
TACoS’03 Preliminary Version

Self-Test Components for Highly
Reconfigurable Systems

Giovanni Denaro, Leonardo Mariani, Mauro Pezzè

Università degli Studi di Milano Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Via Bicocca degli Arcimboldi, 8
I-20126 - Milano, Italy

{denaro, mariani, pezze}@disco.unimib.it

Abstract

Verification of component-based systems presents new challenges not yet completely
addressed by existing testing techniques. This paper proposes a new approach for
automatically testing highly reconfigurable component-based systems, i.e., systems
that can be obtained by changing some components. The paper presents an in-
dustrial case that motivates our research and proposes a testing infrastructure that
tracks run-time information for components. The collected information is used for
automatic testing new versions of existing components and new configurations of
existing systems.

1 Introduction

Component-based software engineering is increasingly used in several appli-
cation domains. In the most general settings, component-based systems are
made of several heterogeneous hardware and software components, indepen-
dently developed either on-site or by third parties. Both the components and
the component-based systems can be available in several different versions.
Moreover, the same system may also be available in several configurations
made of different sets of components.

Examples of such systems are the board systems of new generation cars
and industrial test devices. Car board systems incorporate several hardware
and software components, e.g., DVD, GSM, GPS devices, simple operating

1 This work has been partially founded by the Italian Government in the context of the
QUACK project (QUACK: A Platform for the Quality of New Generation Integrated Em-
bedded Systems.)

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Denaro, Mariani, Pezzè. Self-Testing Components

systems, browsers, and drivers to provide complex services, e.g., Internet fa-
cilities, car alarm monitoring and integrated control of the devices. Some of
these components are produced by third parties. For example, the GSM, the
DVD, and the GPS devices are generally not proprietary. Different car models
use different configurations. For example, base models may not include GPS
and Internet facilities. Industrial test devices are usually produced in small
scale for testing different end products. The similarities of both the products
to be tested and tests to be performed can be addressed with test devices
that differ in some hardware or software components. Thus, it is good de-
sign practice to design industrial test devices starting for a library of available
components.

While the development of components and component-based systems is
well supported by many technologies, e.g., .NET [3], EJB [9], Corba [10],
the verification and validation of components and component-based systems
is not well supported yet, although these systems entail verification require-
ments that can be hardly satisfied by means of traditional testing and analysis
techniques.

Traditional verification techniques assume that testers have complete knowl-
edge of requirements and execution environment of the SUT (Software Under
Test). However, this is not the case of component-based systems. Producers
of components are generally not aware of the context in which the components
may be used. Thus, testing components in isolation is harder than traditional
unit testing and cannot be generally completed before the assembly of the
final systems. Moreover, producers of component-based systems may not be
granted access to all details of the components, which are often distributed
without source code or with incomplete documentation. Thus, techniques for
testing component-based systems must work even with only partial knowledge
of components specifications and source code, maybe requiring different kind
of information.

Rosemblum provides a first formalization of the notion of test adequacy
for component-based systems [14]. Briefly, the input space of a component
C, considered in the context of a component-based program P, can be divided
in two subsets: P-relevant, i.e., the inputs of C reachable by means of inputs
provided to P, and P-irrelevant, i.e., the inputs of C that will be never exe-
cuted in the context of P. An adequate test of C in the context of P has to
be adequately representative of the P-relevant subset. A test that may be
adequate for C in isolation, may not be adequate in the context of a program
P. The extreme case is represented by a test that is adequate for C in isola-
tion, e.g., because guaranteed the required level of structural coverage, but
exercises only elements from the P-irrelevant subset, and thus is not adequate
for P.

Developers of component-based systems need to verify the compliance of
the components with the system. The separate verification of components and
component-based systems becomes particularly difficult when the components

2



Denaro, Mariani, Pezzè. Self-Testing Components

are available in many different versions and the systems are deployed in many
different configurations.

This position paper presents an on-going research that investigates how
to support integration testing for highly reconfigurable component-based sys-
tems. We present an industrial case that motivates our research and we outline
the proposal of a testing infrastructure that tracks run-time information for
components. The collected information is meant for automatic testing of new
versions of components and new configurations of component-based systems.

2 Case Study

Here we illustrate the problem tackled in this paper by referring to a spe-
cific class of industrial systems: the industrial test devices, i.e., devices used
for testing electro-mechanic appliances, e.g., washing machines, dish washers,
kitchen robots. Industrial test devices assess the quality of the products and
discard faulty products. Data gathered during testing are stored to perform
both short-term analysis, and long-term statistical studies. Short-term analy-
sis allows to identify faulty devices, while long-term statistics can help locating
common defects and identifying empirical relations among faulty components.
Properties to be verified for different sets of devices can be very different, rang-
ing from interface to stress testing.

Fig. 1. An industrial test device

Industrial test devices include a hardware scaffolding of two main compo-
nents: a testing and a supervisor machine, as shown in Figure 1. Scaffoldings
include actuators and connectors, such as mechanical arms and wiring cables,
that suitable exercise the Devices Under Test (DUT). The supervisor machine
saves the data gathered during testing an individual DUT, evaluates the test
results according to predefined pass/fail criteria, and then sends the collected
information to a main server. The main server perform statistical analysis.

3



Denaro, Mariani, Pezzè. Self-Testing Components

Different, although similar industrial products, e.g., different models of
washing machines, are tested with specific test devices, usually produced in
small series. Test devices for similar as well as different products may share
sets of hardware and software components. Efficient development of industrial
test devices relies on the availability of hardware and software components,
both in-house produced or third-party developed, that can be suitably de-
ployed and assembled to obtained different devices.

As shown in Figure 2, the required components can be classified at three
different levels: hardware components, embedded software components, and
application components. Hardware components represent the mechanical parts
of the industrial test devices and include communication infrastructures, such
as cables, wires, electronic circuits, electrical paths and wireless devices. Em-
bedded software components are usually deployed on the hardware compo-
nents in order to control their operations. Application components manage
the underlying system in order to provide high-level features that directly
address problems in the user domain.

Fig. 2. Overall architecture of a component-based machine

In some cases, embedded software may be specific for a given hardware
component, e.g, embedded software that manages sensors of a specific hard-
ware in order to perform monitoring activities. In the general case, however,
the relation between hardware components and embedded software compo-
nents is a many-to-many relation, i.e., several embedded software components
may be deployed into several hardware units with a non-trivial mapping. For
example, the same embedded software may be deployed into several hardware
components that provide similar behaviors, or the same hardware component
may require a set of embedded software components for different operations,
e.g., the camera manager consists of several embedded components (including
driver, image processing utilities and compression utilities) deployed in a sin-
gle camera device. The layering between hardware and embedded components
in Figure 2 sketches the possible mappings.

In turn, the application components, based on classic component tech-
nologies (e.g., CORBA [10], EJB [9] and DCOM [4]) and communication
paradigms (e.g., RPC [2] and RMI [11]), participate in relations with the em-
bedded components. The arrows from the application to the embedded layer
in Figure 2 describe different interactions, e.g., method invocations, messages
and upcalls, either local or remote, synchronous or asynchronous.

4



Denaro, Mariani, Pezzè. Self-Testing Components

The components indicated in the design drafted in Figure 2 are likely
to be reused across different industrial test devices, because of the following
properties of the domain:

Parameters to be monitored recur. Often a requirement takes the form
of a set of parameters and properties that must be monitored or checked
over time. Parameters and properties recur for different different versions
of the same product, since advances in technology are not so quickly to
continuously require monitoring of new parameters. Furthermore, there
exist several standards for the certification of the quality (i.e. ISO9000,
ISO9001), thus the same set of controls can be required for different appli-
ances (of different vendors too). Recurrence of parameters to be monitored
leads to reuse of components that deals with these parameters.

Test procedures recur. The same test procedure is often reused over sev-
eral appliances of different vendors and different versions.

Component technology is well known in manufacturing. Component
technology originates in engineering and manufacturing. Producers build
their products buying components from third parties and optimize their
productivity with reuse. This approach increases commonalities within the
products of a given industrial sector. For example two washing machines
build by different manufacturers often share several components. Common-
alities of different DUTs are the nourishment for reuse.

Reuse of the interfaces. The reuse of the same (or similar) interface for
different appliances is a particular case of reuse located in the DUT. In-
terfaces have particular relevance because the testing machine stimulates
the DUT through the interfaces, so reuse of interfaces directly affects the
possibility of reusing components of the testing machines.

In the context of industrial test devices, components of all types, from
hardware- to application-level, are configurable and available in several ver-
sions. Consequently, the same unit may behave differently if configured in a
different way. The configuration of components maybe used to setup the ma-
chine for a particular appliance model. When the appliance model changes,
we must change the configuration of some components. New configurations of
a test device may result in new failures and thus need to be tested. Techniques
for optimizing the testing of new configurations of test devices can reduce the
verification and validation costs.

This paper proposes a new technique for testing such kind of components,
based on the record/playback of executions of components in different systems.

5



Denaro, Mariani, Pezzè. Self-Testing Components

3 Incremental Verifications of Component-Based Sys-
tems

Highly reconfigurable systems are often updated by changing one or few com-
ponents in an existing system, e.g., because of the availability of a new release
of a component or the dynamic linkage of a new library or a change in the
running environment of a mobile system.

When a new system is obtained by substituting an existing component with
a new one, we need to verify the behavioral equivalence of the new component
with respect to the old one, i.e., beside fitting the syntax of the target system,
the new component must provide valid behavior for all inputs accepted by
the old component (less stringent pre-conditions) and must assure at least the
same results of the old component (more stringent post-conditions) [15].

Unfortunately, behavioral equivalence is very difficult to verify in practice.
Formal approaches that prove compliance of pre- and post-conditions, face two
main problems: They require formal specifications which are seldom available,
and are often based on sophisticated theorem proving facilities, which may
hinder the practical applicability of the approach. Necula’s proof carrying
code [12] may lead to an interesting solution, but has many drawbacks in the
component world, as discussed later in this paper 2 . Regression testing may be
impracticable: Even in case of fully automated regression testing: Substitut-
ing a single component would entail re-execution of the whole system (which
may include a large amount of components) and the set up of complex test
environments, that could include, for example, hardware devices, hardware
simulators and distributed software elements.

3.1 Test Recording Component Companions

The main idea that underlies our research is that, for a given component, it is
possible to capture the portion of functionality that is relevant to a particular
user system, in terms of a meaningful number of executions of the component
in the context of the component-based system. Once suitably recorded, such
executions may be used to test for behavioral equivalence of a new version of
the same component. In this approach, behavioral equivalence is tested at the
user site, with the support provided by the component producers.

Our proposal can be summarized as follows. Each independently developed
component is delivered along with a particular software item that can monitor
and control the component executions. In the following, such items are referred
to as the test-recording-component-companions (TRCCs).

When the component is executed in the context of a particular user system,
e.g., during system and integration testing or also on-field during alpha and
beta testing, the associated TRCC wraps the component and records execution
data. In particular, TRCCs act as follows:

2 Section 5 provides further details

6



Denaro, Mariani, Pezzè. Self-Testing Components

• They monitor the access interface of the associated component for recording
the input values when the component is invoked and the output results when
it returns.

• They control the internal state of the associated component for recording
state information on invocation and returning of the component.

• They record other execution information that can be useful for their own
purposes.

To the end of testing behavior equivalence, when a component is substi-
tuted with a new version, the executions gathered in the associated TRCCs
are re-executed on the new component and the new results are automatically
compared with the ones of the previous component. Notice that, beside re-
quiring that a new component version is compatible with the TRCC the old
version (for allowing use of the recorded data), this does not require neither
re-execution of other system components nor set up of the entire testing envi-
ronment. Moreover, through TRCCs, the collection of information on compo-
nent execution at the user site does not require availability of the component
source code.

4 Technical issues

For implementing the TRCC approach, we are evaluating the possibility of
using aspect-oriented technology [6] for providing a tool that is able to auto-
matically derive TRCCs as separate implementation units for already devel-
oped components. TRCCs can be deployed based on few information about
the interface and the internal state of the components.

In general, TRCCs can record a limited number of test cases, because of
the need of trading-off precision of verification results and memory and time
requirements. Suitable test selection policies must be configurable for TRCCs.
The selection policy is responsible of making decisions on which test cases are
to retain or discard on exceeding maximum limits.

Possible selection policies can be preliminary sketch as follows:

• Retain test cases that have been executed a high number of times or more
recently;

• Retain test cases that increase or maximize structural coverage on the moni-
tored component. This requires that producers release components suitably
instrumented;

• Retain test cases that assure the best coverage of the relevant input space,
e.g., by using similarity techniques to establish if a new test case is better
than an old one for this purpose;

• Use a combination of the previous policies.

Finally, an important technical issue is that the presence of TRCCs in
a system may interfere with the testing experiments by influencing the tim-

7



Denaro, Mariani, Pezzè. Self-Testing Components

ing/synchronization of the wrapped components and, in general, the perfor-
mance of the whole system. For this reason, TRCCs must be turned off
when testing non-functional requirements, such as response time. This does
not downgrade our approach because, in our experience, testing of functional
and non-functional requirements are separate activities in industrial software
processes. However, how to test equivalence of two versions of a component
against non-functional properties is still an open problem.

5 Related Work

Behavior equivalence of components can be based on Necula’s proof carrying
code [12]. Proof carrying components should come with an attached proof of
their correctness with respect to a safety policy (in this case, related to be-
havioral equivalence) published by the user system. Thus, when integrating a
new component, the user system can exploit the attached proof and easily ver-
ify whether all pre-requisites are fulfilled. The proof carrying code approach
presents advantages derived from being a formal verification approach, i.e.,
components are accepted only if they are formally proven to satisfy all require-
ments. However, the proof carrying code approach presents several problems:
Safety policies are difficult to write and, in general, establishing their correct-
ness requires further verification effort; Generation of safety proofs is difficult
and cannot be fully automated; Incorporating safety proofs can increase the
size of a component of a factor that, in principle, is exponential in the size of
the stand-alone component. Moreover, safety policies have to be published by
component users. This would entail that the component producers knew in
advance all possible users, which is clearly impossible in component-oriented
software market.

The restrospector approach of Liu and Richardson [7] uses retro-compo-
nents (components with retrospectors), which are able to record test infor-
mation on the producer site and make it available in the user environments,
aiming at taking advantage of the results of testing of components in isolation.
In our TRCC approach, information is collected directly at the user site, aim-
ing at solving the problem of increasing the adequacy of component testing in
the context of specific user systems, which producers are not aware of.

Self testing components are explicitly addressed by Martins et al. with
specific reference to object oriented classes implemented in C++ [8]. The au-
thors, which in turn refer to works by Binder [1] and Hoffman [5] consider that,
in addition to an implementation, a self-testable class contains built-in test
capabilities (for accessing the state and monitoring the execution) and a test
specification from which test cases and test oracles can be derived. However
their self-testing components do not possess any test recording capability.

Finally, the idea of taking advantage from information gathered during the
operational use of a software system has relations with the research on per-
petual testing. For example, Pavlopoulousee and Young propose to maintain

8



Denaro, Mariani, Pezzè. Self-Testing Components

part of the instrumentation in the software for measuring increments in the
statement coverage during the beta testing phase [13].

6 Conclusions

Industrial problems are often addressed with highly-reconfigurable systems,
i.e., systems distributed in different versions and configurations made of dif-
ferent subsets of components. The flexibility introduced with this technology
allows for producing complex systems at low cost, that can be distributed even
in small quantities. This paper presented an interesting application domain
where such technology is rapidly spreading.

The quality of systems is not directly related to the amount of shared
components, and the quality of single components is not directly related to
the quality of the component-based system. Even a system obtained from
an existing system by replacing only few components with new versions of
the same components, may present new problems not revealed in the former
system, independently from the quality of the new components. This paper
suggests a technique for automatically testing such kind of systems based on
the record and replay of execution information.

We are currently developing and experimenting the proposed technique in
the context of the QUACK (A Platform for the Quality of New Generation
Integrated Embedded Systems) project 3 .

References

[1] Binder, R., Design for testability in object-oriented systems, Communications
of the ACM 37 (1994), pp. 87–101.

[2] Birrel, A. D. and B. J. Nelson, Implementing remote procedure calls, ACM
Transactions on Computer Systems 2 (1984), pp. 39–59.

[3] ECMA, Common language infrastructure (CLI) partition I: Concepts and
architecture, Final draft, Published by ECMA TC39/TG3 (2002).

[4] Eddon, G. and H. Eddon, “Inside Distributed COM,” Microsoft Press,
Redmond, WA, 1998.

[5] Hoffman, D., Hardware testing and software ics, in: Proceedings of the Northwest
Software Quality Conference (2001), pp. 234–244.

[6] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier
and J. Irwin, Aspect-oriented programming, in: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP) (1997).

3 QUACK is partially supported by MIUR, the Italian Ministry of University and Education
through the Cofin Program

9



Denaro, Mariani, Pezzè. Self-Testing Components

[7] Liu, C. and D. Richardson, Software components with retrospectors, in:
Proceedings of the International Workshop on the Role of Software Architecture
in Testing and Analysis (ROSATEA), 1998.

[8] Martins, E., C. Toyota and R. Yanagawa, Constructing self-testable software
components, in: Proceedings of the 2001 International Conference on Dependable
Systems and Networks (DSN ’01) (2001), pp. 151–160.

[9] Matena, V. and M. Hapner, Enterprise javabeansTM specification, Public Draft
version 1.1, Sun Microsystems (1999).

[10] Merle, P., Corba 3.0 new components chapters, TC Document ptc/2001-11-03,
Object Management Group (2001).

[11] Microsystems, S., JavaTM remote method invocation specification, Technical
report, Sun Microsystems (2002).

[12] Necula, G. and P. Lee, Proof-carrying code, Technical report, Technical Report
CMU-CS-96-165, Canergie Mellon University (1996).

[13] Pavlopoulou, C. and M. Young, Residual test coverage monitoring, in:
Proceedings of the 21th International Conference on Software Engineering
(ICSE’99) (1999), pp. 277–284.

[14] Rosenblum, D., Challenges in exploiting architectural models for software
testing, in: Proceedings of the International Workshop on the Role of Software
Architecture in Testing and Analysis (ROSATEA), 1998.

[15] Szyperski, C., “Component Software: Beyond Object-Oriented Programming,”
ACM Press and Addison-Wesley, New York, NY, 1998.

10


