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Abstract A rigid-body model of a finger interacting with a trackball is considered. The
proposed system is a suitable candidate for studying trajectory generation when interac-
tion plays an important role, such as in assembly and manipulation tasks. The mathematical
model consists of a ball with a spherical joint constraint, a finger with three degrees of
freedom, and the Coulomb friction model. From first principles, we derive a hybrid, high-
index differential-algebraic equation for modeling the system dynamics, which is used for
both simulation and finding optimal trajectories. For this problem, task planning, path plan-
ning, and trajectory generation are strongly interrelated, which makes using an integrated
approach to trajectory generation inevitable. Moreover, the trajectory generation algorithm
has to handle a number of important features, e.g., unilateral and non-holonomic constraints.

Keywords Hybrid dynamic optimization · Optimal trajectory · Dynamics with contacts ·
Non-holonomic constraint

1 Introduction

Model-based design is the prevailing approach in engineering. The automotive and
aerospace industries make extensive use of modeling and optimization tools to improve
their products. As the available computation power increases, so too does the viability of
using model-based optimization to solve control problems.

Practical systems often contain a combination of discrete and continuous state variables.
Accurate modeling of such systems requires the incorporation of hybrid dynamics. Hybrid
models often appear in the context of processes with switched dynamics. For example in
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mechanics, establishing or breaking contact changes the behavior of the system. Although it
is possible to model the rapid changes in forces resulting from such phenomena, the result-
ing differential equations are stiff and cause trouble for numerical methods. An alternative
approach is to instead allow discontinuities in the state trajectories. The framework of hybrid
systems allows both switched dynamics and discontinuous state variables.

Applying optimization techniques to hybrid models has resulted in the solution of var-
ious practical problems. In locomotion planning, there are many examples where hybrid
dynamic optimization methods have been used. For example, gait generation for bipedal
and quadrupedal robots is addressed in [17]. In [12], the full dynamics of a humanoid is
considered to find a walking pattern. Hybrid dynamic optimization is also used in other
fields of engineering, e.g., to make discrete decisions in power plants [13].

A competing paradigm to the model-based approach is the model-free approach. Using a
variety of model-free techniques, successful results for optimal control of robots interacting
with the environment have been reported [21, 30, 32]. Nevertheless, model-free approaches
provide us with little or no insight about fundamental limitations and difficulties.

This paper contributes by presenting a simple, yet realistic enough, example system to
capture the main issues arising in modeling and optimal control of dynamics with varying
contacts. We propose a ball and finger system resembling a trackball interacted with by
a human finger. Unilateral and non-holonomic constraints play an important role in this
system. In order to derive analytic equations, simple 3D geometries are considered. The
model possesses the following features:

– Analytic 3D models with contacts
– Rolling of finger against ball
– Dynamics and slippage
– Suitable for simulation as well as optimization

There are elaborate mathematical models for studying contact stability [35, 36]. In contrast,
the purpose of the model developed here is to capture contact transitions and to find optimal
trajectories. The hybrid dynamic optimization required for this purpose has been performed
utilizing a multiphase approach, i.e., a sequence of the discrete modes of the system is
mapped to phases.

The rest of the paper is organized as follows. In Sect. 2, the mechanical model of the
process is developed. Based on this model, we construct a hybrid system in Sect. 3, which
is later on used for simulation as well as optimization. Section 4 discusses the trajectory-
planning problem and the optimization approach to find optimal solutions. Various tools
have been used for simulation and optimization. The tool chain is detailed in Sect. 5. We
introduce instances of the trajectory-planning problems and give the results of the opti-
mization and simulation in Sect. 6. Section 7 discusses various aspects of the modeling and
optimization. We draw conclusions and propose future research in Sect. 8. Additionally, Ap-
pendices A and B provide the details of the mathematical expressions for the kinematics and
the dynamics of the finger, respectively.

2 Mechanical modeling

In this section, we build the mechanical model of the process shown in Fig. 1. The ball is
positioned in a socket joint which is not shown in the figure. To produce analytic equations,
we consider an idealized model, which only admits contact between a sphere and a line
segment. The following list summarizes the modeling assumptions:
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Fig. 1 An illustration of the
ball-and-finger system for � = r

1. The finger is modeled as a rigid body with three degrees of freedom (DOF).
2. The ball is a sphere with radius r , which is held by a socket imposing a spherical joint

constraint.
3. The Coulomb friction model is considered with static (μs ) and kinetic (μk) friction

constants.
4. There is viscous friction in the joints and between the socket and the ball, with friction

constants μv and D, respectively.
5. There is no torsional friction.
6. The collision between the finger and the ball is inelastic, i.e., when the finger collides

with the ball it will not bounce back. Accordingly, the coefficient of restitution is equal
to zero.

7. The links are ideal line segments.
8. In case of contact, single point contact either at the end-effector or along the last link is

allowed. This is guaranteed by the choice of the geometry.
9. The contact points are non-adhesive.

10. The centers of gravity (COG) are located at the middle of each link and inertia tensors
with respect to these points are diagonal.

2.1 Geometry and kinematics

Considering Fig. 1, the geometry of the system is described here. The ball with radius r is
assumed to be located at the origin ob = [0 0 0]T . The base of the finger is specified by
the transformation consisting of a translation of = [2r 0 0]T and a rotation −90 degrees
around the y-axis. The kinematics of the finger is specified by the Denavit–Hartenberg (DH)
parameters [10] according to Table 1. We use q ∈ R

3 to denote the finger joint angles and
the length of every link is � ≤ r . Knowing the DH parameters and the base transforma-
tion, the forward kinematics and the geometric Jacobian with respect to the fingertip can be
calculated. See Appendix A for details.
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Table 1 DH parameters of the
finger Link ai αi di θi

1 � π/2 0 q1

2 � 0 0 q2

3 � 0 0 q3

2.2 Collision

To detect collision between the ball and the finger, the closest distance between the ball and
the last link is found. Define pm := pe + αêx3 as the point on the line corresponding to the
last link closest to the ball, where êx3 is the unit vector parallel to link 3, pe is the position
of the fingertip, and α determines how far pm lies from the fingertip. Then

(pm − ob) · êx3 = 0, (1)

which results in

α = (ob − pe) · êx3 . (2)

Define also the potential collision point, i.e., the point on link 3 closest to the ball

pc := pe + sat0
−a3

(α)êx3 , (3)

where satUL (x) denotes the saturation function with L as the lower limit and U as the upper
limit and a3 = � is the length of the third link. Hence, the signed shortest distance from the
third link to the ball is

h(q) := ‖rc‖ − r, (4)

where rc := pc − ob is the vector to the closest point on the finger to the ball.
If the ball and the finger are impenetrable, it is required that h(q) ≥ 0. Therefore, the

condition for collision can be stated as

h(q) ≤ 0. (5)

The velocity of the third link at the potential contact point denoted by vc can be de-
rived from the velocity of the end point ve using the velocity relation of rigid motion [26]
according to

vc := ve + ω3 × (pc − pe)

= ve − sat0
−a3

(α)êx3 × ω3

= (
Jp − sat0

−a3
(α)S(êx3)Jo

)
q̇

= Jcq̇, (6)

where ω3 is the angular velocity of the last link and S(·) denotes the skew-symmetric oper-
ator performing the cross-product. We have also defined

Jc := Jp − sat0
−a3

(α)S(êx3)Jo, (7)

which is the Jacobian at the potential contact point. Note that vc is the velocity of the link at
the contact point and not the velocity of the contact point itself, i.e., vc �= ṙc.
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2.3 Constrained motion

When the finger is touching the ball, its motion is constrained to a manifold. Using (4), the
finger is in contact with the ball when

h(q) = 0. (8)

This is equivalent to

‖rc‖2 − r2 = 0. (9)

Differentiating (9) w.r.t. time results in

vc · rc = 0. (10)

Hence, when in contact, the velocity of the third link at the contact point remains tangential
to the ball.

Depending on whether there is an interaction force between the objects, the contact may
be active or inactive. Let us denote the normal vector at the contact point outwards w.r.t. the
ball by

n := rc

‖rc‖ . (11)

The normal component of the interaction force at the contact is then given by

λn := λ · n, (12)

where λ denotes the contact force exerted on the finger. Using the Coulomb friction
model [8], interaction forces between two bodies are possible if and only if there is a normal
force between the contacting surfaces. Therefore, an active contact implies λn > 0.

The relative velocity between the finger and the ball at the contact point is

�v := ω × rc − vc, (13)

where ω is the angular velocity of the ball. When two bodies are sticking, the relative veloc-
ity between them is zero, i.e.,

�v = 0. (14)

This constraint is maintained by the static friction.
At this stage, it is useful to introduce f⊥ and f‖ for the perpendicular and tangential

decomposition of an arbitrary vector f w.r.t. a plane with normal vector n, according to

f = f‖ + f⊥, (15a)

f⊥ = (v · n)n = (n ⊗ n)f = Pnf, (15b)

f‖ = −n × (n × f ) = f − f⊥ = (1 − Pn)f = Tnf, (15c)

where ⊗ denotes the outer product, 1 is the identity matrix of proper dimension, and we
have defined

Pn := (n ⊗ n), (16)



M. Mahdi Ghazaei Ardakani, F. Magnusson

Tn := 1 − Pn. (17)

Now, let us define

σ := μsλn − ‖λ‖‖, (18)

where λ‖ is the force resulting from friction. Hence, according to the Coulomb model, the
condition for stiction is

‖λ‖‖ < μsλn ⇔ σ > 0. (19)

When the finger is slipping against the ball, the relative velocity �v is not zero anymore and

λ‖ = μkλn

�v

‖�v‖ . (20)

Note that in this case �v is tangential to the ball surface, since using the definition (13)
and (10) it is possible to show

�v · rc = (ω × rc) · rc − vc · rc = 0. (21)

The contact is inactive when λn ≤ 0.
Depending on the contact point between the finger and ball, two types of contact may

arise: point and sphere or line and sphere. If the contact is not slipping, for the former type
of contact, (14) can be integrated to result in a geometrical constraint, while the latter type
yields a rolling without slipping constraint which is non-holonomic.

2.4 Dynamics

In this section, we derive the equations of motion for the ball and finger system. The kinetic
and potential energy of the finger can be described by

Tf =
3∑

i=1

1

2
miq̇

T
(
J i

P

)T
J i

P q̇ +
3∑

i=1

1

2
q̇T

(
J i

O

)T
RiIiR

T
i J i

Oq̇, (22a)

Uf =
3∑

i=1

mig
T
0 pi, (22b)

respectively. Here, mi and Ii denote the mass and inertia matrix of link i, respectively, J i
P

and J i
O denote partial Jacobians up to link i, Ri is the rotation matrix of link i with respect

to the world coordinate, g0 = [0 0 − g]T is the gravity acceleration vector, and pi denotes
the position vector to the center of the gravity of link i. The Lagrangian of the finger is
Lf := Tf − Uf . Accordingly, we derive the equations of motion [7]

d

dt

(
∂Lf

∂q̇

)
+ ∂Lf

∂q
= Qe + Qc

f . (23)

The generalized external forces and the generalized forces due to the kinematic constraints
are denoted by Qe and Qc

f , respectively. Substituting Qe with the actuation torques, τ ,
minus the viscous friction, we obtain

Mf (q)q̈ + C(q, q̇)q̇ + μvq̇ + g(q) = τ + Qc
f , (24)



Ball-and-finger system: modeling and optimal trajectories

where Mf (q) is the mass matrix of the finger, C(q, q̇)q̇ denotes the contribution of the
centrifugal and Coriolis forces, μv is the viscous friction coefficient, and g(q) is the gravi-
tational force. The expressions for these functions are given in Appendix B.

For the ball, using the Newton–Euler equations, we find

Ibω̇ + ω × Ibω + Dω = Qc
f , (25)

where Ib = 2
5mr21 is the inertia tensor for the ball and D denotes the friction constant with

the socket.
In the rest of this section, we consider different regions depending on the active con-

straints imposed by the contact. The effect of collision, i.e., switching between no contact
and contact, is also considered. Finally, we describe the overall system.

2.4.1 Free motion

In case of no contact, we have Qc
f = 0. Hence,

Mf (q)q̈ + C(q, q̇)q̇ + μvq̇ + g(q) = τ, (26a)

Ibω̇ + ω × Ibω + Dω = 0. (26b)

2.4.2 Sticking

The condition of no slipping (14) can be rewritten as

G

[
q̇

ω

]
= 0, (27)

where we have defined G := [Jc S(rc)] ∈R
3×6. The generalized forces due to the constraints

according to the Lagrange–d’Alembert theorem [7] can be derived as
[
Qc

f

Qc
b

]

= GT λ, (28)

where λ are the Lagrange multipliers corresponding to the interaction forces. Therefore, (24)
and (25) can be rewritten as

Mf (q)q̈ + C(q, q̇)q̇ + μvq̇ + g(q) = τ + J T
c λ, (29a)

Ibω̇ + ω × Ibω + Dω = −rc × λ. (29b)

The interaction forces λ may be solved for in order to reduce the DAE into an ODE. They
could be used to evaluate whether in a certain state sticking is possible without switching to
new dynamics. The calculation may also be used to find out the direction of kinetic friction
at the onset of slipping. Let us define the block diagonal matrix

M := blkdiag
(
Mf (q), Ib

)
. (30)

We can rewrite (29a)–(29b) as

M

[
q̈

ω̇

]
+ f (q, q̇,ω, τ ) = GT λ, (31)
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where we have defined

f (q, q̇,ω, τ ) :=
(

C(q, q̇)q̇ + μvq̇ + g(q) − τ

ω × Ibω + Dω

)
. (32)

The Lagrange multipliers λ can be calculated by first taking the derivative of the con-
straints (27). Afterward, we multiply (31) by GM−1 from the left and use the relation ob-
tained from the derivative of the constraints. Let us define Γ := GM−1GT . Assuming Γ −1

exists, λ = λ(t, q, q̇,ω) can be calculated according to

λ = Γ −1

(

GM−1f (q, q̇,ω, τ ) −
n∑

k=1

(
∂G

∂qk

q̇k

)[
q̇

ω

])

= Γ −1
(
GM−1f (q, q̇,ω, τ ) + ω × ṙc − J̇cq̇

)
. (33)

Note that the matrix M is always invertible with

M−1 = blkdiag
(
M−1

f (q), I−1
b

)
. (34)

2.4.3 Slipping

In the case of slipping, the constraint only defines the normal part of the interaction force,
i.e., λn. By rewriting (10), we find

rc · Jcq̇ = 0. (35)

We normalize (35) by dividing by ‖rc‖, to get

nT Jcq̇ = 0. (36)

Now, from the Lagrange–d’Alembert theorem, it is clear that the contribution of the con-
straint force is Qc

f = J T
c nλn. Including the kinetic friction forces specified by (20), we

conclude

Mf (q)q̈ + C(q, q̇)q̇ + μvq̇ + g(q) = τ + J T
c (λ‖ + nλn), (37a)

Ibω̇ + ω × Ibω + Dω = −rc × λ‖. (37b)

It is also possible to reformulate (37a)–(37b) using the total interaction force λ such that
we obtain the same relations as (29a)–(29b). In this case, (20) can be written as

λ · �v = ‖�v‖μk(λ · n), (38a)

(n × �v) · λ = 0, (38b)

which additionally has no risk of division by zero as opposed to (20).

2.5 Impacts

Collisions give rise to rapid changes of the states. By allowing discontinuities in the state tra-
jectory, it is possible to model the effect of impacts right after the collision without dealing
with the actual process. In this case, new values for post-impact quantities must be calcu-
lated. Since these values can have jumps, we use superscripts + and − to denote the right
and left limits of a quantity, respectively. Next, we consider various impact laws. Since after
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collision the finger is neither allowed to penetrate the ball nor to bounce off directly (coeffi-
cient of restitution equal to zero), all the impact models ensure (Jcq̇

+)⊥ = n · Jcq̇
+ = 0.

2.5.1 Newton’s impact law

According to Newton’s impact law [28], after impact the tangential velocity of the finger
remains intact and only its normal velocity is vanished because of the assumed inelasticity
of the collision. Hence,

Jcq̇
+ = (Jcq̇)−

‖ = TnJcq̇
−. (39)

Accordingly, we can solve for the post-impact joint velocities. In this case, the impulse is
perpendicular to the ball and cannot change the velocity of the ball.

2.5.2 Sticking

When sticking occurs, the force impulse ι resulting from the impact makes the post-collision
relative velocity �v+ = 0. From the equations of motion (29a)–(29b) and (13), we conclude

Mf (q)
(
q̇+ − q̇−) = J T

c ι, (40a)

Ib

(
ω+ − ω−) = −rc × ι, (40b)

ω+ × rc − Jcq̇
+ = 0, (40c)

which can be solved for q̇+, ω+, and ι. By combining (40a)–(40c), we find

(
JcM

−1
f J T

c − S(rc)I
−1
b S(rc)

)
ι = ω− × rc − Jcq̇

−

= �v−. (41)

This shows that the impulse ι is a function of the contact point rc, the configuration of the
finger q , and the pre-impact relative velocity �v−, but neither the absolute velocity of the
finger nor the ball.

2.5.3 Slipping

In the case of slipping, an impact law can be formulated as minimizing the post-impact
energy, based on the maximum dissipation principle [16]. The optimization problem to be
solved is

minimize
1

2
ω+T Ibω

+ + 1

2
q̇+T Mf (q)q̇+, (42a)

with respect to ι,ω+, q̇+,

subject to Mf (q)
(
q̇+ − q̇−) = J T

c ι, (42b)

Ib

(
ω+ − ω−) = −rc × ι, (42c)

n · Jcq̇
+ = 0, (42d)

‖ι‖‖ ≤ μkι · n. (42e)
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A heuristic way is to minimize the post-impact relative velocity. This strategy allows a quick
transition to sticking. The corresponding optimization problem is

minimize
∥
∥�v+∥

∥, (43a)

with respect to μ, ι,ω+, q̇+,

subject to Mf (q)
(
q̇+ − q̇−) = J T

c ι, (43b)

Ib

(
ω+ − ω−) = −rc × ι, (43c)

n · Jcq̇
+ = 0, (43d)

ι‖ = μιn
�v−

‖
‖�v−

‖ ‖ , (43e)

0 < μ ≤ μk, (43f)

where we have additionally assumed that the direction of the tangential part of the impulse
is aligned with the pre-impact relative velocity. Problem (43a)–(43f) can be solved analyti-
cally [15]. Subsequently, the equations can be used in an optimal control problem.

2.6 Overall system

The complete system has three discrete modes, corresponding to free motion, sticking, and
slipping. Let λ denote the interaction force and xT := (qT , dqT , ωT ), where q̇ = dq . If for
the moment we do not consider the transition between modes, we can unify all the modes
with the first-order differential equation

(
1 0
0 M(q)

)
ẋ +

⎛

⎝
0 −1 0
0 C(q, dq) + μv 0
0 0 S(ω)Ib + D

⎞

⎠x +
⎛

⎝
0

g(q)

0

⎞

⎠

=
⎛

⎝
0
τ

0

⎞

⎠ +
⎛

⎝
0

J T
c (q)

−S(rc(q))

⎞

⎠λ. (44)

The determination of λ is separate for each mode as follows:

– Free motion,

λ = 0. (45)

– Sticking (valid when σ > 0),

Jcq̇ + rc × ω = 0. (46)

– Slipping (valid when �v �= 0),

rc · Jcq̇ = 0, (47a)

λ · �v = ‖�v‖μkλn, (47b)

(n × �v) · λ = 0. (47c)
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Hence, we have a differential-algebraic equation (DAE) describing the dynamics in each
mode, which is low index in the case of free motion and of index 2 in the case of sticking
and slipping.

3 System modeling

The aim of this section is to build a hybrid dynamical system based on the mechanical system
introduced in Sect. 2.6. To find the solution to the overall system, we must also consider an
impact law and the so called Signorini’s condition or corner law for λn (see [8]):

h · λn = 0,

h ≥ 0, λn ≥ 0.
(48)

Firstly, we discuss the relation between these complementarity conditions and mode transi-
tions. In the latter subsection, the complete hybrid system is presented.

3.1 Mode transitions

In view of the complementarity conditions (48), we can partition a state trajectory into three
different regions:

λn = 0 ∧ h > 0, (49a)

λn > 0 ∧ h = 0, (49b)

λn = 0 ∧ h = 0. (49c)

The first partition is a region where the dynamics are unconstrained. The second partition
is related to active contacts where constrained dynamics are applicable. The third partition
defines states, where there is a contact but the constraint is inactive. This set can be reached
from either the unconstrained dynamics or the constrained dynamics.

Using the complementarity conditions, it is possible to determine whether certain dy-
namics can be assumed in a given region. However, for simulation of the dynamics for-
ward, (48) does not provide explicit transition conditions between unconstrained and con-
strained modes. In continuous time a complete causal description of the transition condition
is not generally possible. Thus, by allowing a small violation of the validity regions, the
transition time can be approximated arbitrarily close to the actual ones.

Starting from the free motion where λn = 0, using the unconstrained dynamics when
h = 0 and either ḣ < 0 or ḣ = 0∧ ḧ < 0 leads to penetration. Therefore, to guarantee impen-
etrability new initial velocities must be calculated (in the case of inelastic collision, ḣ = 0).
Accordingly, the transition from the free motion is triggered when

h < 0 ∨ (h = 0 ∧ ḣ < 0) ∨ (h = ḣ = 0 ∧ ḧ < 0). (50)

Depending on the post-impact conditions, the state trajectory can either switch to the con-
strained dynamics or continue evolving according to the unconstrained dynamics. On the
other hand, starting from either of the constrained dynamics where h = 0, the transition to
the free motion can be triggered when λn < 0.

The modes and the transitions are illustrated in Fig. 2, following the notation in [22].
Each mode is represented by a circle and can have its own set of dynamical equations. The
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Fig. 2 Hybrid system
representation of the
complementarity condition (48)

conditions for the validity of a mode is given at the lowest part of the circle. The transition
conditions are shown close to the tail of the arrows and the reset maps close to the arrow-
heads. Note that h < 0 and λn < 0 in the transition conditions should be interpreted as when
the boundaries at zero are crossed. In the case of dynamic simulation, this means that the
solver has to pinpoint when the transition condition becomes satisfied with equality and then
perform the transition.

To account for switching to slipping and sticking and between them, we should also con-
sider their region of validity. Both sticking and slipping constitute constrained modes where
h = 0. The transition to them is, however, distinguished by the relative post-impact veloc-
ity �v+. If the static friction is not able to maintain the sticking constraint, i.e., according
to (19) when σ ≤ 0, the system makes a transition to slipping. In the opposite direction,
the transition depends on the relative velocity. However, (20) is undefined for zero relative
velocity. This implies that there is no ideal transition condition between the slipping and
sticking modes, although it is possible to calculate a continuous solution for the velocities.
This can be resolved by conditioning the transition on ‖�v‖ ≤ ε. The switching then hap-
pens arbitrarily close to the actual transition by tuning the value of ε. To avoid switching
directly back we should also make sure that d‖�v‖/dt < 0.

Note that switching on ‖�v‖ greater than zero implies that the transition to the sticking
mode is not possible. Similarly in the opposite direction, by the end of the sticking mode,
the relative velocity is still equal to zero and a transition to slipping mode is not possible.
A solution to these problems is to update q̇ and ω such that the required condition on �v+

is satisfied.
Since equalities cannot be detected exactly during simulation, in the implementation of

the simulation models the equality conditions have to be replaced with inequality conditions
on the residual of the errors. We consider a constant ε > 0 defining the numerical tolerance,
e.g., �v = 0 is implemented as ‖�v‖ ≤ ε. Note that for numerical reasons, we also allow
h(q) to drift in the in-contact modes.

3.2 Hybrid model

The transitions between the modes of (44)–(47c) happen according to the discussion of
Sect. 3.1. To avoid extra complexity, the contact types (point and sphere or line and sphere)
are not distinguished by additional modes. The final model is a hybrid, variable-index DAE
system. Figure 3 illustrates the hybrid model. In the figure, post-impact relative velocities
are used in the conditions for the transition from the free motion mode. This is, however, just
for saving space. It can be assumed that (50) is the transition condition to an “In-contact”
state where the impact law is applied. Consequently, depending on ‖�+‖ the transition to
either sticking or slipping happens.
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Fig. 3 The hybrid system
representing the ball and finger
system. Only the subsystem
shown in blue is used for finding
optimal trajectories, limiting the
possible solutions to free motion
and sticking (Color figure online)

4 Optimization

In this section, we discuss how the hybrid DAE in Fig. 3 can be used to find trajectories
for the system using optimal control. In the optimization, the slipping mode and its transi-
tions are not considered, i.e., we only consider free motion and sticking, which correspond
to the parts in blue in Fig. 3. For many applications, this choice is motivated since slippage
implies energy loss, which is preferably avoided. However, this hybrid DAE is ill-suited
for straightforward application, because of the combination of nonlinear and hybrid dynam-
ics. To deal with the hybrid dynamics, we use a mixture of multiple phases and smooth
approximations to obtain a system model that is better suited for numerical optimization.
The resulting equations are nonlinear and sufficiently differentiable to apply Newton-based
methods.

4.1 Optimal control problem

To investigate optimal trajectories, we use the optimal control problem formulation

minimize φ
(
c(tf )

)
, (51a)

with respect to x, y,u, tf , x(0),

subject to dynamics of Fig. 3 in blue, (51b)

ċ = L(x,u), (51c)

γ
(
x(0), x(tf )

) = 0, c(0) = 0, (51d)

g(ẋ, x, y,u) ≤ 0, (51e)
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where

x = (q, dq,ω), y = (h,λ,λn, σ ), u = τ (52)

are the differential, algebraic, and control variables, respectively, tf denotes the final time, c

is additional state variables that model the objective defined by φ and L, which we describe
further in Sect. 4.4, g provides path inequality constraints, which are described in Sect. 4.2,
and γ are point constraints used to enforce, for example, initial and periodicity conditions.
The initial state x(0) can also be a (partially) free optimization variable.

This general formulation can be used to, e.g., find optimal solutions to the following
problems:

– Reach the ball;
– Reorient the ball;
– Rotate the ball with a reference velocity;
– Rotate the ball along an axis as fast as possible;
– Find a periodic solution to keep the ball rotating.

4.2 From hybrid dynamics to multiple phases

The optimization problem (51a)–(51e) is not compatible with conventional methods for nu-
merically solving optimal control problems as a result of the hybrid dynamics. To accu-
rately treat the switching dynamics discussed in Sect. 3 in a differentiable way without mak-
ing smooth approximations—which would lead to unacceptable inaccuracy—we introduce
multiple phases as described in, e.g., [2, 6]. The time horizon [0, tf ] is thus divided into N

phases
[
t
(1)

0 , t
(1)
f

]
, . . . ,

[
t
(N)

0 , t
(N)
f

]
(53)

such that

t
(1)

0 = 0, t
(N)
f = tf , t

(i+1)

0 = t
(i)
f , i = 1, . . . ,N − 1. (54)

Within each phase only a single, prescribed mode is active, and the mode is only allowed to
switch at the phase boundaries.

For ease of notation, let

z(i) := [
ẋ(i) x(i) ċ(i) c(i) y(i) u(i) t

]T
. (55)

The dynamics within phase i are then described by the non-hybrid DAE

F (i)
(
z(i)

) = 0 (56)

that corresponds to the mode that has been prescribed to the phase, that is, (45) or (46), as
well as (44) and (51c).

The validity conditions are enforced by the path constraint g(i). State and control inequal-
ity constraints can also be incorporated into g(i). Event functions e(i) are used to enforce
mode transition conditions. The system variables in the respective phases are connected by
linkage constraints ψ corresponding to the reset maps of Fig. 3.
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The hybrid dynamic optimization problem (51a)–(51e) is thus transformed into the non-
hybrid, multiple phase problem

minimize φ
(
c(N)(tf )

)
, (57a)

w.r.t. x(i), c(i), y(i), u(i), t
(i)
f , x

(i)

0 ,

subject to F (i)
(
z(i)

) = 0, (57b)

e
(i)
L ≤ e(i)

(
z(i)

(
t
(i)

0

)
, z(i)

(
t
(i)
f

)) ≤ e
(i)
U , (57c)

ψL ≤ ψ
(
z(1)

(
t
(1)

0

)
, z(1)

(
t
(1)
f

)
,

...

z(N)
(
t
(N)

0

)
, z(N)

(
t
(N)
f

)) ≤ ψU, (57d)

g(i)
(
z(i)

) ≤ 0, (57e)

i = 1, . . . ,N,

where e
(i)
L , e(i)

U , ψL, ψU are proper constants. Any remaining point constraints given by (51d)
have also been incorporated into either the event constraints (57c) or the linkage con-
straints (57d).

4.3 Smooth saturation

Although (57a)–(57e) is not hybrid, it is still not suitable for dynamic optimization because
of the non-differentiable equations resulting from the saturation function in (3). While this
can be handled by introducing further phase changes for whenever a junction point of the
saturation function is crossed—i.e., when the potential contact point shifts between the fin-
gertip to the side of the finger—this approach is computationally expensive and also makes
it more difficult to determine the optimal phase sequence. We thus instead choose to approx-
imate the saturation function by noting that

satUL (x) = 1

2

(
L + U + |x − L| − |x − U |) (58)

and then using the approximation

|x| ≈
√

x2 + ε2, (59)

where ε is a small number, which we set equal to 0.01. Figure 4 compares the smooth
approximation with the ideal saturation, as well as the hyperbolic tangent function with an
appropriate shifting and scaling. The hyperbolic tangent is another function commonly used
to model saturation behavior [25]. Note that a significantly better approximation by scaling
the hyperbolic tangent function is not possible since it requires changing either the slope or
the saturation limits.

4.4 Objective

Out of the various archetype problems mentioned in Sect. 4.1, we focus on the final one of
finding a periodic trajectory, viz., x(0) = x(tf ), that achieves a certain rotation of the ball.
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Fig. 4 Approximation of the saturation function with the lower limit of −1 and the upper limit of 0. The
curves have point symmetry around (−0.5,−0.5). Hence, only the first quadrant is shown. The green curve
approximates the saturation function by scaling and shifting tanh. We observe that for ε = 0.01, the smooth
approximation of the saturation function is hardly distinguishable from the saturation function (Color figure
online)

We use the objective function

φ
(
c(tf )

) := c1(tf )

c2(tf )
, (60)

where c1 and c2 denote some cost states. Accordingly, φ(c(tf )) is the ratio between the total
accumulated costs during the time horizon [0, tf ]. We will consider two different objective
functions, hence two different ways of defining c1 and c2. The first is cost of transport (COT),
which can be expressed by the two cost states

ċCOT
1 := ‖u‖2, (61)

which quantifies the cost of control action, and a measure of the amount of rotation in a
desired direction

ċCOT
2 := −wCOT

∥
∥ωref

∥
∥2 + ω · ω̂ref, (62)

where ω̂ref is a unit vector determining the desired direction of angular velocity,

ωref := ω − (
ω · ω̂ref

)
ω̂ref (63)

is the component of the angular velocity perpendicular to the desired direction, and wCOT

is used to weight the two quantities. The second objective is a more conventional quadratic
penalty on the input weighted by wQC and on the deviation from a reference rotational
velocity, ωref, expressed by the cost states

ċ
QC
1 := wQC‖u‖2 + ∥

∥ω − ωref
∥
∥2

, (64)

and a state for calculating the total period

ċ
QC
2 := 1. (65)

The cost of transport defined here is motivated by the energy efficiency of the rotation
and is similar to the energy index used for comparing the efficiency of various transport
systems [31]. The average rotational speed is thus determined by the optimization. On the
other hand, the quadratic objective function is intended for achieving a certain average rota-
tional speed while allowing some trade-off for the average power. The fact that the quadratic
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cost function favors angular velocities close to the constant reference velocity leads to short
periods. This is understood by noting that the speed of the ball cannot be influenced in the
free motion and drops rapidly.

5 Implementation

The equations of Appendices A and B were derived with the use of Maple. The multiphase
problem (57a)–(57e) was implemented in PSOPT [3]. The Legendre–Gauss pseudospectral
collocation of PSOPT was used to transcribe the problem into a twice continuously differ-
entiable nonlinear program (NLP) with 30 collocation points for each phase. The NLP was
solved with IPOPT [34] and the linear solver MA27 [18].

Simulation of the system including slipping was performed using Modelica [14] and Dy-
mola [11]. Dymola does not currently support hybrid systems with variable index, although
there has been recent work to resolve this [24]. One possible way to manually resolve this
is to perform index reduction in the high-index modes, but this is challenging for the con-
sidered system because of the impossibility of statically selecting suitable state variables.
Hence, we instead adopted a more cumbersome approach where three instances of the sys-
tem were simulated simultaneously, one low-index for free motion and two high-index (with
dynamic state selection [23]) for modes in contact. A correct system model could thus be
created by appropriate communication between the three instances during mode switching.

The trajectories from both optimization and simulation were finally imported into MAT-
LAB for visualization. For 3D visualization of the finger and its movements, Peter Corke’s
robotic toolbox [9] was used.

6 Results

This section presents results for the problem of finding a periodic solution for rotating the
ball. We first present optimal trajectories obtained by neglecting slipping, and then briefly
show the solutions obtained by simulating the system with the open-loop optimal inputs
while taking into account slippage. For the numerical experiments, we use r = � = 1 m,
m = 20 g, and Ib = diag(1.0677,2.3177,2.0833) g s−2 for all the links.

6.1 Optimal control

We considered the two objectives discussed in Sect. 4.4. We divided each period into three
phases: free motion, sticking, and finally free motion again with the constraint x(3)(tf ) =
x(1)(0). The initial state as well as the terminal and switching times t

(i)
f were free. We also

imposed the initial constraint h(0) ≥ 0.3r for robustness, i.e., the finger should go suffi-
ciently far away from the ball before making a new contact. The weights wCOT and wQC

were optionally set to 10 and 1, respectively. As the desired direction of angular velocity
ω̂ref, we chose 1/

√
2(1,−1,0)T for the cost of transport and we used ωref = (0,0,2.2)T as

the angular velocity reference for the quadratic objective. We impose an arbitrary torque
limit of 1 N m.

A simple initial guess was sufficient to numerically solve the problem. The initial guess
consisted of a constant non-zero q ≡ q0 and t

(i)
f = i, with all the remaining variables being 0.

We present the results of three scenarios. In the first two scenarios, we solved the problem
of optimizing the COT. The difference between the scenarios is that in the first one we



M. Mahdi Ghazaei Ardakani, F. Magnusson

Fig. 5 Visualization of the
ball-and-finger system. The blue
solid curve shows the optimal
path of pc for the COT when
there is no joint limit. The red
dashed curve corresponds the
optimal path for the fingertip
(Color figure online)

Fig. 6 The optimal angular
velocity of the ball ω for the
COT. The vertical lines show the
switching time for the phases

Fig. 7 The minimum distance to
the ball, h, and the distance of the
contact point to the fingertip. The
finger is in contact with the ball
in the interval between the
vertical lines. The side of the
finger is used for rotating the ball
and the contact point shifts
slightly during rotation

included no constraint on the joint angles, while in the second one the constraint qi ≥ 0 for
i ∈ {2,3} was enforced in order to comply with the limitations of the human finger. Figure 5
illustrates the optimal path obtained for the robotic finger. In Fig. 6, we see the resulting
optimal angular velocities of the ball and switching times. The discontinuities at the impact
point are visible.

The minimum distance h between the finger and the ball is shown in Fig. 7. Moreover,
the distance between the contact point and the fingertip is plotted. As we see, the contact
point is located somewhere on the link and shifts slightly during the rotation. The required
torques and the interaction force are given in Figs. 8 and 9, respectively.

Figure 10 illustrates the human finger in its initial position. In this case, the fingertip
always remains the closest point to ball. The path obtained from the movement of the closest
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Fig. 8 The optimal control
signal for minimizing the COT:
The vertical lines show the
switching time for the phases.
Toward the end of the contact
phase, the bounds on the control
signals become active

Fig. 9 Interaction forces for the
COT: The tangential and normal
components of the interaction
force are shown. In this case,
there is always some margin to
slipping

Fig. 10 Visualization of the ball
and finger system. The blue
curve shows the optimal path of
pc for the COT, complying with
the human joint limits. The
contact point is always the
fingertip (Color figure online)

point is shown in blue. The paths of the closest points of the human finger and the robotic
finger are compared in Fig. 11.

Assuming the COT, the robotic finger was able rotate the ball in the desired direction
more efficiently. It used the side of the finger, while the human finger contacted with the
fingertip only.

Figure 12 shows the finger in its initial position and the path obtained for rotating the
ball around the z-axis using the quadratic objective function. The angular velocity obtained
is illustrated in Fig. 13. As we can see, the average angular velocity matches the desired ωref.
The period of the solution compared to Fig. 6 is shorter. The minimum distance as a function
of time and the distance of the contact point to the fingertip are shown in Fig. 14. In this
solution, only the fingertip is used for rotating the ball. Finally, the torques and interaction
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Fig. 11 The paths of pc

obtained using the COT
optimization criterion. The red
and blue curves correspond to
human and robotic fingers,
respectively. The parts of the
paths in contact with the ball are
dashed (Color figure online)

Fig. 12 Visualization of the ball
and finger system. The blue curve
shows the optimal path of pc for
the quadratic cost. The objective
is to rotate the ball around the
z-axis (Color figure online)

Fig. 13 The optimal angular
velocity of the ball ω for the
quadratic cost. The vertical lines
show the switching time for the
phases

forces are depicted in Figs. 15 and 16, respectively. As we see, the constraint on the friction
cone is always active during contact. Hence, the motion is always on the verge of slipping.

6.2 Open-loop simulation

We now use the open-loop optimal torques for the COT criterion without non-negativity
bounds on the joints from Fig. 8 to simulate the full system in Fig. 3 in Dymola. The resulting
angular velocities are shown in Fig. 17 and compared with the optimal angular velocities.
We see that open-loop angular velocities match well at the beginning, but drift from the
optimum as time passes. There is a short window of time immediately following collision in
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Fig. 14 The minimum distance
to the ball, h, and the distance of
the contact point to the fingertip.
The finger is in contact with the
ball in the interval between the
vertical lines. Only the fingertip
is used for rotating the ball

Fig. 15 The optimal control
signal for minimizing the
quadratic cost: The vertical lines
show the switching time for the
phases. Note that the bounds on
the control signal are only active
when making contact or breaking
it

Fig. 16 Interaction forces for the
quadratic cost: The tangential
and normal components of the
interaction force are shown. In
this case, there is no margin to
slipping

which slipping occurs, which is almost always the case when employing Newton’s impact
law. The dynamics quickly switch to sticking because of the high interaction forces. There is
a jump in the post-impact velocities in the optimization solution, while using the Newton’s
impact law, the velocities are continuous in the simulation result.

7 Discussion

The ball-and-finger system is modeled with three modes, each described with a different set
of equations. In contrast to some of the results for finding optimal trajectories reported in
the literature (see, for example, [20, 30]), in our approach the connection between different
modes happens through phases. Thus, it is not required to compromise the optimal solution
by biasing the cost function toward making contact. On the other hand, we have fixed the
order of the phases. This can be relaxed by trying all the combinations. For more complex
systems, a hierarchical planning scheme can be used in order to determine the phases [15].

There are several possible approaches to treating hybrid dynamics in dynamic optimiza-
tion other than the multiphase framework. A natural alternative in the considered case is the
incorporation of the complementarity constraints [1] in the optimization problem. However,
it is not always easy to rewrite the non-smooth behavior using complementarity conditions,
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Fig. 17 The open-loop
simulation of the complete
system in Fig. 3 using the control
signals in Fig. 8. The angular
velocities of the ball (solid blue
curves) are compared with the
optimization result (red dashed
curves). The vertical lines show
the switching times obtained
from the optimization. The time
regions corresponding to the
slipping and sticking modes of
the simulated result are shaded in
purple and gray, respectively. We
see that the contact times are
slightly different. However, there
is no difference in the time that
the finger leaves the ball (Color
figure online)

e.g., switching between slipping and sticking when the friction coefficients are not the same.
Other possible approaches are mixed-integer nonlinear programming based on branch-and-
bound [4] or sum-up-rounding [19] or widely applicable derivative-free methods such as
genetic algorithms [33]. The various approaches have their own strengths and weaknesses.
The strength of the multiphase framework is the efficiency of the required computations,
which may enable online solution of these problems. A significant drawback is that the
phase sequence needs to be determined a priori.

In optimization, it is not always suitable to neglect the slippage completely. It can be
ignored when the interaction forces are high. However, when the slipping margin σ is small,
it becomes more important to consider the effects of slipping. If the slipping mode is ne-
glected, it is also important to ensure that the collision itself does not give rise to slipping.
When using Newton’s impact law, this is possible by constraining the relative tangential ve-
locity at the collision point to be zero. This will guarantee a transition to the sticking mode
upon collision, though it might not be the optimal solution. Another solution is to constrain
the resulting impulse ι so that the friction is sufficient to support the sticking mode. Similar
to (19), this can be formulated as

‖ι‖‖ ≤ μsι · n, (66)

and enforced in the optimization using event constraints. In our example with the quadratic
objective function in Sect. 6.1, adding this constraint did not have a significant effect on the
solution. For the COT objective function, the velocity of the finger normal to the ball was
prior to the collision increased to ensure enough friction while the rest of the variables were
similar. This suggests that introducing limits on the normal impulse might also be required
to avoid bouncing back in practice.

Another option for handling impacts is to add flexible components such as a non-rigid
ball or a padded arm. This leads to a smooth approximation of discontinuities, which does
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not require the exact contact times to be identified. For example, the normal force can be
considered proportional to the depth of penetration of pc , i.e., λn = −k min(h(q),0)n could
be employed. This is, however, not suitable when the contact stiffness is high, since a com-
putationally intractable amount of discretization points may be required to be able to capture
rapid changes in the forces. Note that, irrespective of this assumption, it is possible to con-
strain the amount of normal impulse in the optimization such that the desired behavior is
achieved.

Contrary to assumption 6, real contacts have some degree of elasticity. However, given
the fact that both robotic and human fingers have relatively high impedance, the normal
impact at the collision time is absorbed and the finger would not bounce back. Therefore, an
inelastic model is able to describe the overall behavior well for practical collision velocities.

Open-loop control is generally not satisfactory, even if slippage can be neglected. Feed-
back is needed to handle model uncertainties, such as an inaccurate collision model, as well
as discretization errors. Different controllers depending on the mode of the system may be
employed. Specifically, in free motion, a position controller with feedforward torques can be
used. As soon as the finger comes into contact with the ball, the controller can be switched
to a hybrid position/force controller. To maintain the sticking condition, the normal force
should be regulated while the velocity in the tangential direction is being tracked.

In simulation, inconsistent solutions due to the Painlevé paradox [8] may arise when
the kinetic friction constant between the ball and the finger is large. In this case, without
a proper reinitialization of the states, it is not possible to find consistent solutions with the
complementarity conditions (48). However, this will not be an issue in the optimization
because of the infeasibility of such solutions.

The optimization results presented in Sect. 6 were obtained using simple initial guesses.
However, warm starting the optimization from previous runs with simplified cost functions
can often be beneficial. This way it is possible to direct the solution gradually to the region
of interest.

The path constraint related to the validity condition h ≥ 0 is difficult to treat numerically.
In phase 1, the natural formulation is h(1) ≥ 0 and h(1)(tf ) = 0. However, such a formula-
tion violates constraint qualifications, leading to unbounded dual variables [29]. Ideally, this
would be handled by only enforcing h(1) ≥ 0 in all but the last collocation point of phase 1,
which instead is determined by the event constraint h(1)(t

(1)
f ) = 0, but this is not readily

supported by PSOPT. Hence, we work around this issue by replacing the event constraint
by 0 ≤ h(1)(tf ) ≤ ε := 10−4. Further problems related to this are encountered in phase 3. In
phase 2, ḣ = 0 is a solution invariant, which is, however, not preserved during discretiza-
tion. Numerical drift-off can thus lead to h(2)(tf ) < 0 (enforcing h(2) ≥ 0 would once again
lead to violation of constraint qualifications). To circumvent this, we replace the validity
condition of phase 3 by h(3) ≥ −ε.

The proposed framework is not robust with respect to avoiding contact in the free mo-
tion mode, as it allows for free motion arbitrarily close to the ball. A simple remedy for
the considered examples is to also enforce ḣ ≤ −ε in the first phase and ḣ ≥ ε in the third
phase, which may, however, sacrifice optimality. Future work is to design a more sophisti-
cated solution by considering robust approaches to optimization and control such as those
in [5, 27].

8 Conclusion

In this article, we propose a ball-and-finger system as a realistic example to study common
robotic tasks involving interaction and varying dynamics. The result of modeling is a hy-
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brid, variable-index differential-algebraic equation system. To find the optimal trajectories
for performing a task, we used an integrated approach, i.e., there is no separate process for
finding the required path. A multiphase formulation was used to handle changes in the dy-
namics in each mode. The benefit of this approach is that there is no need to compromise
the desired objective function in order to establish contact.

As the result of the optimization, we find not only the trajectory for the motion but also
the interaction forces. This is an important feature considering the fact that robots are often
employed for manipulation tasks, which involves interaction with other objects. The exten-
sion of our model with several fingers opens up the opportunity to perform automatic motion
planning for dexterous manipulation, e.g., for assembly tasks.

From the modeling, three modes of behavior from the system are expected, which may
require three different strategies for control. Suitable feedback signals are the minimum
distance to the ball, the margin to slipping, and the relative velocity at the contact point. In
the contact situation, controlling the force in the normal direction to the ball is important in
order to maintain the contact as well as to make the system more robust with respect to the
variations of the impact law.
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Appendix A: Forward kinematics and Jacobian

Considering Fig. 1, the position of the fingertip, pe , and the orientation of the 3rd link,
described as a rotation matrix, are

pe =
⎡

⎢
⎣

−s23 − s2 + 2
1
2 (s123 + s12̄3̄ + s12 + s12̄) + s1
1
2 (c12̄3̄ + c123 + c12̄ + c12) + c1

⎤

⎥
⎦�, (67)

[êx3 êy3 êz3 ] =
⎡

⎢
⎣

−s23 −c23 0
1
2 (s123 + s12̄3̄)

1
2 (c123 − c12̄3̄) −c1

1
2 (c12̄3̄ + c123)

1
2 (s12̄3̄ − s123) s1

⎤

⎥
⎦ , (68)

where sij ...k denotes sin(qi + qj + · · · + qk) and cij ...k denotes cos(qi + qj + · · · + qk). An
index with a bar denotes the corresponding joint with a negative sign, e.g., ī represents −qi .

The geometric Jacobian for the fingertip is

J =
[
Jp

Jo

]
, (69)

where the translational part, Jp , is given by

Jp =
⎡

⎢
⎣

0 −c23 − c2 −c23

J21
1
2 (c123 − c12̄3̄ − c12̄ + c12)

1
2 (c123 − c12̄3̄)

J31
1
2 (s12̄3̄ − s123 − s12 + s12̄) − 1

2 (s12̄3̄ − s123)

⎤

⎥
⎦�, (70)
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where

J21 = 1

2
(c12̄3̄ + c123 + c12̄ + c12) + c1,

J31 = −1

2
(s123 + s12̄3̄ + s12 + s12̄) − s1,

and the rotational part, Jo, is given by

Jo =
⎡

⎣
−1 0 0
0 −c1 −c1

0 s1 s1

⎤

⎦ . (71)

Appendix B: Dynamics

In this section, the expressions for the dynamical properties of the finger used in (24) are
given. Every link is characterized by the mechanical properties mass mi and moments of
inertia Ii = diag(Ixxi

, Iyyi
, Izzi

) where i denotes the link number.
The expression for the gravitational force is

g(q) = − �

4
g0

⎡

⎢
⎣

g11

m2(s11 − s11̄) + (s111 − s11̄1̄ + 2s11 − 2s11̄)m3

m3(s111 − s11̄1̄)

⎤

⎥
⎦ , (72)

g11 = 2m1s1 + (s11 + s11̄ + 4s1)m2

+ (s111 + s11̄1̄ + 2s11 + 2s11̄ + 4s1)m3. (73)

Here sxyz denotes sin(xq1 + yq2 + zq3) and cxyz denotes cos(xq1 + yq2 + zq3). A variable
with a bar denotes the variable with a negative sign, e.g., x̄ represents −x. The trailing zeros
are omitted.

The mass matrix for the finger is

Mf (q) = MT
f (q)

=
⎡

⎢
⎣

m11 0 0

0 1
4 m2�

2 + (c001 + 5
4 )m3�

2 + Izz2 + Izz3
1
4 (2c001 + 1)m3�

2 + Izz3

0 1
4 (2c001 + 1)m3�

2 + Izz3
1
4m3�

2 + Izz3

⎤

⎥
⎦ ,

(74)

where

m11 = 1

8

(−4Ixx3 + 4Iyy3 + m3�
2
)
c022 + 1

2
m3�

2c021 + 1

8
(8c01 + 9)m2�

2

+ 1

8

(
(m2 + 4m3)�

2 − 4Ixx2 + 4Iyy2

)
c020 + 1

2
(Iyy2 + Ixx3 + Iyy3 + Ixx2)

+ 1

8
(16c01 + 4c001 + 8c011 + 13)m3�

2 + Iyy1 + 1

4
m1�

2. (75)
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The matrix C(q, q̇) can be expressed as

Cij =
3∑

k=1

ψijkq̇k, (76)

where ψijk = 0 except for

ψ112 = ψ121 = −ψ211 = 1

8

(
4Ixx3 − 4Iyy3 − m3�

2
)
s022 − 1

2
m3�

2s021

− 1

8

(
(4m3 + m2)�

2 − 4Ixx2 + 4Iyy2

)
s02 − 1

2
m3�

2s011

−
(

1

2
m2 + m3

)
�2s01, (77)

ψ113 = ψ131 = −ψ311 = 1

8

(
4Ixx3 − 4Iyy3 − m3�

2
)
s022

− 1

4
m3�

2(2s011 + s001 + s021), (78)

ψ223 = ψ232 = ψ233 = −ψ322 = −1

2
m3�

2s001. (79)
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