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Abstract: The article proposes a nonlinear H-infinity con-
trol method for switched reluctance machines. The dy-
namic model of the switched reluctance machine un-
dergoes approximate linearization round local operating
points which are redefined at each iteration of the control
algorithm. These temporary equilibria consist of the last
value of the reluctance machine’s state vector and of the
last value of the control signal that was exerted on it. For
the approximate linearization of the reluctance machine’s
dynamics, Taylor series expansion is performed through
the computation of the associated Jacobian matrices. The
modelling errors are compensated by the robustness of
the control algorithm. Next, for the linearized equivalent
model of the reluctance machine an H-infinity feedback
controller is designed. This requires the solution of an al-
gebraic Riccati equation at each time-step of the control
method. It is shown that the control scheme achieves H-
infinity tracking performance, which implies maximum
robustness tomodelling errors and external perturbations.
The stability of the control loop is proven through Lya-
punov analysis.
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1 Introduction
Switched reluctance machines (SRM) exhibit specific ad-
vantages comparing to other electric machines. Unlike
electric machines having windings at the rotor (such as
electromagnetically excited synchronous or wound rotor
asynchronous AC machines as well as DC motors), the
manufacturing of SRMs is easier and the appearance of
faults is less frequent [1–4] Moreover, such machines ex-
hibit improved torque characteristics thus becoming suit-
able for several electromechanical actuation systems. Ad-
ditionally, comparing to other electric machines the SRM
power consumption is reduced thusmaking them suitable
for use in industry [5–8]. Control of SRMs is a nontrivial
problem because their dynamic model is a highly nonlin-
ear one [9–14]. Stability and robustness are also features
of primary importance in the development of SRM control
schemes [15–20]. It is noteworthy that the use of SRMs in
traction of electric vehicles is gaining ground [21–26]. Ac-
tually suchmotors are less costly, less prone to failure and
more convenient to install and maintain than Permanent
Magnet motors [27–31]. However, it should not be over-
looked that due to the nonlinearities in SRMs electric dy-
namics induced by the simultaneous activation of several
stator phases, the control of thesemotors remains an open
and challenging problem [32–36]. It is remarkable, that de-
spite the raise of research production on this topic fewnew
results have been given on globally stable control meth-
ods [37–39]. It is also noted that in an aim to implement
control of SRMs under model uncertainty learning-based
and robust control methods have been developed [40–42].
In particular adaptive control addressed to complex non-
linear dynamical systems can be also considered for the
control problem of SRMs under an imprecise or even un-
known model [43–45].

In this article an H-infinity control method is de-
veloped for switched reluctance machines. The dynamic
model of the SRM undergoes approximate linearization
around local operating points (equilibria) which are re-
computed at each iteration of the control algorithm [46,
47]. These equilibria are definedby the present value of the
SMR’s state vector and the last value of the control input
vector that was exerted on it. The linearization procedure
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makes use of Taylor series expansion [48–51]. This relies
on the computation of the Jacobian matrices of the SRM’s
state-space model. The modelling error which is due to
truncation of higher order terms in the Taylor series expan-
sion is consider as perturbation to the system’s dynamic
model which is finally compensated by the robustness of
the control method. For the linearized model of the SRM
an H-infinity feedback controller is computed.

The H-infinity controller for the SRM stands for the so-
lution of the nonlinear optimal control problem for this
machine under model uncertainty and external perturba-
tions. It actually represents the solution of a mini-max dif-
ferential game in which the control inputs tries to mini-
mize a quadratic cost functional of the SRM’s state vec-
tor error while the model uncertainty and perturbations’
inputs try to maximize it. The feedback gain of the H-
infinity controller is obtained from the solution of an al-
gebraic Riccati equation, taking place at each iteration of
the control method [52–56]. The stability properties of the
control scheme are confirmed through Lyapunov analy-
sis. First, it is shown that the control loop satisfies the H-
infinity tracking performance criterion. This signifies el-
evated robustness against model uncertainty and exoge-
nous disturbances. Moreover, under moderate conditions
it is proven that the control loop is globally asymptoti-
cally stable. Finally, to implement the proposed H-infinity
control method using only output feedback, state estima-
tion for the SRM with the H-infinity Kalman Filter is pro-
posed [57, 58].

The structure of the article is as follows: in Section 2
the dynamic model of the switched reluctance machine
is analyzed and its state-space model is obtained. In Sec-
tion 3 the approximately linearized model of the SRM is
developed through Taylor series expansion and the com-
putation of the system’s Jacobian matrices. In Section 4
the linearized description of the SRM’s dynamics is used
to develop an H-infinity feedback controller. In Section
5 the stability of the H-infinity feedback control scheme
is proven through Lyapunov analysis. In Section 6 robust
state estimation for the SRM’s model is developed using
the H-infinity Kalman Filter. This allows for the implemen-
tation of state-estimation based feedback control through
the processing of measurements from a limited number of
sensors. In Section 7 the efficiency of the proposed control
method for the SRM model is confirmed through simula-
tion experiments. Finally, in Section 8 concluding remarks
are stated.

2 Dynamic model of the Switched
Reluctance machine

It is considered that the switched reluctance machine
(SRM) comprises m phases j = 1, 2, · · · ,m as shown in
Fig. 1. Then by applying Kirchhoff’s law at the j-th phase
one has [6]

vj = Rij +
dψj
dt j = 1, 2, · · · ,m (1)

The aggregate electric torque is the sumof the torques gen-
erated by the individual phases of the machine [6]

Te(θ, i1, i2, · · · , im) =
m∑︁
j=1
Tj(θ, ij) (2)

where Tj is defined using the co-energy function

Tj(θ, ij) =
∂W

′

j
∂θ j = 1, 2, · · · ,m (3)

where the co-energy function is given by

W
′

j (θ, ij) =
ij∫︁

0

ψj(θ, ij)dij (4)

Fig. 1: Switched reluctance machine and its control circuit

The term ψj(θ, ij) denotes the flux linkage and is given
by [6]

ψj(θ, ij) = ψs(1 − e−ij fj(θ)) (5)

j = 1, 2, · · · ,m. ψsis magnetic flux at saturation. while
fj(θ) is initially considered to be given by the Fourier series
expansion

fj(θ) = a +
∞∑︁
n=1

{bn sin
[︂
nNrθ − (j − 1)

2π
m

]︂
+ cn cos

[︂
nNrθ − (j − 1)

2π
m

]︂
} (6)
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where Nr is the number of rotor poles, and finally by trun-
cating higher order terms in this expansion one gets

fj(θ) = a + b sin
[︂
Nrθ − (j − 1)

2π
m

]︂
(7)

Using the previous relations, the electric torque of the ma-
chine due to the j-th phase is shown to be given by [6]

Tj(θ, ij) =
ψs
f 2j (θ)

∂fj(θ)
∂θ {1 − [1 + ij fj(θ)]e−ij fj(θ)} (8)

where j = 1, 2, · · · ,m. In the case of a switched reluctance
machine with m phases, the machine’s state vector com-
prises the following state variables [θ, ω, i1, i2, · · · , im].
The state-space equations of the machine are given by [6,
11]

dθ
dt = ω (9)

dω
dt = 1

J {
m∑︁
j=1
Tj(θ, ij) − Tl(θ, ω)} (10)

dij
dt = −

(︂∂ψj
∂ij

)︂−1(︂
Rij +

∂ψj
∂θ ω

)︂
+
(︂∂ψj
∂ij

)︂−1
uj (11)

Next, without loss of generality the case of a switched
reluctance machine with m = 4 phases is consid-
ered. The machine’s state vector is [θ, ω, i1, i2, i3, i4] =
[x1, x2, x3, x4, x5, x6]. The state-space equations of the
machine are

ẋ1 = x2 (12)

ẋ2 =
1
J [T1(θ, x3) + T2(θ, x4) + T3(θ, x5) + T4(θ, x6)

− Tl(x1, x2)]⇒

ẋ2 =
1
J [

ψs
f 21 (x1)

∂f1(x1)
∂x1

Nr{1 − [1 + x3f1(x1)]e−x3 f1(x1)}

+ ψs
f 22 (x1)

∂f2(x1)
∂x1

Nr{1 − [1 + x4f2(x1)]e−x4 f2(x1)}

+ ψs
f 23 (x1)

∂f3(x1)
∂x1

Nr{1 − [1 + x5f3(x1)]e−x5 f3(x1)}

+ ψs
f 24 (x1)

∂f4(x1)
∂x1

Nr{1 − [1 + x6f4(x1)]e−x6 f4(x1)}

− Bx2 − mgl sin(x1)] (13)

ẋ3 = [−ψse−x3 f1(x1)f1(x1)]−1[Rx3 + (ψse−x3 f1(x1))

·(x3·
∂f1(x1)
∂x1

)x2] + [ψse−x3 f1(x1)f1(x1)]−1u1 (14)

ẋ4 = [−ψse−x4 f2(x1)f2(x1)]−1[Rx4 + (ψse−x4 f2(x1))

·(x4·
∂f2(x1)
∂x1

)]x2 + [ψse−x4 f2(x1)f2(x1)]−1u2 (15)

ẋ5 = [−ψse−x5 f3(x1)f3(x1)]−1[Rx5 + (ψse−x5 f3(x1))

·(x5·
∂f3(x1)
∂x1

)x2] + [ψse−x5 f3(x1)f3(x1)]−1u3 (16)

ẋ6 = [−ψse−x6 f4(x1)f4(x1)]−1[Rx6 + (ψse−x6 f4(x1))

·(x6·
∂f4(x1)
∂x1

)x2] + [ψse−x6 f4(x1)f4(x1)]−1u4 (17)

where

∂fj
∂x1

= bNscos(Nsx1 − (j − 1)
2π
m ) j = 1, 2, · · · ,m (18)

It is noted that in the above state-space description Bx2 is a
damping term that opposes to the rotational motion of the
machine, whilemgl sin(x1) is the mechanical load torque,
for instance in the case that the SRM lifts a rod of length l
with a mass m attached to its end.

3 Linearization for the switched
reluctance machine

For the SRM’s rotor dynamics it has been shown to hold

ẋ1 = x2 (19)

ẋ2 =
1
J [T1(θ, x3) + T2(θ, x4) + T3(θ, x5) + T4(θ, x6)

− Tl(x1, x2)]⇒

ẋ2 =
1
J [

ψs
f 21 (x1)

∂f1(x1)
∂x1

Nr{1 − [1 + x3f1(x1)]e−x3 f1(x1)}

+ ψs
f 22 (x1)

∂f2(x1)
∂x1

Nr{1 − [1 + x4f2(x1)]e−x4 f2(x1)}

+ ψs
f 23 (x1)

∂f3(x1)
∂x1

Nr{1 − [1 + x5f3(x1)]e−x5 f3(x1)}

+ ψs
f 24 (x1)

∂f4(x1)
∂x1

Nr{1 − [1 + x6f4(x1)]e−x6 f4(x1)}

− Bx2 − mglsin(x1)] (20)

Eq. (20) can be also written in the form

ẋ2 =
1
J {

ψs
f 21 (x1)

∂f1(x1)
∂x1

Nr[1 − e−x3 f1(x1)]

+ ψs
f 21 (x1)

∂f1(x1)
∂x1

Nr[−f1(x1)e−x3 f1(x1)]x3}

+ 1
J {

ψs
f 22 (x1)

∂f2(x1)
∂x1

Nr[1 − e−x4 f2(x1)]

Unauthenticated
Download Date | 2/26/20 5:13 PM



G. Rigatos et al., Nonlinear H-infinity control for switched reluctance machines | 17

+ ψs
f 22 (x1)

∂f2(x1)
∂x1

Nr[−f2(x1)e−x4 f2(x1)]x4}

+ 1
J {

ψs
f 23 (x1)

∂f3(x1)
∂x1

Nr[1 − e−x5 f3(x1)]

+ ψs
f 23 (x1)

∂f3(x1)
∂x1

Nr[−f3(x1)e−x5 f3(x1)]x5}

+ 1
J {

ψs
f 24 (x1)

∂f4(x1)
∂x1

Nr[1 − e−x6 f4(x1)]

+ ψs
f 24 (x1)

∂f4(x1)
∂x1

Nr[−f4(x1)e−x6 f4(x1)]x6}

− BJ x2 −
mgl
J sin(x1) (21)

By defining the auxiliary functions

fa(x) =
1
J {

ψs
f 21 (x1)

∂f1(x1)
∂x1

Nr[1 − e−x3 f1(x1)]}

ga(x) =
1
J {

ψs
f 21 (x1)

∂f1(x1)
∂x1

Nr[−f1(x1)e−x3 f1(x1)]}

fb(x) =
1
J {

ψs
f 22 (x1)

∂f2(x1)
∂x1

Nr[1 − e−x4 f2(x1)]}

ga(x) =
1
J {

ψs
f 22 (x1)

∂f2(x1)
∂x1

Nr[−f2(x1)e−x4 f2(x1)]}

fc(x) =
1
J {

ψs
f 23 (x1)

∂f3(x1)
∂x1

Nr[1 − e−x5 f3(x1)]}

gc(x) =
1
J {

ψs
f 23 (x1)

∂f3(x1)
∂x1

Nr[−f3(x1)e−x5 f5(x1)]}

fd(x) =
1
J {

ψs
f 24 (x1)

∂f4(x1)
∂x1

Nr[1 − e−x6 f4(x1)]}

gd(x) =
1
J {

ψs
f 24 (x1)

∂f4(x1)
∂x1

Nr[−f4(x1)e−x6 f4(x1)]} (22)

Eq. (21) can be also written in the form

ẋ2 = [fa(x) + ga(x)x3] + [fb(x) + gb(x)x4]
+ [fc(x) + gc(x)x5] + [fd(x) + gd(x)x6]

− BJ x2 −
mgl
J sin(x1) (23)

By differentiating Eq. (23) with respect to time one gets

ẍ2 = [ḟa(x) + ġa(x)x3 + ga(x)ẋ3]
+ [ḟb(x) + ġb(x)x4 + gb(x)ẋ4]
+ [ḟc(x) + ġc(x)x5 + gc(x)ẋ5]
+ [ḟd(x) + ġd(x)x6 + gd(x)ẋ6]

− BJ ẋ2 −
mgl
J cos(x1)ẋ1 (24)

Additionally Eq. (14) to Eq. (17) are used. By defining the
auxiliary functions

pa(x) = [−ψse−x3 f1(x1)f1(x1)]−1[Rx3 + (ψse−x3 f1(x1))

·(x3·
∂f1(x1)
∂x1

)x2]

qa(x) = [ψse−x3 f1(x1)f1(x1)]−1

pb(x) = [−ψse−x4 f2(x1)f2(x1)]−1[Rx4 + (ψse−x4 f2(x1))

·(x4·
∂f2(x1)
∂x1

)x2]

qb(x) = [ψse−x4 f2(x1)f2(x1)]−1

pc(x) = [−ψse−x5 f3(x1)f3(x1)]−1[Rx5 + (ψse−x5 f3(x1))

·(x5·
∂f3(x1)
∂x1

)x2]

qc(x) = [ψse−x5 f3(x1)f3(x1)]−1

pd(x) = [−ψse−x6 f4(x1)f4(x1)]−1[Rx6 + (ψse−x6 f4(x1))

·(x6·
∂f4(x1)
∂x1

)x2]

qd(x) = [ψse−x6 f4(x1)f4(x1)]−1 (25)

Using Eq. (25), one can write Eq. (14) to Eq. (17) in the form

ẋ3 = pa(x) + qa(x)u1
ẋ4 = pb(x) + qb(x)u2
ẋ5 = pc(x) + qc(x)u3
ẋ6 = pd(x) + qd(x)u4 (26)

By substituting Eq. (26) into Eq. (23) one gets

ẍ2 = ḟa(x) + ġa(x)x3 + ga(x)pa(x) + ga(x)qa(x)u1+
ḟb(x) + ġb(x)x4 + gb(x)pb(x) + gb(x)qb(x)u2 + ḟc(x)
+ ġc(x)x5 + gc(x)pc(x) + gc(x)qc(x)u3 + ḟd(x) + ġd(x)x6

+ gd(x)pd(x) + gd(x)qd(x)u4 −
B
J ẋ2 −

mgl
J cos(x1)ẋ1

(27)

Considering that input voltages uj , j = 1, 2, 3, 4 are gen-
erated by a commutation scheme (Fig. 1), that is uj = kju,
j = 1, 2, 3, 4 where kj can take values equal to 0 or 1, Eq.
(27) is written as

ẍ2 = [ḟa(x) + ġa(x)x3 + ga(x)pa(x) + ḟb(x) + ġb(x)x4
+ gb(x)pb(x) + ḟc(x) + ġc(x)x5 + gc(x)pc(x) + ḟd(x)
+ ġd(x)x6 + gd(x)pd(x)] + [ga(x)qa(x)k1 + gb(x)qb(x)k2

+ gc(x)qc(x)k3 + gd(x)qd(x)k4]u −
B
J ẋ2 −

mgl
J cos(x1)ẋ1

(28)

Next, by defining functions F(x) = [ḟa(x) + ġa(x)x3 +
ga(x)pa(x) + ḟb(x) + ġb(x)x4 + gb(x)pb(x) + ḟc(x) + ġc(x)x5 +
gc(x)pc(x) + ḟd(x) + ġd(x)x6 + gd(x)pd(x)] and G(x) =
[ga(x)qa(x)k1+gb(x)qb(x)k2+gc(x)qc(x)k3+gd(x)qd(x)k4]
one can write Eq. (28) in the form

ẍ2 = F(x) + G(x)u −
B
J ẋ2 −

mgl
J cos(x1)ẋ1 (29)
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The new control input v = F(x) + G(x)u is defined. More-
over, the new state vector x = [x1, ẋ1, ẍ1]T is now intro-
duced. Thus now x1 = θ, x2 = ω and x3 = ω̇. This allows
to obtain the following state-space description for the SRM
dynamics

ẋ1 = x2
ẋ2 = x3

ẋ3 = −
B
J x3 −

mgl
J cos(x1)x2 + v (30)

or equivalently, in matrix form⎛⎜⎝ẋ1ẋ2
ẋ3

⎞⎟⎠ =

⎛⎜⎝ x2
x3

− BJ x3 −
mgl
J cos(x1)x2

⎞⎟⎠ +

⎛⎜⎝00
1

⎞⎟⎠ v (31)

and by defining the state vector z = [z1, z2, z3]T and the
vector fields

F̃(x) =

⎛⎜⎝ x2
x3

− BJ x3 −
mgl
J cos(x1)x2

⎞⎟⎠ G̃(x) =

⎛⎜⎝00
1

⎞⎟⎠ (32)

one finally arrives at the following description of the SRM
dynamics

ẋ = F̃(x) + G̃(x)v (33)

The system of Eq. (33) undergoes approximate lineariza-
tion around a temporary equilibrium which is defined by
the present value of the system’s state vector x* and the
last value of the control inputs vector v* exerted on it. The
approximate linearization is based on Taylor series expan-
sion and on the computation of the associated Jacobian
matrices. The locally linearized description of the SRM is
given by

ẋ = Ax + Bv + d̃ (34)

where d̃ is the modelling error term and

A = ∇x[F̃(x) + G̃(x)v |(x* ,v*)
B = ∇u[F̃(x) + G̃(x)v |(x* ,v*)
A = ∇x F̃(x) B = G(x) (35)

Thus oneobtains the followingmatricesA and B in the
linearized description of the switched reluctance machine

A =

⎛⎜⎝ 0 1 0
0 0 1

mgl
J sin(x1)x2 −mglJ cos(x1) − BJ

⎞⎟⎠ B =

⎛⎜⎝00
1

⎞⎟⎠
(36)

4 Design of an H-infinity nonlinear
feedback controller

4.1 Equivalent linearized dynamics of the
SRM

After linearization around its current operating point, the
dynamic model of the switched reluctance machine (SRM)
is written as

ẋ = Ax + Bu + d1 (37)

Parameter d1 stands for the linearization error in the
SRM’s dynamic model appearing in Eq. (37). The refer-
ence setpoints for the SRM’s state vector are denoted by
xd = [xd1 , xd2 , xd3]T . Tracking of this trajectory is succeeded
after applying the control input u*. At every time instant
the control input u* is assumed to differ from the control
input u appearing in Eq. (37) by an amount equal to ∆u,
that is u* = u + ∆u

ẋd = Axd + Bu* + d2 (38)

The dynamics of the controlled system described in Eq.
(37) can be also written as

ẋ = Ax + Bu + Bu* − Bu* + d1 (39)

and by denoting d3 = −Bu* + d1 as an aggregate distur-
bance term one obtains

ẋ = Ax + Bu + Bu* + d3 (40)

By subtracting Eq. (38) from Eq. (40) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (41)

By denoting the tracking error as e = x − xd and the aggre-
gate disturbance term as d̃ = d3 − d2, the tracking error
dynamics becomes

ė = Ae + Bu + d̃ (42)

The above linearized form of the SRM’s model can be ef-
ficiently controlled after applying an H-infinity feedback
control scheme.

4.2 The nonlinear H-infinity control

The initial nonlinearmodel of the switched reluctancema-
chine is in the form

ẋ = f̃ (x, u) x∈Rn , u∈Rm (43)
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Linearization of the system (switched reluctancemachine)
is performed at each iteration of the control algorithm
round its present operating point (x*, u*) = (x(t), u(t−Ts)),
where Ts is the sampling period. The linearized equivalent
model of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn , u∈Rm , d̃∈Rq (44)

where matrices A and B are obtained from the computa-
tion of the Jacobians

A =

⎛⎜⎜⎜⎜⎝
∂f̃1
∂x1

∂f̃1
∂x2 · · · ∂f̃1

∂xn
∂f̃2
∂x1

∂f̃2
∂x2 · · · ∂f̃2

∂xn
· · · · · · · · · · · ·
∂f̃n
∂x1

∂f̃n
∂x2 · · · ∂f̃n

∂xn

⎞⎟⎟⎟⎟⎠ |(x* ,u*)

B =

⎛⎜⎜⎜⎜⎝
∂f̃1
∂u1

∂f̃1
∂u2 · · · ∂f̃1

∂um
∂f̃2
∂u1

∂f̃2
∂u2 · · · ∂f̃2

∂um
· · · · · · · · · · · ·
∂f̃n
∂u1

∂f̃n
∂u2 · · · ∂f̃n

∂um

⎞⎟⎟⎟⎟⎠ |(x* ,u*) (45)

and vector d̃ denotes disturbance terms due to lineariza-
tion errors. The problem of disturbance rejection for the
linearized model that is described by

ẋ = Ax + Bu + Ld̃ y = Cx (46)

where x∈Rn, u∈Rm, d̃∈Rq and y∈Rp, cannot be handled
efficiently if the classical LQR control scheme is applied.
This is because of the existence of the perturbation term
d̃. The disturbance term d̃ apart from modeling (paramet-
ric) uncertainty and external perturbation terms can also
represent noise terms of any distribution.

In the H∞ control approach, a feedback control
scheme is designed for trajectory tracking by the system’s
state vector and simultaneous disturbance rejection, con-
sidering that the disturbance affects the system in the
worst possiblemanner. The disturbances’ effects are incor-
porated in the following quadratic cost function:

J(t) = 1
2

T∫︁
0

[yT(t)y(t) + ruT(t)u(t) − ρ2d̃T(t)d̃(t)]dt, r, ρ > 0

(47)
The significance of the negative sign in the cost function’s
term that is associated with the perturbation variable d̃(t)
is that the disturbance tries to maximize the cost function
J(t) while the control signal u(t) tries to minimize it. The
physical meaning of the relation given above is that the
control signal and the disturbances compete to each other
within amin-max differential game. This problem of mini-
max optimization can be written as

min
u

max
d̃
J(u, d̃) (48)

The objective of the optimization procedure is to compute
a control signal u(t) which can compensate for the worst
possible disturbance, that is externally imposed to the sys-
tem. However, the solution to the mini-max optimization
problem is directly related to the value of the parameter
ρ. This means that there is an upper bound in the distur-
bances magnitude that can be annihilated by the control
signal.

4.3 Computation of the feedback control
gains

For the linearized system given by Eq. (46) the cost func-
tion of Eq. (47) is defined, where the coefficient r deter-
mines the penalization of the control input and the weight
coefficient ρ determines the reward of the disturbances’ ef-
fects.

It is assumed that (i) The energy that is transferred
from the disturbances signal d̃(t) is bounded, that is∫︀∞
0 d̃

T(t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are sta-
bilizable, (iii)matrix [A, C] is detectable. Then, the optimal
feedback control law is given by

u(t) = −Kx(t) (49)

with
K = 1

r B
TP (50)

where P is a positive definite symmetric matrix which is
obtained from the solution of the Riccati equation

ATP + PA + Q − P(1r BB
T − 1

2ρ2 LL
T)P = 0 (51)

where Q is also a positive semi-definite symmetric matrix.
The worst case disturbance is given by

d̃(t) = 1
ρ2 L

TPx(t) (52)

The diagramof the considered control loop is depicted
in Fig. 2.

4.4 The role of Riccati equation coeflcients
in H∞ control robustness

Parameter ρ in Eq. (47), is an indication of the closed-loop
system robustness. If the values of ρ > 0 are excessively
decreased with respect to r, then the solution of the Ric-
cati equation is no longer a positive definite matrix. Con-
sequently there is a lower bound ρmin of ρ for which the
H∞ control problem has a solution. The acceptable values
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Fig. 2: Diagram of the control scheme for the switched reluctance
machine

of ρ lie in the interval [ρmin ,∞). If ρmin is foundandused in
the design of the H∞ controller, then the closed-loop sys-
tem will have increased robustness. Unlike this, if a value
ρ > ρmin is used, then an admissible stabilizing H∞ con-
troller will be derived but it will be a suboptimal one. The
Hamiltonian matrix

H =
(︃
A −(1r BB

T − 1
ρ2 LL

T)
−Q −AT

)︃
(53)

provides a criterion for the existence of a solution of the
Riccati equation Eq. (51). A necessary condition for the so-
lutionof the algebraicRiccati equation tobe apositivedefi-
nite symmetricmatrix is thatH has no imaginary eigenval-
ues [52].

5 Lyapunov stability analysis
Through Lyapunov stability analysis it will be shown that
the proposed nonlinear control scheme assures H∞ track-
ing performance for the switched reluctancemachine, and
that in case of bounded disturbance terms asymptotic con-
vergence to the reference setpoints is succeeded.

The tracking error dynamics for the switched reluc-
tance machine is written in the form

ė = Ae + Bu + Ld̃ (54)

where in the SRM’s case L = I∈R3 with I being the identity
matrix. Variable d̃ denotes model uncertainties and exter-
nal disturbances of the SRM’s model. The following Lya-
punov equation is considered

V = 1
2 e

TPe (55)

where e = x − xd is the tracking error. By differentiating
with respect to time one obtains

V̇ = 1
2 ė

TPe + 1
2 ePė⇒

V̇ = 1
2[Ae + Bu + Ld̃]

TPe + 1
2 e

TP[Ae + Bu + Ld̃]⇒ (56)

V̇ = 1
2[e

TAT + uTBT + d̃TLT ]Pe + 1
2 e

TP[Ae + Bu + Ld̃]⇒
(57)

V̇ = 1
2 e

TATPe + 1
2u

TBTPe + 1
2 d̃

TLTPe

+ 1
2 e

TPAe + 1
2 e

TPBu + 1
2 e

TPLd̃ (58)

The previous equation is rewritten as

V̇ = 1
2 e

T(ATP + PA)e + (12u
TBTPe + 1

2 e
TPBu)

+ (12 d̃
TLTPe + 1

2 e
TPLd̃) (59)

Assumption: For given positive definite matrix Q and co-
efficients r and ρ there exists a positive definite matrix P,
which is the solution of the following matrix equation

ATP + PA = −Q + P(2r BB
T − 1

ρ2 LL
T)P (60)

Moreover, the following feedback control law is applied to
the system

u = −1r B
TPe (61)

By substituting Eq. (60) and Eq. (61) one obtains

V̇ = 1
2 e

T [−Q + P(2r BB
T − 1

ρ2 LL
T)P]e + eTPB(−1r B

TPe)

+ eTPLd̃⇒ (62)

V̇ = −12 e
TQe + 1

r e
TPBBTPe − 1

2ρ2 e
TPLLTPe

− 1
r e

TPBBTPe + eTPLd̃ (63)

which after intermediate operations gives

V̇ = −12 e
TQe − 1

2ρ2 e
TPLLTPe + eTPLd̃ (64)

or, equivalently

V̇ = −12 e
TQe− 1

2ρ2 e
TPLLTPe+ 12 e

TPLd̃+ 12 d̃
TLTPe (65)

Lemma: The following inequality holds

1
2 e

TPLd̃ + 1
2 d̃L

TPe − 1
2ρ2 e

TPLLTPe≤12ρ
2d̃T d̃ (66)
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Proof : The binomial (ρα − 1
ρ b)

2 is considered. Expanding
the left part of the above inequality one gets

ρ2a2 + 1
ρ2 b

2 − 2ab ≥ 0 ⇒ 1
2ρ

2a2 + 1
2ρ2 b

2

− ab ≥ 0 ⇒ ab − 1
2ρ2 b

2 ≤ 12ρ
2a2 ⇒ 1

2ab +
1
2ab

− 1
2ρ2 b

2 ≤ 12ρ
2a2 (67)

The following substitutions are carried out: a = d̃ and b =
eTPL and the previous relation becomes

1
2 d̃

TLTPe + 1
2 e

TPLd̃ − 1
2ρ2 e

TPLLTPe≤12ρ
2d̃T d̃ (68)

Eq. (68) is substituted in Eq. (65) and the inequality is en-
forced, thus giving

V̇≤ − 1
2 e

TQe + 1
2ρ

2d̃T d̃ (69)

Eq. (69) shows that the H∞ tracking performance criterion
is satisfied. The integration of V̇ from 0 to T gives

T∫︁
0

V̇(t)dt≤ − 1
2

T∫︁
0

||e||2Qdt +
1
2ρ

2
T∫︁

0

||d̃||2dt⇒2V(T)

+
T∫︁

0

||e||2Qdt≤2V(0) + ρ2
T∫︁

0

||d̃||2dt (70)

Moreover, if there exists a positive constant Md > 0 such
that

∞∫︁
0

||d̃||2dt ≤ Md (71)

then one gets
∞∫︁
0

||e||2Qdt ≤ 2V(0) + ρ2Md (72)

Thus, the integral
∫︀∞
0 ||e||2Qdt is bounded. Moreover, V(T)

is bounded and from the definition of the Lyapunov func-
tion V in Eq. (55) it becomes clear that e(t) will be also
bounded since e(t) ∈ Ωe = {e|eTPe≤2V(0) + ρ2Md}. Ac-
cording to the above andwith the use of Barbalat’s Lemma
one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the
proof of global asymptotic stability for the control loop of
the switched reluctance machine is based on Eq. (69) and
on the application of Barbalat’s Lemma. It uses the condi-
tion of Eq. (71) about the boundedness of the square of the
aggregate disturbance and modelling error term d̃ that af-
fects the model. However, as explained above the proof of

global asymptotic stability is not restricted by this condi-
tion. By selecting the attenuation coefficient ρ to be suffi-
ciently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2

one has that the first derivative of the Lyapunov function
is upper bounded by 0. Therefore for the i-th time interval
it is proven that the Lyapunov function defined in Eq. (55)
is a decreasing one. This also assures the Lyapunov func-
tion of the system defined in Eq. (29) will always have a
negative first-order derivative.

Because of the complexity of the associated state-
space model, most of the results that appear in the rel-
evant bibliography are related with heuristics-based PID
control techniques. The control gains in such methods
are chosen empirically and the functioning of the related
control loop remains reliable only around local operating
points. Change of the operating conditions, as well as ex-
ternal perturbations, are likely to make the PID control
loops be unstable. On the other side, the article’s techni-
cal approach offers one of the very few results on feedback
control of Switched Reluctance Machines that assure the
global stability of the control loop. Besides, the article’s
method pursues optimality. This signifies that the func-
tioning of the electric machine reaches the given specifi-
cations under minimal energy consumption. The design
stages of the article’s control scheme are clearly defined,
while the method’s computational complexity is moder-
ate.

6 Robust state estimation with the
use of the H∞ Kalman Filter

The control loop has to be implemented with the use of
information provided by a small number of sensors and
by processing only a small number of state variables.
To reconstruct the missing information about the state
vector of the switched reluctance machine it is proposed
to use a filtering scheme and based on it to apply state
estimation-based control [54, 57, 58]. The recursion of
the H∞ Kalman Filter, for the model of the SRM, can be
formulated in terms of a measurement update and a time
update part

Measurement update:

D(k) = [I − θW(k)P−(k) + CT(k)R(k)−1C(k)P−(k)]−1

K(k) = P−(k)D(k)CT(k)R(k)−1

x̂(k) = x̂−(k) + K(k)[y(k) − Cx̂−(k)] (73)
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Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT(k) + Q(k) (74)

where it is assumed that parameter θ is sufficiently small
to assure that the covariance matrix P−(k)−1 − θW(k) +
CT(k)R(k)−1C(k) will be positive definite. When θ = 0
the H∞ Kalman Filter becomes equivalent to the standard
Kalman Filter. One can measure only the output x1 = θ of
the SRM’s state vector, and can estimate through filtering
the rest of the state vector elements.

7 Simulation tests
Theperformance of the proposednonlinearH-infinity con-
trol method for switched reluctance machines has been
tested through simulation experiments. The obtained re-
sults confirm the previous theoretical findings. The com-
putation of the feedback control gain was based on the so-
lution of the algebraic Riccati equation given in Eq. (60),
through a procedure that was repeated at each iteration
of the control method. The obtained results are depicted
in Fig. 3 to Fig. 7. It can be confirmed that fast and accu-
rate convergence of the state variables of the SRM to the
reference setpoints was achieved. Moreover, it can be seen
that the variation of the control inputs remained smooth
and within moderate ranges. Despite nonlinearities, the
control method’s performance was satisfactory and pre-
cise tracking of the reference setpoints was achieved. It is
also noted that in practice the proposed control method
can be finally implemented by applying PWM.

In the presented simulation experiments state
estimation-based control has been implemented. Out of
the 3 state variables of the electric machine only output
x1 = θ was considered to be measurable. The rest of the
state variables of the SRM were indirectly estimated with
the use of the H-infinity Kalman Filter. The real value of
each state variable has been plotted in blue, the estimated
value has been plotted in green, while the associated ref-
erence setpoint has been plotted in red. It can be noticed
that despite model uncertainty the H-infinity Kalman
Filter achieved accurate estimation of the real values of
the state vector elements. In this manner the robustness
of the state estimation-based H-infinity control scheme
was also improved.
Remark 1: The proposed nonlinear optimal controlmethod
is suitable for a wide class of electric machines and power
electronics [55]. It can result in the optimized functioning
of various types of power generators used in the electricity

grid, and of electric motors in the traction of electric ve-
hicles. One can consider the application of the proposed
control method to (a) Control for Synchronous and Perma-
nent Magnet Synchronous Generators, Doubly-Fed Induc-
tion Generators, Synchronous reluctance generators, and
Doubly-fed reluctance generators used in power genera-
tion (b) Control for DC motors, Switched reluctance mo-
tors, Permanent Magnet Synchronous Motors, Induction
motors, Synchronous reluctancemotors, Doubly-fed reluc-
tancemotors andMulti-phase electric motors used in trac-
tion and propulsion of transportation means.
Remark 2: The proposednonlinear optimal controlmethod
is a generic one and its application is not dependent on a
specific form or structure of the dynamicmodel of the elec-
tric machine under control. For instance, it is known that
backstepping control cannot be applied to dynamical sys-
tems which are not in the triangular form. Moreover, it is
known that the application of sliding-mode control is hin-
dered by the selection of the associated sliding surface,
and that it is not straightforward to define such a surface
if the system cannot be transformed into a canonical form.
On the other side, the proposed nonlinear optimal control
method can be applied to a wide class of dynamic models
of electric motors, even to those which are not written in
an affine in the input form. Besides, by proving through
the article’s nonlinear stability analysis that the control
method satisfies the H-infinity tracking performance cri-
terion of Eq. (60), it is confirmed that it exhibits elevated
robustness levels. Therefore, even if specific parameters or
terms in thedynamicmodel of the switched reluctancemo-
tor are not precisely known it can be ensured that the func-
tioning of the control loopwill remain reliable. This covers
also the case about uncertainty in themodelling of the flux
linkage of the motor.
Remark 3: The comparison between the article’s nonlin-
ear optimal control method and other optimal control ap-
proaches for industrial systems is outlined as follows:MPC
is deemed to be unsuitable for the model of the switched
reluctance motor because this control approach is primar-
ily addressed to linear dynamical systems, whereas in the
case of the switched reluctance motor it lacks stability.
Besides, the NMPC, standing for the nonlinear variant of
MPC may also be of questionable performance because
its iterative search for an optimum is dependent on ini-
tial parametrization while its convergence to the optimum
cannot be assured either. On the other side, the proposed
nonlinear optimal control method retains the advantages
of typical optimal control, that is fast and accurate conver-
gence to the reference setpoints while keeping moderate
the variations of the control inputs.
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Fig. 3: Setpoint 1: (a) Convergence of the state variables of the SRM x2 = ω, x3 = ω̇ (blue line: real value, green line: estimate value) by the
H-infinity filter) to the associated reference values (red line). (b) Control input v applied to the control system of the SRM
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Fig. 4: Setpoint 2: (a) Convergence of the state variables of the SRM x2 = ω, x3 = ω̇ (blue line: real value, green line: estimate value) by the
H-infinity filter) to the associated reference values (red line). (b) Control input v applied to the control system of the SRM

Remark 4: The article offers one of the few approaches
to the control of Switched Reluctance Machines (SRMs)
which are of global asymptotic stability. This is mean-
ingful and significant for many practical applications of
SMRs, as for instance in the case of electric vehicles’ trac-
tion. In such cases one cannot rely on empirical controller
tuning (as for example PID controllers) because the ve-
hicles’ functioning takes place under variable operating
conditions and is subject to several perturbations. Control
schemes which are not of proven global asymptotic sta-
bility may become of questionable performance. Another

advantage of the proposed control algorithm is that it of-
fers solution to the nonlinear optimal control problem for
SRMs. This is important for reducing energy consumption
of electric vehicles and for achieving a satisfactory perfor-
mance of the vehicle’s traction system without the need
for frequent battery recharging. Under nonlinear optimal
control all technical characteristics of the traction system
of electric vehicles are significantly improved, for instance
the motor’s torque and traction force, as well as accelera-
tion features.
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Fig. 5: Setpoint 3: (a) Convergence of the state variables of the SRM x2 = ω, x3 = ω̇ (blue line: real value, green line: estimate value) by the
H-infinity filter) to the associated reference values (red line). (b) Control input v applied to the control system of the SRM
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Fig. 6: Setpoint 4: (a) Convergence of the state variables of the SRM x2 = ω, x3 = ω̇ (blue line: real value, green line: estimate value) by the
H-infinity filter) to the associated reference values (red line). (b) Control input v applied to the control system of the SRM

Remark 5: To implement state estimation-based feedback
control for the SRM it suffices to measure only the turn
angle of the rotor, while the rest of the aforementioned
variables can be estimated through a filtering procedure,
which eliminates the effects of the measurement noise.
State-estimation-based control for Switched Reluctance
Motors can contribute to improving the functioning of
suchmachines. It is clear that not all-state vector elements
of these electric machines can be measured through sen-
sors, whereas such sensors are failure prone and conse-
quently their measurements can be unreliable. The lat-

ter hold particularly in a major application field for SRMs
which is electric vehicles traction. Under the harsh oper-
ating conditions of Switched Reluctance Motors it is an-
ticipated that several sensors will exhibit malfunction-
ing. State estimation for SRMs through filtering techniques
enables to avoid this degradation in the sensors’ perfor-
mance and allows to robustify the control loop for such
electric machines.
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Fig. 7: Setpoint 5: (a) Convergence of the state variables of the SRM x2 = ω, x3 = ω̇ (blue line: real value, green line: estimate value) by the
H-infinity filter) to the associated reference values (red line). (b) Control input v applied to the control system of the SRM

8 Conclusions
Anonlinear H-infinity controlmethod has been developed
for the dynamic model of switched reluctance machines.
The method allows control of proven stability and of ele-
vated accuracy for the aforementioned type of electric ma-
chines, and has good potential for several industrial appli-
cations (for instance actuation in robotic andmechatronic
systems as well as traction in electric vehicles). The non-
linear dynamic model of the SRM has undergone approx-
imate linearization around a temporary operating point
(equilibrium) which was recomputed at each iteration of
the control algorithm. The equilibrium was defined by the
value of the system’s state vector at each time instant and
by the last value of the control input vector that was ap-
plied to the SRM prior to that instant. The linearization
procedure made use of Taylor series expansion and re-
quired the computation of the Jacobian matrices of the
SRM state-space model.

For the approximately linearized model of the SRM
an H-infinity feedback controller was designed. The com-
putation of the controller’s feedback gains was based on
the repetitive solution of an algebraic Riccati equation,
taking place at each iteration of the control algorithm.
The stability properties of the control scheme were con-
firmed through Lyapunov analysis. First, it was proven
that the control method satisfied the H-infinity track-
ing performance criterion, which signified elevated ro-
bustness against modelling errors and exogenous distur-
bances. Moreover, under moderate conditions the global

asymptotic stability of the controlmethodwas proven. The
excellent tracking performance of the control algorithm
and its fast convergence to reference setpoints was further
demonstrated through simulation experiments.

The advantages of the proposed nonlinear optimal
control method for Switched Reluctance Machines are
outlined as follows: (i) unlike global linearization-based
control schemes, the proposed nonlinear optimal con-
trol method does not require changes of variables (dif-
feomorphisms) and application of complicated transfor-
mations of the system’s state-space model (ii) the new
control approach retains the advantages of typical opti-
mal control, that is fast and accurate tracking of the ref-
erence setpoints, under moderate variations of the con-
trol, inputs,(iii) unlike NMPC approaches the proposed
control method is of proven convergence and stability,
(iv) unlike PID control the new nonlinear optimal control
method does not rely on empirical parameters tuning and
is of global stability (v) unlike backstepping control ap-
proaches the proposed control method does not require
the system to be written in a specific (triangular) state-
space form.
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