point out that a more
comprehensive review of cognitive architectures, intrin-
sic motivation, and emotion-related robotics studies
can be found in Barto (2013), Kirtay and Oztop (2013),
Kirtay et al. (2016), and Langley, Laird, and Rogers
(2009).

3.1. Cognitive architecture studies

Gratch (2000) proposed an emotional reasoning model
to provide planning and reacting modules for an agent.
This model was developed based on existing approaches
to regulate an elicitation module for altering the agent’s
behaviors. The elicitation module enables a virtual
agent to operate five types of emotion: hope, joy, fear,
anger, and distress. The model is employed in a simula-
tor to show that the virtual agent is capable of planning
and reasoning by appraising predefined emotions.
Marinier and Laird (2008) integrated an RL algorithm
with appraisal elements, emotions, and moods, to com-
pare a standard RL agent with the agent that has
appraisal elements. In this work, the task involves a vir-
tual agent in a maze that can evaluate predefined situa-
tions such as approaching to the walls or the goal.
While taking action in the maze, the software agent was

Figure 1. Information flow among components of the agent and their interactions to perform a perception-action cycle in a
reinforcement learning framework.
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designed to act via well-defined appraisals like sudden-
ness, pleasantness, and so on. The work reported in
Lin, Spraragen, Blythe, and Zyda (2011) presents a
design of cognitive-emotional architecture to integrate
the generation of emotion and its effects on cognitive
processes. The article follows a unifying approach to
selectively merge and combine the modified features of
several cognitive architectures (Becker-Asano &
Wachsmuth, 2010; Marinier & Laird, 2004). To be
more specific, the appraisal mechanism consists of an
arousal and valence node that bidirectionally interacts
with the short-term memory component of the architec-
ture. With these interactions, the mood of the agent is
derived by averaging the arousal and valence values to
obtain its effects on the cognitive process. Although this
study benefits from a large body of previously devel-
oped cognitive architecture literature and cognitive
observations, the emotion generation mechanism needs
a detailed explanation regarding biological plausibility.
In addition, the proposed system has not been imple-
mented on an agent (either simulated or physically
embodied) for quantitative evaluations in the real-
world. Franklin, Madl, D’ Mello, and Snaider (2014)
introduced a comprehensive cognitive architecture,
LIDA, which has a conceptual appraisal model built on
a node linking between emotion and appraisal. These
conceptual terms—emotion and feeling—are consid-
ered a cognitive motivator for action selection. The cog-
nitive architecture in this model has not been
implemented on an agent to understand how the con-
ceptual modeling behaves in a real-world scenario.

As discussed here, the studies of cognitive agents that
consider emotions as a component of their designs, lack
several features that exist in biological agents.

First, most of these studies focused on a categorical
approach to basic emotions and their implications on
agent behavior. This approach gives rise to a simplifica-
tion of the complex nature of emotions and does not
answer the functional characteristics of the emotion
mechanism in performing a cognitive task (Kirtay et
al., 2016). Contrary to this conventional approach, we
consider emotions as an emergent phenomenon strictly
constrained in the agent’s neural system rather than a
deterministic input–output process. Integrating catego-
rical emotions into an architecture requires well-defined
rules in every state the agent perceives (which can be an
external command to direct the agent). Functional inte-
gration of emotions considers in what situation emo-
tions should emerge to create computational benefits
(i.e. to accelerate learning and take a decision for imme-
diate problems) for an agent.

Second, most of the studies mentioned above have
limitations regarding the biological plausibility of the
emotion mechanisms to describe its interactions with
other cognitive components. We propose a simple cogni-
tive architecture that enables an agent to form stimulus-
energy associations and employ these associations to

extract internal reward values while conducting a cogni-
tive task. To this end, the agent regulates the neural
energy consumption and displays behaviors that might
be attributed to emotional affinity toward the specific
visual stimulus.

Finally, the experimental realization of most of these
architectures on real robot platforms is not available,
and the proposed architectures cannot be tested in an
experiment in which environmental (e.g. noise), and
hardware constraints (e.g. camera resolution) are
present.

3.2. Intrinsic motivation studies

Here, we review a number of self-generated reward
methods from an intrinsic motivation perspective.
Intrinsic motivation refers to the behavior of an agent
driven by internal rewards rather than external ones
from the environment; the motivation to engage in the
behavior arises from its being exciting and enjoyable
for the agent (Ryan & Deci, 2000).

Singh, Barto, and Chentanez (2005) proposed two
different reward functions (i.e. extrinsic and intrinsic)
to enable the simulated agent to acquire skills in a play-
room environment. The intrinsic reward function was
employed in response to salient events (e.g. changes in
light and sound). In our experiments, the agent only
generates an internal reward by deriving the computa-
tional cost of recalling; however, this study concerns
intrinsic reward in a situation in which the agent is
‘‘surprised’’—that is, perceiving a salient stimulus from
the environment. In detail, if the agent is frequently
faced with novel events, the value of reward decreases.
Perula-Martinez, Castro-Gonzalez, Malfaz, Alonso-
Martı́n, and Salichs (2019) proposed a reward function
for Q-learning based on the wellbeing of a robot in an
interaction scenario with a human. Although this study
utilizes various psychological concepts: motivation,
drives, and homeostasis, these concepts and their roles
in the decision-making framework are predefined
(Salichs & Malfaz, 2011). For instance, if the robot
interacts with a user, the ‘‘interaction’’ drive increases.
Similarly, if the robot is acting, the ‘‘rest’’ drive
increases; on the contrary, the drive decreases when the
robot is waiting. The reward function designed in
Sequeira, Melo, and Paiva (2011) is based on predeter-
mined appraisal dimensions of emotion, including
novelty, motivation, control, and valence, which are
adapted from Scherer (2001). The authors used the
weighted linear combination of these dimensions to
construct an intrinsic reward value. In detail, the agent
employs an intrinsically motivated RL framework in
simulated experiments in foraging scenarios.

In this subsection, we provide some representative
studies from the agent-generated reward function liter-
ature. We point out that Moerland et al. (2018) provide
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a comprehensive review of emotion-related studies in
RL frameworks.

Our proposed reward generation method differs
from the studies we have mentioned, in the following
ways. First, our reward function merely depends on the
stimulus perceived by the agent, which employs asso-
ciative (visual) memories to recall the pattern. Second,
unlike these studies, in our experiments, there are no
predetermined rules to guide the agent to behave in
specific cases. To be concrete, there is no prior informa-
tion about the environment on how the recalling task
should be performed and on which decisions should be
made. Finally, similar to the studies that we introduced
in the cognitive architecture subsection, the robotic
experiments of these studies are generally not available
to understand the validity of the approach in the real-
world. In contrast to the results presented in this study,
they are mostly employed in game or simulation
environments.

We emphasize that, in this study, we follow the same
paradigm as our previous studies to assess both virtu-
ally and physically embodied agents’ behaviors under
different experimental conditions (Kirtay & Oztop,
2013; Kirtay et al., 2016). The main distinctions of this
study can be listed as follows: the agents operate in an
environment where more state–action pairs exist and
the agents are allowed to visit the same state in a row.
More importantly, the agents have no a priori informa-
tion (i.e. the agents do not know where to stop) about
the environment, where to perform a given task while
minimizing the computational energy consumption.

4. Methods

This section presents the performed methods for the
components and their implementation in the RL frame-
work. We employed High Order Hopfield Network
(HHOP) to form an associative memory for the agent.
This associative memory is used for recalling visual sti-
muli. To derive the consumed (neural) computational
energy, we count the number of changed bits (i.e. bipo-
larized pixel values) between the converged pattern and
the pattern that was received from the environment.

This energy value is used for extracting the reward
value that enables the agent to learn the policy that is
needed to select the best course of action. After taking
a series of actions, the agent learns about the environ-
ment and moves from a higher energy state to a lower
energy one.

Figure 2 depicts a comparison between a standard
RL framework and our proposed model. The latter is
conceptually derived from the previous, with the main
difference being the way we extract reward values, as
the product of internal regulatory mechanisms instead
of receiving the reward signal received from the envi-
ronment. We note that the implementation steps
described in this section consider only the robotic agent
and the same procedures are also valid for the simu-
lated agent.

4.1. Extracting reward values for
perceptual processing

To process a visual stimulus from the robot camera, we
employed a customized version of the Hopfield
Network (Hertz, Krogh, & Palmer, 1991). In this
implementation, named HHOP, the activation of each
unit i (i.e. a neuron) is the sum of the products of the
activations of all possible pairs of units (Chaminade,
Oztop, Cheng, & Kawato, 2008) as

Si = sgn
X

jk

WijkSjSk

 !
ð1Þ

where sgn(x) is defined as

sgn(x)=
�1 if x\0

1 if x ø 0

�
ð2Þ

Initially, the network was trained with five different
patterns, as shown in Figure 3. These patterns are
selected to be either a digit or a letter. We perform the
same procedure proposed in the study of Chaminade et
al. (2008) to store these patterns for training.

The training phase starts receiving these patterns
from the robot’s camera, then downsizes the patterns

Figure 2. Comparison between standard (left) and our customized (right) reinforcement learning architectures. In standard
reinforcement learning the reward is received from the environment, while in our custom architecture the reward is an outcome of
the internal mechanisms of the agent.
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to 20 3 20 pixels by applying standard image process-
ing algorithms, and obtaining a single bit binary repre-
sentation for the pixel values. In order to construct the
weight matrix for the network, the binary values
obtained have been expressed with a bipolar represen-
tation (21, 1). The weight matrix of training patterns
was derived as

Wijk =
X

p

j
p
i j

p
j j

p
k ð3Þ

where j
p
i , j

p
j , and j

p
k are the jth, jth, and kth bipolar

bits of the pth pattern j p. As we have used five differ-
ent images as training patterns, this weight extraction
step has been performed with p= 5.

After initializing the weights, 20 different patterns
including training patterns, noisy training patterns, and
completely new patterns are shuffled to construct the
scene depicted in Figure 4. The robot camera is fed
with patterns composing the scene as an input pattern.
The same vision and image processing algorithms are
applied for each input pattern, j, to extract their bipo-
lar representations. Then, the asynchronous update
rule is performed to lead the network to reach a steady
state. Due to properties of HHOP, when it reaches a
steady state, the network may have converged to one
of the stored patterns, an inverse of one of the stored
patterns or a combination of the stored patterns.

The obtained pattern for the converged state is
denoted by j. The energy required to reach the steady
state starting from a received input pattern is defined
as the total number of flipped bits (change in state of
the unit). We compute the energy value via equation
(4), where N refers to the size of visual pattern

E(j)=
XN

i= 1

jji � jij
2

ð4Þ

Note that, due to the random activations of the units
in the network, the obtained value E(j) is a lower
bound estimate of the actual number of switched acti-
vations. Therefore, it can be considered as the mini-
mum amount of computational energy required to
converge to the image stored in memory (Kirtay et al.,
2016).

Recalling from Figure 2, these energy values are
used to extract reward values to implement a temporal
difference (TD) learning algorithm. In this way, the
agent learns to shift its gaze direction toward a state (a
discrete region in the scene) in order to maximize the
cumulative discounted rewards. In other words, the
agent sequentially learns to focus on the regions where
a lesser amount of energy is required to process the
given visual stimulus.

4.2. Reward value and interactions with other
components

To learn the environmental dynamics with the pro-
posed mechanism, we customized the reward function
of a TD learning algorithm—namely SARSA—to carry
out instructions based on an adopted policy (Sutton &
Barto, 1998).

To formally define the adapted algorithm, we intro-
duce the Markov decision process (MDP) (Ng, 2003;
Sutton & Barto, 1998). The MDP framework can be
described as a tuple (S,A,P,R), where S indicates a set
of states, A is a set of actions that the agent can per-
form, P is the state transition function, and R is a
reward function that evaluates the usefulness of the
action, respectively. p is the policy that maps each
action to a state, and the customized SARSA algorithm
should learn that. It is important to notice that, in this
setting, a state (s 2 S) consists of a discrete region in
the scene in Figure 4. The number of states, ns, is
designed to be 20, si where i 2 (0, ns � 1). In each itera-
tion, the agent locates itself in one of the available
states to perceive a visual pattern via its camera and
process it using associative memory to extract a cost
value for visual recalling.

An action, (a 2 A), is defined as a coordinated
movement of the eyes and the head, which enables the
agent to move its gaze from one state to another. In
our experiments, the number of actions, na, is equal to

Figure 3. Visual patterns stored for associative memory.

Figure 4. Constructed scene for visual perception.
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the number of states, ai, where i 2 (0, na � 1)—that is,
the agent can move from one state to all other states,
including the current state where it is located. It is also
worth noting that, in our implementation, for each
state s and action a there is only one resulting new state
s0. By iterating over a state–action pair, (s, a), the agent
senses the environment through its camera and takes
appropriate actions (e.g. head and eye movements) to
explore the environment while performing visual
recalling.

In the MDP framework, the agent chooses an action
based on a policy, p, which provides the state transition
probabilities to map actions to states. However, in our
case, we adopted an on-policy TD learning method,
which updates a policy based on an action that the
agent has taken in each iteration. To navigate the visual
scene using coordinated head and eye movements, the
agent performs an e� greedy strategy. This strategy lets
the agent compare all the available actions’ values and
move its gaze direction toward the most valuable state.
Moreover, with a sufficiently small value of e the agent
can exploit random states in the visual scene in order to
explore the environment. In this study, e is chosen to be
0:3. The value of a given state is calculated and updated
as

Q(s, a) Q(s, a)+m(R(s, s0)+ gQ(s0, a0)� Q(s, a))

ð5Þ

Q(s, a) represents the current value of state–action
pairs. Similarly, Q(s0, a0) indicates the value for the
action a0 in the next state s0. The m variable is the step
size (i.e. learning rate) parameter and g is an adjust-
ment factor that discounts expected future rewards.
The m values are set to 0:5 and 0:7, with g fixed to 0:4.
In addition, we present the experiment results for dif-
ferent values of m and g in the repository of the study.
These values were initially determined performing a
grid-search. We used these values to show that similar
results can be achieved with different values for these
parameters. To this end, we provide the outcomes of
the experiments in the ‘‘Results’’ section.

In most MDP frameworks, the reward function, R,
is often hand-crafted. Here, we extracted the reward
value of an s, s0 pair, R(s, s0), as a function of the com-
putational energy consumed to process a visual pattern
perceived from the scene. To be more concrete, we
derive the reward value of an s, s0 pair based on equa-
tion (6). In this equation, js and js0 are the image pat-
terns received in the states s and s0, respectively, then
the energy values for the execution of recalling opera-
tions, annotated by E(js) and E(js0 ), are obtained and
compared. Based on this operation, the reward value is
representing whether the agent moves from a higher
energy state to lower energy one or vice versa

R(s, s0)=
�1 if E(js)\E(js0 )
1 if E(js)ø E(js0)

�
ð6Þ

We highlight that the agent does not have any prior
information about an expected reward in any state–
action pair. After a sufficient number of iterations of
the Q values, for each state–action pair, the agent is
able to perform sequential decision making by follow-
ing the extracted policy. In other words, starting from
any initial state, the agent will eventually find the states
where it can perform the visual recalling task with lower
energy consumption.

5. Reproducibility of the study

In order to reproduce the presented results and provide
all the related data—including scripts, experiment
report, parameters, figures, and images—to other
researchers, we used a public repository.

1

Note that,
even if the repository is frequently updated, the current
state of the article with related sources can be found on
the branch named ADAPTIVE2019-submission.

6. Results

The implementation of the proposed system was vali-
dated by performing experiments in simulation and by
employing a robotic agent. In detail, we examined how
internally rewarded actions of the agent can populate
the Q-value matrix with state–action pairs and enable
the agent to decide and move from a high energy con-
sumption state to a lower one.

Here, we note that the same implementation steps
were employed on the simulated agent and the iCub
robot platform in order to test whether similar results
can be achieved in a real-world environment, thus in
the presence of hardware limitations and environmental
noise. We emphasized that the agent, either simulated
or robotic, performs its actions without prior informa-
tion about the environment. In particular, there are no
predetermined end states to stop the exploration and
exploitation in the environment.

6.1. Interpretation of results

In this part, we provide an interpretation of the
obtained results. First, we present the discovered states,
that is, the discrete regions in the scene, at the end of
each experiment, using Q-matrix values for each state–
action pair. Second, to show that the discovered states
are, in fact, the states in which a lesser amount of
energy is consumed for the visual recalling task, we
provide their average energy values. Then, we counted
the number of actions that have led to moving from a
high energy state to a lower one. In this case, we con-
sider them as correct actions; otherwise, we deem them
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as wrong actions. Finally, we provide the cumulative
reward curves to illustrate the behavior of the agent
during the experiment.

6.2. Simulated agent experiments

In the simulation experiments, the possible actions con-
sist of choosing one of the available states where a
visual pattern is presented to the agent. The simulation
trials were repeated 10 times for 200, 300, 400, 500,
600, and 1000 iterations. The same procedure was also
applied for different learning rate and discount factors.
Although the figures in this section are provided for
the agent who performs TD learning with m= 0:7 and
g = 0:4, we also present the results for a different run
in a table format. Moreover, we shared more results
for the simulated agent in the repository of the article.

In each iteration, the agent can select an action to
move toward any discrete region in the scene, including
the current. Since there are no predetermined final
states to terminate the exploration and the exploitation,

the agent should discover a final state or multiple final
states by itself.

To test this, at the end of each trial, we first extracted
the highest Q values for all the state–action pairs in
order to obtain the final policy. If the learned policy
leads the agent toward a subset of states (possibly a sin-
gleton), these are deemed final. We aim to demonstrate
that these states are indeed the ones in which less energy
is required to process that visual stimulus; moreover,
the software agent is capable of regulating its internal
processes by constructing stimulus-energy-reward asso-
ciations. In order to learn the environment and increase
the cumulative reward, the agent has to take action to
move from a high energy state to a lower one.

Figure 5 shows the obtained results at the end of 400

iteration steps for one of the randomly selected repeti-
tions. The discovered final states are illustrated in
Figure 5(a) with a green rectangle. As can be seen in
Figure 5(b), the average amount of energy consumed
while visiting these two state are the minima, compared
with other available states. Therefore, the final states of

Figure 5. Simulated agent experiment results after 400 iteration steps: (a) Discovered final states. (b) Average energy value for
each state. (c) Q-matrix heatmap. (d) Cumulative reward.
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the policy correspond to the states in which less energy
is needed to carry out the visual recalling task. We
defined the average energy value of a state as the sum
of energy values divided by the total number of visits.

The Q-value matrix for all state–action pairs is
shown in Figure 5(c) as a heatmap, where the color of
each cell indicates how valuable it is to move from one
state to the corresponding one. For example, if we
assume that the agent is placed in state 7, it will end up
oscillating between the two discovered final states
where the X and C visual patterns are located (states 1
and 9). To achieve this, the agent will attend the follow-
ing state sequence 7) 2) 9, 1.

This behavior is depicted in Figure 6 as a state tran-
sition diagram. In this figure, each state is represented
by a full circle with the state number and the average
energy value consumed in that state is reported below
the circle. The dashed circles indicate the final states
between which the agent oscillates. Since there is no
environmental noise in the simulation experiments,
though some patterns had been manually contami-
nated, the energy values for the discovered states are
zero. Based on this state-transition diagram, we con-
clude that the agent found, indeed, the states requiring
minimum energy for visual recalling.

One important outcome of this experiment is illu-
strated in Figure 5(d), where it is shown that the agent
steadily increases the cumulative reward by making
decisions to move from high energy states to the lower
ones. The cumulative reward is computed as the sum of
all the rewards gathered during a trial. This behavior
can also be observed for different iteration steps. Figure
7 illustrates the average cumulative reward curves of
simulation trials.

Table 1 shows the results for trials with different
numbers of iteration steps. The table consists of
eight columns which present the iteration steps, mean
cumulative reward (normalized by iteration steps),
standard deviation, classification of the state–action
pair in the final policy, and the discovered final states.
Furthermore, the columns are grouped into two sub-
columns to display the numeric values for the simulated
agent with different learning rates and a fixed discount-
ing factor. To be more specific, P1 and P2 indicate the
experiments where the m and g parameters were set to
0:7, 0:4 and 0:5, 0:4, respectively.

The cumulative reward value was averaged on 10
repetitions of the same trial and normalized by the
number of iteration steps. As can be seen in the rows of
the first column, the value of the cumulative reward
increases with the number of iterations. This indicates
that the more the agent performs the visual recalling
task, the better the learned policy becomes. We noted
that this observation is valid for both the P1 and P2
subcolumns. Moreover, to quantify the average beha-
vior of the agent, we provide in the third column,
named as Std, the standard deviation of 10 runs.

The fourth and fifth columns of Table 1 show the
number of wrong and correct actions—labeled as WA
and CA—taken by the agent for each iteration step.
This classification is derived from the Q-value matrix
of the agents (see Figure 5(c)). At the end of the experi-
ment, we examine whether the agent moves from a high
energy state to the low energy one by taking action cor-
responding to the highest Q-value, that is, the action
given by the policy. We then compare the average com-
puted energy for the initial state and the arrival state
corresponding to the action. Recall that, if the com-
puted energy of the initial state is higher than the
energy for the arrival state, we consider this movement
correct, otherwise, it is considered wrong. As can be
seen in the P1 and P2 subcolumns, the percentage of
correct actions increases with the number of iterations,
though there exist small differences in Table 1, thus
indicating an improved policy.

The discovered final states, resulting from the
learned policy, are shown in the last three columns of
Table 1. From the obtained results, these can be
grouped into three categories. In the first category, the
agent discovered a single final state corresponding to
either the X or C visual patterns (state 1 or 9). In the
second category, we can find policies that lead to two
or more final states where the training patterns (X, C,
3, and 5) are located; these are the two aforementioned
states (mostly 1 and 9) and the policies found in this

Figure 6. State transition diagram after 400 iteration steps for
the simulation agent.

Figure 7. Cumulative reward curves for all iteration steps.
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category result in oscillation between at least two pat-
terns or in creating two different attractors. It can also
be observed that an increase in the iteration steps
decreases the number of low energy states in the set of
final ones. In the last category, the final states include
other states with training patterns. However, the pat-
terns in this category diminish with increasing the itera-
tion steps for both the parameter settings in P1 and P2.

To assess the convergence of the behavior, we looked
at the TD error plots (tderror) which are derived from equa-
tion (7). Recalling from equation (5), R(s, s0) refers to the
obtained reward from that state, s, by taking an action
that leads the agent to the next state, s0. The Q value of
the state–action pairs is shown by Q(s, a) and the g value,
0:4, is used as a discount factor for value adjustment as

tderror = R(s, s0)+ gQ(s0, a0)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Learned value

�Q(s, a)|fflfflffl{zfflfflffl}
Old value

ð7Þ

During the simulations, we recorded the tderror val-
ues and later smoothed them by performing a moving
average with a window size of 100 over the average of
10 repetitions. We stopped the simulations after a fixed
number of iterations for computational convenience,
but it can be seen from Figure 8 that the tderror is
decreasing toward zero, indicating a progress toward
an optimal Q-function. The reason why the tderror

graphs do not reach zero is twofold (Sutton & Barto,
1998). First, the step size parameter was fixed through-
out the experiment. Second, the number of iterations
was not large enough to eliminate variations brought
about by the initial values of the Q matrix and the ran-
dom nature of the updates of the units in the associa-
tive memory. Besides, the external and internal factor
that play important roles in the behavior of the agent,
will be explained in detail in the ‘‘Discussions’’ section.

6.3. Robotic agent experiment

To test the proposed system on a real robotic platform,
we employed the iCub humanoid robot as a physically

embodied agent. In this way, we aim to show that the
proposed approach is also suitable for robotic applica-
tions in which environmental noise and hardware con-
straints hinder the processing of incoming visual
patterns (see Figure 10).

6.4. Experiment setup

As shown in Figure 10, in the experiment setup the
iCub robot is placed in front of a screen that displays
some visual patterns. The iCub robot has two cameras
that can capture images with a resolution of 640 3 480.
The robot is controlled using the python bindings for
the YARP middleware (Paul et al., 2014).

During the experiment, the robot directs its gaze
toward some specific regions of the scene by employing
a coordinated movement of the eyes and neck joints
(Vannucci, Cauli, Falotico, Bernardino, & Laschi, 2014;
Vannucci, Falotico, Di Lecce, Dario, & Laschi, 2015).

As in the simulated experiment, the physical one
starts with showing a randomly generated scene to the
robot. For comparison purposes, the same scene was
used in both the cases (see Figures 4 and 11(a)). Each

Table 1. Experiment results for the simulated agent for all iteration steps with 10 runs.

Steps Reward Std WA CA X-C X-C-3-5 Others

P1 P2 P1 P2 P1 (%) P2 (%) P1 (%) P2 (%) P1 P2 P1 P2 P1 P2

200 0.347 0.323 16.3 16.1 4.5 20.5 95.5 79.5 7 4 1 5 2 1
300 0.362 0.425 13.2 21.8 4.5 18.5 95.5 81.5 4 4 4 6 2 –
400 0.409 0.401 15.5 12.7 1.5 19.5 98.5 80.5 2 4 7 6 1 –
500 0.481 0.447 12.8 23.3 1.5 17.0 98.5 83.0 7 7 3 3 – –
600 0.444 0.466 25.7 29.7 1.0 17.5 99.0 82.5 4 7 6 3 – –
1000 0.479 0.489 35.3 41.7 – 16.0 100 84.0 5 5 5 5 – –

Std: standard deviation; WA: wrong action; CA: correct action; X-C: visual patterns; X-C-3-5: training patterns.

The P1 columns refer to the experiment results where the m and g variables were set to 0.7 and 0.4.

The P2 columns refer to the m and g variables that were set to 0.5 and 0.4.

Figure 8. Running average on temporal difference error
(tderror) over average of 10 repetitions for all iterations.
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pattern in the scene shall be the target gazed at by the
robot. We, moreover, define each of such patterns as a
state. As shown in Figure 11, at the beginning of every
iteration, the current state selected by the robot moving
its gaze toward it, is highlighted by a green border.

Then, a magnified version of the selected pattern, is
shown to the robot for visual processing (Figure 11(b)
and (c)). The scene is presented again to the agent so
that an action can be chosen (Figure 11(d)). The new
state is highlighted with a red border, the robot moves
its gaze toward it, and the corresponding visual stimu-
lus is given (Figure 11(e) and (f)).

6.5. Results for robotic agent

To evaluate the proposed approach on the iCub robot
platform, we conducted an experiment for 800 iteration
steps, and saved the data at the 400th step to compare
the agent behavior throughout the experiment. This
experiment was conducted with the same parameters as
in the first simulation experiment, where m and g were
set to 0:7, and 0:4, respectively.

Figure 9 depicts the results obtained after 800 steps.
The discovered final states are shown in Figure 9(a)
with green and red rectangles. The corresponding

Figure 9. Robotic agent experiment results for 800 iteration steps. (a) Discovered final states. (b) Average energy values. (c) Q-
matrix heatmap. (d) Cumulative reward curve.

Figure 10. Experimental setup: the iCub robot and a scene for
visual perception.
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average energy value for each state is provided in
Figure 9(b). From this figure, we conclude that the
noise in the environment and hardware constraints pre-
vent the associative network to generate the same (or
similar) energy values for the simulation experiments.
In that, the discovered states obtained are 3) 12) 9

) 14) 3. We note that this transition structure stems
from the the values of the Q matrix in Figure 9(c).

To be more descriptive, we provide the state transi-
tion diagram of the discovered states in Figure 12. As
we explained for Figure 6, the circle indicates the dis-
covered states and the corresponding energy values
reported just below the state circles. We emphasize
that regardless of the initial state of the agent, at the
end of the iteration the final states will be the ones in
Figure 12; moreover, the sequence of gaze direction
change follows the path described by the directed
arrows in the figure. It can be seen that the transition
between two states will lead to lower energy consump-
tion, except for state 14.

In principle, one might expect that the agent should
continuously gaze toward state 9, but such behavior

cannot be learned due to the noise in the environment,
for example, light and reflections. In particular, if the
agent visits a state twice in a row, the obtained energy
value and therefore the extracted reward values will be
different, leading to oscillations in Q(s, s) for every
state, due to the alternation of positive and negative
rewards. As such, it is possible that, from states with
very low energy consumption, the policy could lead to
a transition state with a higher level of energy con-
sumption. This happens, for instance, in the two cycles
of final states of the policies under examination. This
state is marked with a red border in Figure 9(a).

As an important outcome of the robotic experiment,
we observe that the number of correct actions increases
from 80% to 90% for 400, and 800 iterations, respec-
tively. This indicates that the robotic experiment
requires more iteration steps to populate the Q matrix.
We also note that the number of transition states—
state with the red rectangle—decreases with the number
of iterations. To be more specific, 1) 6) 9) 11)
10) 1 were discovered after 400 steps.

The cumulative reward obtained throughout the 800
steps is shown in Figure 9(d). In this figure, by compar-
ing the first and second halves of the experiment, we
note that the agent needs more iterations to increase
the cumulative reward. In particular, Figure 9(d) shows
that after a longer initial phase, compared to the simu-
lated trials in Figure 7 where the agent has to sacrifice
some reward in order to compensate for the cost of
learning, the agent steadily increases the cumulative
reward up to the end of the experiment.

Figure 11. Robotic agent experiment snapshots. (a) States scene. (b) Current state. (c) Current state pattern. (d) States scene. (e)
Selected action (next state). (f) Next state pattern. (Experiment media can be found in the following link: www.github.com/
muratkirtay/ADAPTIVE2019/iCubExperiment.mp4)

Figure 12. State transition diagram after 800 iteration steps.
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7. Discussions

In this section, we discuss the evaluation of the simula-
tion and the robotic experiments, based on the results
presented in Figures 5, 7, and 9. The trends in the plots
of cumulative rewards are increasing for both the robotic
and the simulated agent concerning the same number of
iteration steps, at least after 300 steps. Both the minimum
and the maximum values of the cumulative reward are
higher for the simulated agent than for the robotic one,
indicating that the robotic agent needs to lose more
reward in the initial iterations before it starts to steadily
improve the cumulative values. This observation can also
be noticed from the duration of the initial phase, where
the cumulative reward can get below zero for each agent.
The simulated agent learns more quickly to compensate
for the cost of the initial learning steps, while the robotic
agent needs to take more steps for compensating the
learning cost. Since the robot operates in a noisy environ-
ment and it receives contaminated patterns for visual
processing, the average of the computational energy con-
sumed for the discovered states is higher in the robotic
experiment than in the simulation.

The reasons why the same implementation, with the
same parameters, performs better in the simulation
trials can be described by the external and internal fac-
tors of the experimental setup for the robotic agent.
The external factors are mainly caused by uncontrolla-
ble environmental noise sources and limitations of the
hardware, such as camera resolution, lights, and reflec-
tions. The internal factors are unique to the implemen-
ted algorithms, and they include initial values in the Q
matrix for the state–action pairs, a high number of ran-
dom actions due to the e-greedy strategy, and the num-
ber of iterations, to mention a few.

To improve the robot experiment results, for the next
phase of this study, the noise factor in the environment
can be numerically derived by conducting multiple
experiments before starting an actual experiment. This
value can be used as a threshold to eliminate the transi-
tion states. Moreover, fine-tuning some parameters such
as initial values in the Q-value matrix, decreasing e
value after certain iteration (i.e. in the last quarter of
the experiment), and decaying the step-size parameter
will enable the robot to achieve improved results.

The obtained results from the simulation and robotic
experiments highlight that the proposed system enables
the agent to modulate its behavior to achieve a given
visual recalling task with an energy minimization prin-
ciple. In addition, the proposed method enabled the
agent, in making a series of decisions, to display a non-
trivial behavior regarding the consumed energy values.

8. Conclusion

In this work, we have demonstrated that emotion can
be considered as the behavioral manifestations of a

neurocomputational energy conservation mechanism of
an agent that, for its survival, needs to make decisions
and thus perform computations. Therefore, we imple-
mented such a mechanism in a simple cognitive archi-
tecture and tested its functionality in simulation and
real hardware (the iCub humanoid robot). The percep-
tion and memory-recall module adopted by the agent
to construct stimulus-energy and energy-reward asso-
ciations for the stimuli, presented in its visual field, was
perceived from the environment. Then, the agent used
these associations to learn how to make a sequence of
actions to minimize the neurocomputational energy
required by its perception-action cycle. By leveraging
the proposed system, the agent displays a behavior that
could be attributed to the agent’s emotional affinity
toward a preferred stimulus.

The results show that, in a decision-making process,
adopting the neurocomputational cost for a modula-
tory role may be a way to create rich robot behaviors
that are not based on blind mimicry of biological emo-
tions, but rather on their emergence from computation-
ally and evolutionary valid principles. To sum up, we
presented a novel approach to extract a non-hand engi-
neered reward function in performing nontrivial beha-
vior regarding stimulus-energy-reward association. We
noted that the reward mechanism merely relies on the
agent’s internal processes. The study also shows a reali-
zation of the proposed method on a robot platform in
a real-world environment.

Our future studies will target a collection of cognitive
agent applications with four distinct objectives. First,
we will integrate the energy regulation component in a
state-of-the-art cognitive architecture (e.g. LIDA) to
perform more complex cognitive tasks (e.g. multimodal
perception for concept formation).

Second, we will integrate more cognitive mechanisms
into the architecture such as action generation, reason-
ing, and learning to incorporate emotion phenomenon
to propose a novel (and more complex) cognitive agent
architecture. Third, we would like to understand how
onlookers perceive the embodied agent in executing a
cognitive task driven by the emotion-like mechanism.

Finally, the reward generation method can be further
investigated by employing a different type of network,
such as Restricted Boltzmann Machine, to derive energy
values for not only visual recalling but also multimodal
sensory representation task. In addition, we envision
that the proposed reward function can be considered as
a new energy-based method which can be integrated
into an intrinsically motivated agent in order to com-
pare existing reward functions in the related literature.
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