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Abstract. Beginning with a straightforward formulation of electromagnetic
‘cloaking’ that reduces to a boundary value problem involving a single
Maxwell first-order differential equation, explicit formulae for the relative
permittivity–permeability dyadic and fields of spherical and circular cylindrical
annular cloaks are derived in terms of general compressed radial coordinate
functions. The general formulation is based on the requirements that the cloaking
occurs for all possible incident fields and that the cloaks with frequency ω > 0
have continuous tangential components of E and H fields across their outer
surfaces, and zero normal components of D and B fields at their inner material
surfaces. The tangential-field boundary conditions at the outer surface of the
cloak ensure zero scattered fields, and the normal-field boundary conditions
at the inner surface of the cloak are compatible with zero total fields inside
the interior cavity of the cloak. For spherical cloaks, unlike cylindrical cloaks,
these boundary conditions lead to all the tangential components of the E and
H fields being continuously zero across their inner surfaces—cylindrical cloaks
having delta functions in polarization densities at their inner surfaces. For
H-wave incident fields, a nonmagnetic circular cylindrical annulus is found
that has nonzero scattered fields but zero total fields within its interior cavity.
For bodies with no interior free-space cavities, the formulation is used to
derive nonscattering spherical and cylindrical ‘concentrators’ that magnify the
incident fields near their centers. For static fields (ω = 0), the boundary value
formulation is appropriately modified to obtain a relative permeability dyadic
that will cloak magnetostatic fields. Causality-energy conditions imply that,
unlike magnetostatic cloaking, electrostatic cloaking as well as low-frequency
cloaking for ω > 0 is not realizable. It is also confirmed that perfect cloaking
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over any nonzero bandwidth violates causality-energy conditions and thus the
cloaking of realistic time-dependent fields must be approximate.
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1. Introduction

This work began after reading the paper by Pendry, Schurig, and Smith [1] on electromagnetic
cloaking and realizing that the material parameters and fields of specific cloaks could be
derived as a boundary value problem with a single first-order Maxwell differential equation
for linear anisotropic media without relying heavily on coordinate transformations [2]–[6].
This alternative formulation of cloaking reveals the boundary values of the fields at the inner
and outer surfaces of a cloak that yield zero scattered fields outside the cloak and zero
total fields inside the free-space cavity of the cloak. The coordinate transformation functions
and constitutive parameters (permittivity and permeability) are exhibited in a form that is
frequency independent for frequency ω > 0 and thus cloaking is immediately extendable
(ignoring causality-energy considerations; see section 6) to time-domain fields through Fourier
transformation of the frequency-domain fields. The boundary value formulation confirms the
important discovery of Greenleaf et al [7] that there are delta functions in the tangential
polarization densities at the inner surfaces of cylindrical cloaks. The boundary value formulation
is also applied (in section 5) to obtain the coordinate transformation functions and constitutive
parameters that produce cloaking of static fields (ω = 0).

The boundary value formulation presented here is intended to complement the
‘transformation optics’ of [1] and the ‘conformal mapping’ of [8], each of which provide
a conceptually appealing approach to the design of complex electromagnetic structures. The
formulation given in [1] is based on spatial coordinate transformations and corresponding
transformations of Maxwell’s equations that provide expressions for the required inhomogeneity
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and anisotropy of the permittivity and permeability of the cloaking material. An approximate
cloaking method was presented by Leonhardt [8] where the Helmholtz equation is transformed
by conformal mapping to produce cloaking effects in the geometric optics limit. Subsequently,
Leonhardt and Philbin discussed transformation media in the context of the transformation rules
of tensors in general relativity [4]. Conformal mapping is also applied in elastodynamics [6].

Numerical studies [9]–[14] have confirmed the possibility of electromagnetic cloaking
either by using commercial finite-element equation solvers [13, 14] or by employing the
decomposition of the electromagnetic fields into a set of orthogonal eigenmodes [9]–[11].
Simplified cloaks are proposed in [12, 14] that use approximations to the anisotropic tensors
of an ideal cloak.

Several different kinds of ‘cloaking’ can be found in the published literature in addition
of the cloaking introduced by Pendry et al [1]. Kerker et al [15, 16] found that coated
spheres and ellipsoids could be made electromagnetically invisible to plane waves in the long
wavelength regime. Alu and Engheta [17]–[20] showed that electrically small metallic spheres,
like electrically small antennas [21, 22] can be made nearly transparent to the impinging
radiation.

Coating to minimize the forward scattering from a cylinder was introduced in [23] and [24].
Kildal et al showed in [25] how cylinders such as struts and masts can be constructed with
reduced blockage widths in order to decrease the sidelobes and losses caused by the blockage
of reflector antenna fields. Skokic et al [26] showed that a metallic parabolic reflector is invisible
to a monostatic radar under certain resonant conditions.

A cloaking technique via a change of variables for electric impedance tomography was
introduced by Greenleaf et al [27] and developed further in a recent paper by Kohn et al [28].

Milton et al [29] show that the scattering vanishes from a fixed distribution of a finite
number of polarizable dipoles within a near-field region of a cylindrical ‘superlens’.

Miller [30] proposed the use of sensors and active sources near a closed surface to
cloak the region inside the surface from illumination by an arbitrary time-dependent incident
electromagnetic wave.

2. Formulation

We begin the boundary value formulation with the following form of Maxwell’s equations for
exp (−iωt), ω > 0, time dependence

∇ × E(r) − iωµ̄(r) · H(r) = −Jinc
m (r), (1a)

∇ × H(r) + iωε̄(r) · E(r) = Jinc
e (r) (1b)

with

D(r) = ε̄(r) · E(r), (2a)

B(r) = µ̄(r) · H(r) (2b)

where E and H are the electric and magnetic fields (D is the electric displacement and B is
the magnetic induction), ε̄ and µ̄ are the permittivity and permeability dyadics, and (Jinc

e , Jinc
m )

are the electric and magnetic source current densities of the incident fields [Einc(r), Hinc(r)]
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Figure 1. Cross-sectional geometry of cloak with sources of incident field.

illuminating the electromagnetic cloak from outside the cloak. The incident fields satisfy the
Maxwell equations

∇ × Einc(r) − iωµ0Hinc(r) = −Jinc
m (r), (3a)

∇ × Hinc(r) + iωε0Einc(r) = Jinc
e (r). (3b)

The electromagnetic cloak is a general annular volume of material V bounded by the
interior surface Sa and the exterior surface Sb as shown in figure 1. The volume inside Sa and
outside Sb is assumed to be free space with permittivity and permeability denoted by ε0 and
µ0, that is, ε̄ = ε0Ī and µ̄ = µ0Ī, where Ī is the unit dyadic. The vector r is the position vector
measured from a chosen origin O .

An effective electromagnetic cloak at the angular frequency ω produces zero scattered
fields outside its exterior surface Sb and zero total fields inside its interior surface Sa for all
incident fields [Einc(r), Hinc(r)]. Therefore, within the volume V of the cloaking material,
assume the electric and magnetic fields take the form

E(r) = Āe(r) · Einc[f(r)], (4a)

H(r) = Āh(r) · Hinc[f(r)], (4b)

where Āe(r) and Āh(r) are dyadic functions of position r and f(r) is a real-valued vector
coordinate transformation function of position (r), which is shorthand notation for (u, v, w),
where u, v and w are the given coordinates of a particular three-dimensional coordinate system
that conveniently represents the geometry of the cloak (such as (u, v, w) = (r, θ, φ) for a
spherical cloak). (The functions Āe(r), Āh(r), and f(r) are assumed independent of the values of
the incident fields.) The vector function [f(r)] is shorthand notation for three given real-valued
scalar functions [ f (u, v, w), g(u, v, w), h(u, v, w)]. Thus, for example, Einc(r) is shorthand
notation for Einc(u, v, w). The expression Einc[f(r)] is shorthand notation for Einc[u ⇒

f (u, v, w), v ⇒ g(u, v, w), w ⇒ h(u, v, w)], where the symbol ‘⇒’ means ‘replaced by.’ If
Einc(r) is written in terms of its components along the unit vectors (û, v̂, ŵ), that is,

Einc(r) = E inc
1 (u, v, w)û + E inc

2 (u, v, w)v̂ + E inc
3 (u, v, w)ŵ, (5a)
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then

Einc[f(r)] = E inc
1 [u ⇒ f (u, v, w), v ⇒ g(u, v, w), w ⇒ h(u, v, w)]û

+ E inc
2 [u ⇒ f (u, v, w), v ⇒ g(u, v, w), w ⇒ h(u, v, w)]v̂

+ E inc
3 [u ⇒ f (u, v, w), v ⇒ g(u, v, w), w ⇒ h(u, v, w)]ŵ. (5b)

In the free-space region outside Sb, we want the total fields to be just the incident fields,
and in the free-space region inside the surface Sa, we want the total fields to be zero. This can
be expressed mathematically as

Āe(r) = Āh(r) =

{
I, r outside Sb,

0, r inside Sa,
(6a)

f(r) = r, r outside Sb and inside Sa (6b)

with the function f(r) continuous across Sb

f(r → S−

b ) = r, (6c)

that is

lim
r→S−

b

f (u, v, w) = u , lim
r→S−

b

g(u, v, w) = v, lim
r→S−

b

h(u, v, w) = w, (6d)

where r → S−

b means r approaching Sb from inside Sb. The total electric and magnetic fields
everywhere can therefore be written as

E(r) =


Einc(r), r outside Sb,

Āe(r) · Einc[f(r)], r ∈ V,

0, r inside Sa,

(7a)

H(r) =


Hinc(r), r outside Sb,

Āh(r) · Hinc[f(r)], r ∈ V,

0, r inside Sa.

(7b)

We can now determine the boundary conditions that should be applied at the outer and
inner surfaces of the cloak. To this end, first note that a perfectly nonscattering cloak cannot
absorb power and thus the material of the cloak must be lossless. Because electric and magnetic
volume and surface charges and currents are zero in lossless material, Maxwell’s equations (1)
imply that the tangential components of E(r) and H(r) (and the normal components of B(r) and
D(r)) are continuous across the outer surface Sb of the cloak unless there are delta functions in
the fields at Sb. Since (6b) and (6c) express that the compression of the incident fields in (7)
vanishes as the outer surface Sb is approached from inside Sb, we can assume that there will be
no delta functions in the fields at Sb and thus the tangential components of E(r) and H(r) (and
the normal components of B(r) and D(r)) across Sb will be continuous under the condition that
f(r) satisfies (6b) and (6c). This continuity combines with (7) to yield

n̂ × Einc(r → S+
b ) = n̂ × Einc(r → S−

b ) = n̂ × Āe(r → S−

b ) · Einc(r → S−

b ), (8a)

n̂ × Hinc(r → S+
b ) = n̂ × Hinc(r → S−

b ) = n̂ × Āh(r → S−

b ) · Hinc(r → S−

b ), (8b)
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where n̂ is the unit normal to Sb and r → S−(+)

b means r approaching Sb from inside (outside)
Sb. The second equations in (8a) and (8b) are equivalent to merely

n̂ × Āe(r)
r→S−

b
= n̂ × Āh(r)

r→S−

b
= n̂ × I . (9)

The boundary conditions on the fields as r → S+
a (r approaches Sa from outside Sa) must

be compatible with the fields inside Sa being zero. Continuous tangential components of E(r)
and H(r) fields across Sa that are both zero as r → S+

a would imply from the Maxwell free-
space equations inside Sa that the fields will be zero inside Sa. However, demanding that all
the tangential components of E(r) and H(r) be zero as r → S+

a may yield an overdetermined
boundary value problem. Thus, we shall not demand that the tangential components of the
E(r) and H(r) fields be zero as r → S+

a . Instead, we shall impose the less restrictive boundary
conditions that the normal components of the B(r) and D(r) fields both be zero as r → S+

a ;
that is

n̂ · D(r)
r→S+

a
= n̂ ·

{
ε̄(r) · Āe(r) · Einc[f(r)]

} r→S+
a

= 0, (10a)

n̂ · B(r)
r→S+

a
= n̂ ·

{
µ̄(r) · Āh(r) · Hinc[f(r)]

} r→S+
a

= 0 (10b)

or, because Einc and Hinc are arbitrary, simply

n̂ ·
{
ε̄(r) · Āe(r)

} r→S+
a

= 0, (10c)

n̂ ·
{
µ̄(r) · Āh(r)

} r→S+
a

= 0. (10d)

If the fields are zero inside Sa, these boundary conditions in (10) imply that the normal
components of B(r) and D(r) are continuously zero across Sa.

Substitution of E and H from (4) into (1) yields

∇ ×
[
Āe(r) · Einc[f(r)]

]
− iωµ̄(r) · Āh(r) · Hinc[f(r)] = 0, r ∈ V, (11a)

∇ ×
[
Āh(r) · Hinc[f(r)]

]
+ iωε̄(r) · Āe(r) · Einc[f(r)] = 0, r ∈ V . (11b)

With Hinc and Einc inserted from (3a) and (3b) into (11a) and (11b), respectively, these equations
become

∇ ×
[
Āe(r) · Einc[f(r)]

]
− µ−1

0 µ̄(r) · Āh(r) ·
[
∇ × Einc(r)

]
r⇒f(r) = 0, r ∈ V, (12a)

∇ ×
[
Āh(r) · Hinc[f(r)]

]
− ε−1

0 ε̄(r) · Āe(r) ·
[
∇ × Hinc(r)

]
r⇒f(r) = 0, r ∈ V, (12b)

where, for example, as (5b) would indicate[
∇ × Einc(r)

]
r⇒f(r) =

[
∇ × Einc(u, v, w)

]
u⇒ f (u,v,w),v⇒g(u,v,w),w⇒h(u,v,w)

= û
[(

∇ × Einc(u, v, w)
)

1

]
u⇒ f (u,v,w),v⇒g(u,v,w),w⇒h(u,v,w)

+ v̂
[(

∇ × Einc(u, v, w)
)

2

]
u⇒ f (u,v,w),v⇒g(u,v,w),w⇒h(u,v,w)

+ ŵ
[(

∇ × Einc(u, v, w)
)

3

]
u⇒ f (u,v,w),v⇒g(u,v,w),w⇒h(u,v,w)

. (13)
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Equations (12a) and (12b) have to hold for all possible incident electric and magnetic fields,
respectively, including the case where electric and magnetic fields interchange their roles,
provided they are Maxwellian. Thus, assuming a unique solution for Āe, Āh and µ−1

0 µ̄ exists
to (12a) for a given cloak geometry and transformation function f(r), then a unique solution
for Āh Āe and ε−1

0 ε̄ exists to (12b) for a given cloak geometry and transformation function
f(r). Alternatively, we can assume a unique solution to each of the second-order differential
equations obtainable from these first-order differential equations for a given cloak geometry
and transformation function f(r). In either case, it follows that

Āe(r) = Āh(r) = Ā(r) (14a)

and
µ̄(r)
µ0

=
ε̄(r)
ε0

= ᾱ(r). (14b)

Consequently, the two equations in (12) are equivalent to each other and to find Ā(r) and
the relative permittivity–permeability dyadic ᾱ(r) for a given cloak geometry and coordinate
function f(r), we need only solve one first-order differential equation, say

∇ ×
[
Ā(r) · Einc[f(r)]

]
− ᾱ(r) · Ā(r) ·

[
∇ × Einc(r)

]
r⇒f(r) = 0, r ∈ V, (15)

which must hold for all possible Einc(r) with f(r) and Ā(r) satisfying the boundary conditions
in (6c), (9) and (10), namely

f(r)
r→S−

b
= r, (16a)

n̂ × Ā(r)
r→S−

b
= n̂ × I, (16b)

n̂ · {ᾱ(r) · Ā(r)}
r

→ S+
a =0 . (16c)

There appears to be no reason why, in principle, the range of the coordinate function f(r)
could not extend outside Sb, the outer surface of the cloak, provided the sources of the incident
fields lie outside this range. That is, equations (15) and (16) allow f(r) ∈ V0, where the surface
S0 of V0 encloses the outer surface Sb of the cloak, provided the sources of the incident fields
lie outside of V0. (If the sources of the incident fields were located between S0 and Sb, the
equation (15) would not hold because terms involving the incident sources would be required
on the right-hand sides of (12a) and (12b), the equations from which (15) is obtained.) In
other words, incident fields in a region of free space outside the cloak can be reproduced as
Ā(r) · Einc[f(r)] in a region inside the cloaking material.

The equations (15), (16b) and (16c) are independent of frequency for ω > 0. Therefore,
if f(r) is chosen independent of frequency, the boundary value problem given in (15) and (16)
produces values of ᾱ and Ā that are independent of frequency. It should be noted, however,
that for electrostatic fields (ω = 0), the equation (15) degenerates to ∇ × [Ā(r) · Einc[f(r)]] = 0
(∇ × [Ā(r) · Hinc[f(r)]] = 0 for magnetostatic fields), which cannot be satisfied for all incident
static fields. The formulation valid for the cloaking of static fields is given in section 5.

In sections 3 and 4, we shall solve (15) under the boundary conditions in (16) to determine
the relative permittivity–permeability dyadic [ᾱ(r)] and the field dyadic [Ā(r)] in terms of
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the transformation function [f(r)] for spherical and circular cylindrical cloaks. In addition, we
determine these quantities for spherical and circular cylindrical ‘concentrators’ that magnify the
incident fields near their centers. However, first we show that the solution to the boundary value
problem in (15) and (16) leads to zero scattered fields outside the cloak and zero total fields in
the free-space cavity of the cloak.

2.1. Fields inside and outside the material annulus of the cloak

The boundary condition (16b) requiring that the tangential components of E and H are
continuous across the outer surface Sb of the cloak and equal to the tangential components
of Einc and Hinc imply that the components of the scattered electric and magnetic fields, Esc

and Hsc, tangential to Sb are zero just outside Sb. Thus, Poynting’s vector of the scattered fields
normal to the surface Sb is zero, implying from Poynting’s theorem that the power radiated
by the scattered fields and thus the far scattered fields are zero. A spherical wave expansion
then shows that the scattered fields outside a sphere that circumscribes the cloak is zero. Using
analyticity of the scattered fields in the free space outside the cloak proves that the scattered
fields everywhere outside the surface Sb of the cloak are zero.

The boundary conditions in (16c), requiring that the normal components of the D and
B fields be zero as r approaches the inner surface Sa from within the material of the
cloak, do not imply by themselves that the total fields inside Sa are zero, because perfectly
electrically conducting (PEC) and perfectly magnetically conducting (PMC) cavity modes at
their resonant frequencies can exist inside Sa with delta functions in tangential polarization
at S+

a [31].
Nonetheless, after we solve the system of equations in (15) and (16) say for the spherical

annulus, we find a unique solution exists for ᾱ = ε̄/ε0 = µ̄/µ0 and the fields in r > a at every
frequency for a given f(r) and furthermore that the solution is compatible with (though does not
necessarily require) zero total fields inside Sa. Moreover, inserting a lossy material inside the
cavity of the cloak eliminates all fields within the cavity because the boundary value problem
in (15) and (16) outside the cavity is not changed and power dissipation inside the cavity is
not compatible with zero scattered fields. Thus, the homogeneous solutions inside the cavity
of the cloak at the cavity resonant frequencies are uncoupled from the solutions exterior to
the cavity that are produced by sources outside the cloak. This implies that the fields within
the cavity of the cloak illuminated by incident fields that are initially zero will not produce
fields inside the cavity of the cloak. By reciprocity, sources inside the cavity will produce
zero fields outside the cloak and also zero fields in the material of the cloak (assuming any
fields that emanate into the material of the cloak would radiate outside the cloak). Thus, any
dicontinuous tangential E and H fields across Sa require from Maxwell’s equations that delta
functions in tangential polarization densities are produced at S+

a by the sources inside the
cavity [31].

Similarly, assuming a unique solution exists for ᾱ = ε̄/ε0 = µ̄/µ0 and the fields outside Sa

for a given f(r) in any shaped cloak, the fields inside Sa for any shaped cloak remain zero if they
are initially zero. (Although we have not carried out the details of the proof, existence of
solution can presumably be proven by solving the equations (15) and (16) in curvilinear
coordinates to obtain the general form of the solution found in [1, 4] using transformational
methods.)
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3. Spherical cloaks

A cloak consisting of a spherical annulus of anisotropic material with inner radius a and outer
radius b is conveniently described by the spherical coordinates (u, v, w) = (r, θ, φ). In order
for the spherical annulus to behave as a perfectly nonscattering cloak for all possible directions
and values of the incident fields, symmetry demands that

[f(r)] = [ f (r), g = θ, h = φ] (17a)

with boundary condition (according to (16a))

f (b) = b (17b)

and Ā(r) = Ar(r)r̂r̂ + As(r)
(
θ̂ θ̂ + φ̂φ̂

)
(18a)

with boundary condition (according to (16b))

As(b) = 1. (18b)

Furthermore

ᾱ(r) = αr(r)r̂r̂ + αs(r)
(
θ̂ θ̂ + φ̂φ̂

)
, (19)

so that ᾱ(r) · Ā(r) = αr(r)Ar(r)r̂r̂ + αs(r)As(r)
(
θ̂ θ̂ + φ̂φ̂

)
(20a)

with boundary condition (according to (16c))

αr(a)Ar(a) = 0 (20b)

and

Ā(r) · Einc[f(r)] = Ar(r)E inc
r [ f (r), θ, φ]r̂ + As(r)

(
E inc

θ [ f (r), θ, φ]θ̂ + E inc
φ [ f (r), θ, φ]φ̂

)
= [Ar(r) − As(r)]E inc

r [ f (r), θ, φ]r̂ + As(r)Einc[ f (r), θ, φ] , (21)

The curl of the incident field in spherical coordinates is given by

∇ × Einc(r) =
1

r

(
∂ E inc

φ

∂θ
+

E inc
φ

tan θ
−

1

sin θ

∂ E inc
θ

∂φ

)
r̂

+

(
1

r sin θ

∂ E inc
r

∂φ
−

∂ E inc
φ

∂r
−

E inc
φ

r

)
θ̂

+
(

∂ E inc
θ

∂r
+

E inc
θ

r
−

1

r

∂ E inc
r

∂θ

)
φ̂ (22a)

and thus [
∇ × Einc(r)

]
r⇒f(r) =

1

f (r)

(
∂ E inc

φ

∂θ
+

E inc
φ

tan θ
−

1

sin θ

∂ E inc
θ

∂φ

)
r̂

+

(
1

f (r) sin θ

∂ E inc
r

∂φ
−

1

f ′(r)

∂ E inc
φ

∂r
−

E inc
φ

f (r)

)
θ̂

+
(

1

f ′(r)

∂ E inc
θ

∂r
+

E inc
θ

f (r)
−

1

f (r)

∂ E inc
r

∂θ

)
φ̂, (22b)
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which can be rewritten as[
∇ × Einc(r)

]
r⇒f(r) =

r

f (r)
∇ × Einc[ f (r), θ, φ] +

[
1

f ′(r)
−

r

f (r)

]
r̂

×
∂Einc[ f (r), θ, φ]

∂r
, (22c)

where f ′(r) = d f (r)/dr . From (21) and (22a) we can write

∇ ×
[
Ā(r) · Einc[f(r)]

]
= As(r)∇ × Einc[ f (r), θ, φ] +

d As(r)

dr
r̂ × Einc[ f (r), θ, φ]

+ [As(r) − Ar(r)]r̂ × ∇E inc
r [ f (r), θ, φ] . (23)

Inserting (20a), (22c) and (23) into (15), taking the radial and tangential components, and
noting that [

∇ × Einc[ f (r), θ, φ]
]

tan
= − r̂ × ∇E inc

r [ f (r), θ, φ] +
1

r
r̂ × Einc[ f (r), θ, φ]

+ r̂ ×
∂Einc[ f (r), θ, φ]

∂r
(24)

produces [
Ar(r)

As(r)
−

f (r)

rαr(r)

] [
∇ × Einc[ f (r), θ, φ]

]
r
= 0, (25a)

−

[
Ar(r)

As(r)
−

rαs(r)

f (r)

]
r̂ × ∇E inc

r [ f (r), θ, φ]

+
[

1 −
αs(r)

f ′(r)

]
r̂ ×

∂Einc[ f (r), θ, φ]

∂r

+
[

1

As(r)

dAs(r)

dr
+

1

r
−

αs(r)

f (r)

]
r̂ × Einc[ f (r), θ, φ] = 0. (25b)

Since the incident fields r̂ × ∇E inc
r , r̂ × ∂Einc/∂r , and r̂ × Einc can take on independent values

at any particular point in space, each of the large square-bracketed quantities in (25b) must be
zero, and thus equations (25) yield[

Ar(r)

As(r)
−

f (r)

rαr(r)

]
= 0, (26a)

[
Ar(r)

As(r)
−

rαs(r)

f (r)

]
= 0, (26b)

[
1 −

αs(r)

f ′(r)

]
= 0, (26c)

[
1

As(r)

dAs(r)

dr
+

1

r
−

αs(r)

f (r)

]
= 0. (26d)
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(The one exception to the possibility of the components of the field in (25) taking on independent
values is if ∇ × Einc(r) = 0 (for r outside the source region), that is, if ω = 0, in which
case cloaking cannot be achieved by this formulation or by that in [1]. Cloaking of static
fields is considered separately in section 5.) These four equations, along with the conditions
in (17b), (18b) and (20b) are easily solved for αs(r), αr(r), As(r), and Ar(r) in terms of f (r)

to give (for r ∈ V )

αs(r) = f ′(r), (27a)

αr(r) =
1

f ′(r)

[
f (r)

r

]2

, (27b)

As(r) =
f (r)

r
, (27c)

Ar(r) = f ′(r) (27d)

with, in accordance with (17b), (18b) and (20b)

f (b) = b, (28a)

f (a) = 0 . (28b)

Explicit expressions for the permittivity and permeability dyadics and for the fields are
obtained by inserting (27) into (19), (21) and (20a); specifically

ᾱ =
ε̄

ε0
=

µ̄

µ0
=

1

f ′(r)

[
f (r)

r

]2

r̂r̂ + f ′(r)
(
θ̂ θ̂ + φ̂φ̂

)
, (29a)

E(r) =

[
f ′(r) −

f (r)

r

]
E inc

r [ f (r), θ, φ]r̂ +
f (r)

r
Einc[ f (r), θ, φ], (29b)

H(r) =

[
f ′(r) −

f (r)

r

]
H inc

r [ f (r), θ, φ]r̂ +
f (r)

r
Hinc[ f (r), θ, φ], (29c)

D(r)
ε0

= ᾱ(r) · E(r) =

[ [
f (r)

r

]2

−
f (r) f ′(r)

r

]
E inc

r [ f (r), θ, φ]r̂

+
f (r) f ′(r)

r
Einc[ f (r), θ, φ], (29d)

B(r)
µ0

= ᾱ(r) · H(r) =

[ [
f (r)

r

]2

−
f (r) f ′(r)

r

]
H inc

r [ f (r), θ, φ]r̂

+
f (r) f ′(r)

r
Hinc[ f (r), θ, φ] . (29e)

We first note from (27) and (29) that without any distortion in the radial coordinate, f (r) = r
and the cloak reduces to free space. Secondly, the equations in (27) are independent of frequency
if f (r) is chosen independent of frequency and thus the corresponding relative permittivity and
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permeability (ᾱ) would be independent of frequency—a result that would violate causality-
energy conditions; see section 6 below. Thirdly, Maxwell’s equations for lossless media, along
with f (b) = b, imply that the tangential components of the E(r) and H(r) fields are continuous
across r = b because As(b) = 1, and that the normal components of the D(r) and B(r) fields
are continuous across r = b because αr(b)Ar(b) = 1. Fourthly, the normal components of the
D(r) and B(r) fields are zero at r = a+ because αr(a)Ar(a) = [ f (a)/a]2

= 0, and the tangential
components of the E(r) and H(r) fields are zero at r = a+ because As(a) = f (a)/a = 0.
Moreover, these boundary values are compatible with Maxwell’s equations and the tangential
E(r) and H(r) fields being continuous and thus zero across r = a (no delta functions in the
polarization at r = a); see section 2.1. With the tangential E(r) and H(r) fields zero just
inside the surface of the free-space spherical cavity, Maxwell’s equations demand that the fields
everywhere inside the spherical cavity are zero. Lastly, observe from (29b), (29c) and (28b) that
(E × H) · r̂ = (E × H∗) · r̂ = 0 at r = a+. With f, ᾱ and Ā independent of frequency, this implies
from Poynting’s theorem that time-domain incident fields are cloaked under the initial condition
of zero fields in the cloak before the incident fields impinge upon the cloak; see section 2.1.

The equations in (27) with (28) determine an annular spherical cloak of inner radius a and
outer radius b if the spherical region for r < a is free space. And, of course, it is assumed that
the infinite region r > b outside the cloak is free space (except for the sources of the incident
fields). For example, if in the region a 6 r 6 b

f (r) =
b(r − a)p

(b − a)p
, p > 0, (30a)

then

αs(r) =
bp(r − a)p−1

(b − a)p
, (30b)

αr(r) =
b(r − a)p+1

p(b − a)p r 2
, (30c)

As(r) =
b(r − a)p

(b − a)p r
, (30d)

Ar(r) =
bp(r − a)p−1

(b − a)p
. (30e)

For p = 1 these equations in (30) yield the spherical cloak of Pendry et al [1]. For p > 1,
Ar(a) = 0 and the normal components of E(r) and H(r), that is, Er(r) and Hr(r), are zero
across r = a. (For p = 1, Er(r) and Hr(r) are discontinuous across r = a.)

3.1. Spherical concentrators

If the boundary condition in (28b) is omitted, then the fields for r < a are not generally zero
and any continuous, piecewise continuously differentiable function f (r), 06 r 6 b, in (27)
satisfying (28a) will give zero scattered fields. These nonscattering spheres of radius b differ
from those in [15]–[20] in that the nonscattering is perfect and not restricted to bodies small

New Journal of Physics 10 (2008) 115022 (http://www.njp.org/)

http://www.njp.org/


13

enough that their electrical sizes lie in the dipolar or the low-order multipolar regime. (Although
the cloaks of Kerker et al [15, 16] and Alu and Engheta [17]–[20] are generally smaller than a
wavelength or two across, they have the advantage of not requiring anisotropic material.)

An interesting class of nonscattering spheres are defined by functions f (r), 06 r 6 b
that concentrate and magnify the incident fields near the center of the scatterer. One particular
coordinate function that concentrates and magnifies the incident fields inside a radius a of the
sphere (with outside radius b) is given by

f (r) =

Mr, 06 r 6 a,
(b − Ma)r + ab(M − 1)

b − a
, a 6 r 6 b .

(31)

Note that f (r) in (31) is continuous across r = a so that f ′(r) does not produce any delta
functions in the parameters of (27) when f (r) is inserted to obtain

αs(r) =

M, 06 r < a,
b − Ma

b − a
, a < r 6 b,

(32a)

αr(r) =


M, 06 r < a,

[(b − Ma)r + ab(M − 1)]

(b − a)(b − Ma)r 2

2

, a < r 6 b,
(32b)

As(r) =

M, 06 r 6 a,
(b − Ma)r + ab(M − 1)

(b − a)r
, a 6 r 6 b,

(32c)

Ar(r) =

M, 06 r < a,
b − Ma

b − a
, a < r 6 b .

(32d)

Equations (32c) and (32d) show that As = Ar = M for 06 r < a and thus the incident fields
for r < a are magnified by a factor of M ; that is,

E(r) = MEinc(Mr, θ, φ) , 06 r < a, (33a)

H(r) = MHinc(Mr, θ, φ) , 06 r < a, (33b)

while maintaining zero scattered fields for r > b. Equations (32a) and (32b) show that the
relative permittivity and permeability are both equal to the same constant M for 06 r < a;
that is

ᾱ =
ε̄

ε0

=
µ̄

µ0
= MI , 06 r < a . (34)
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4. Circular cylindrical cloaks

In this section, we consider a cloak consisting of an infinitely long circular cylindrical
annulus of anisotropic material with inner radius a and outer radius b. Such a cloak is
conveniently described by the cylindrical coordinates (u, v, w) = (ρ, φ, z). In order for the
circular cylindrical annulus to behave as a perfectly nonscattering cloak for all possible
directions and values of the incident fields, which are assumed to have no variation in the
z-direction, symmetry demands that

[f(r)] = [ f (ρ), g = φ, h = z] (35a)

with boundary condition (according to (16a))

f (b) = b (35b)

and
Ā(r) = Aρ(ρ)ρ̂ρ̂ + Aφ(ρ)φ̂φ̂ + Az(ρ)ẑẑ (36a)

with boundary conditions (according to (16b))

Aφ(b) = Az(b) = 1. (36b)

Furthermore

ᾱ(r) = αρ(ρ)ρ̂ρ̂ + αφ(ρ)φ̂φ̂ + αz(ρ)ẑẑ, (37)

so that
ᾱ(r) · Ā(r) = αρ(ρ)Aρ(ρ)ρ̂ρ̂ + αφ(ρ)Aφ(ρ)φ̂φ̂ + αz(ρ)Az(ρ)ẑẑ (38a)

with boundary condition (according to (16c))

αρ(a)Aρ(a) = 0 (38b)

and

Ā(r) · Einc[f(r)] = Aρ(ρ)E inc
ρ [ f (ρ), φ, z]ρ̂ + Aφ(ρ)E inc

φ [ f (ρ), φ, z]φ̂

+ Az(ρ)E inc
z [ f (ρ), φ, z]ẑ . (39)

Although the z-independent cylindrical fields uncouple into E waves (Hz = 0) and H waves
(Ez = 0), the derivation remains simpler and more general if E- and H -wave fields are included
together.

The curl of the incident field in cylindrical coordinates is given by

∇ × Einc(r) =
1

ρ

∂ E inc
z

∂φ
ρ̂ −

∂ E inc
z

∂ρ
φ̂ +

(
∂ E inc

φ

∂ρ
+

E inc
φ

ρ
−

1

ρ

∂ E inc
ρ

∂φ

)
ẑ (40a)

and thus[
∇ × Einc(r)

]
r⇒f(r) =

1

f (ρ)

∂ E inc
z [ f (ρ), φ, z]

∂φ
ρ̂ −

1

f ′(ρ)

∂ E inc
z [ f (ρ), φ, z]

∂ρ
φ̂

+

(
1

f ′(ρ)

∂ E inc
φ [ f (ρ), φ, z]

∂ρ
+

E inc
φ [ f (ρ), φ, z]

f (ρ)
−

1

f (ρ)

∂ E inc
ρ [ f (ρ), φ, z]

∂φ

)
ẑ,

(40b)
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where f ′(ρ) = d f (ρ)/dρ. From (39) and (40a) we can write

∇ ×
[
Ā(r) · Einc[f(r)]

]
=

Az(ρ)

ρ

∂ E inc
z [ f (ρ), φ, z]

∂φ
ρ̂ −

∂
(

Az(ρ)E inc
z [ f (ρ), φ, z]

)
∂ρ

φ̂

+

(
∂
(

Aφ(ρ)E inc
φ [ f (ρ), φ, z]

)
∂ρ

+
Aφ(ρ)E inc

φ [ f (ρ), φ, z]

ρ

−
Aρ(ρ)

ρ

∂ E inc
ρ [ f (ρ), φ, z]

∂φ

)
ẑ. (41)

Inserting (38a), (40b) and (41) into (15) and equating the ρ̂-, φ̂- and ẑ-components gives[
Az(ρ)

ρ
−

αρ(ρ)Aρ(ρ)

f (ρ)

]
∂ E inc

z [ f (ρ), φ, z]

∂φ
= 0, (42a)

[
Az(ρ) −

αφ(ρ)Aφ(ρ)

f ′(ρ)

]
∂ E inc

z [ f (ρ), φ, z]

∂ρ
+ A′

z(ρ)E inc
z [ f (ρ), φ, z] = 0, (42b)

[
Aφ(ρ) −

αz(ρ)Az(ρ)

f ′(ρ)

]
∂ E inc

φ [ f (ρ), φ, z]

∂ρ

−

[
Aρ(ρ)

ρ
−

αz(ρ)Az(ρ)

f (ρ)

]
∂ E inc

ρ [ f (ρ), φ, z]

∂φ

+
[

dAφ(ρ)

dρ
+

Aφ(ρ)

ρ
−

αz(ρ)Az(ρ)

f (ρ)

]
E inc

φ [ f (ρ), φ, z] = 0. (42c)

Since the incident fields ∂ E inc
z /∂ρ and E inc

z can take on independent values at any particular
point in space, and the incident fields ∂ E inc

φ /∂ρ, ∂ E inc
ρ /∂φ, and E inc

φ can take on independent
values at any particular point in space, each of the coefficients of these incident fields in (42b)
and (42c) must be zero. Thus equations (42) yield[

1

ρ
−

αρ(ρ)Aρ(ρ)

f (ρ)Az(ρ)

]
= 0, (43a)[

1 −
αφ(ρ)Aφ(ρ)

f ′(ρ)Az(ρ)

]
= 0, (43b)

A′

z(ρ) = 0, (43c)[
Aφ(ρ)

Az(ρ)
−

αz(ρ)

f ′(ρ)

]
= 0, (43d)[

Aρ(ρ)

ρ Az(ρ)
−

αz(ρ)

f (ρ)

]
= 0, (43e)

[
1

Az(ρ)

(
dAφ(ρ)

dρ
+

Aφ(ρ)

ρ

)
−

αz(ρ)

f (ρ)

]
= 0 . (43 f )
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The equation (43c) along with (36b) immediately gives

Az = 1 (44a)

and thus the remaining five equations, along with the conditions in (35b), (36b) and (38b) are
easily solved for αz(ρ), αφ(ρ), αρ(r), Aφ(ρ) and Aρ(ρ) in terms of f (ρ) to give (for r ∈ V )

αz(ρ) =
f (ρ) f ′(ρ)

ρ
, (44b)

αφ(ρ) =
ρ f ′(ρ)

f (ρ)
, (44c)

αρ(ρ) =
f (ρ)

ρ f ′(ρ)
, (44d)

Aφ(ρ) =
f (ρ)

ρ
, (44e)

Aρ(ρ) = f ′(ρ) (44 f )

with, in accordance with (35b), (36b) and (38b)

f (b) = b, (45a)

f (a) = 0. (45b)

Explicit expressions for the permittivity and permeability dyadics and for the fields are
obtained by inserting (44) into (37), (39) and (38a); specifically

ᾱ =
ε̄

ε0
=

µ̄

µ0
=

f (ρ)

ρ f ′(ρ)
ρ̂ρ̂ +

ρ f ′(ρ)

f (ρ)
φ̂φ̂ +

f (ρ) f ′(ρ)

ρ
ẑẑ, (46a)

E(r) = f ′(ρ)E inc
ρ [ f (ρ), φ, z]ρ̂ +

f (ρ)

ρ
E inc

φ [ f (ρ), φ, z]φ̂ + E inc
z [ f (ρ), φ, z]ẑ, (46b)

H(r) = f ′(ρ)H inc
ρ [ f (ρ), φ, z]ρ̂ +

f (ρ)

ρ
H inc

φ [ f (ρ), φ, z]φ̂ + H inc
z [ f (ρ), φ, z]ẑ, (46c)

D(r)
ε0

= ᾱ(r) · E(r) =
f (ρ)

ρ
E inc

ρ [ f (ρ), φ, z]ρ̂ + f ′(ρ)E inc
φ [ f (ρ), φ, z]φ̂

+
f (ρ) f ′(ρ)

ρ
E inc

z [ f (ρ), φ, z]ẑ, (46d)

B(r)
µ0

= ᾱ(r) · H(r) =
f (ρ)

ρ
H inc

ρ [ f (ρ), φ, z]ρ̂ + f ′(ρ)H inc
φ [ f (ρ), φ, z]φ̂

+
f (ρ) f ′(ρ)

ρ
H inc

z [ f (ρ), φ, z]ẑ . (46e)

New Journal of Physics 10 (2008) 115022 (http://www.njp.org/)

http://www.njp.org/


17

We first note from (44) and (46) that without any distortion in the radial coordinate,
f (ρ) = ρ and the cloak reduces to free space. In general, however, as the ρ components
of the permittivity–permeability dyadics approach a value of zero as ρ → a (similar to the
r -components for the spherical cloak), the φ-components always approach an infinite value
as ρ → a (a requirement that may make cylindrical cloaking more difficult to approximate
than spherical cloaking). Secondly, the equations in (44) are independent of frequency if
f (ρ) is chosen independent of frequency and thus the corresponding relative permittivity and
permeability (ᾱ) would be independent of frequency—a result that would violate causality-
energy conditions; see section 6 below. Thirdly, Maxwell’s equations for lossless media, along
with f (b) = b, imply that the tangential components of the E(r) and H(r) fields are continuous
across ρ = b because Az(b) = Aφ(b) = 1, and that the normal components of the D(r) and
B(r) fields [Dρ(r), Bρ(r)] are continuous across ρ = b because αρ(b)Aρ(b) = 1. Fourthly, the
normal components of the D(r) and B(r) fields [Dρ(r), Bρ(r)] are zero at ρ = a+ because
αρ(a)Aρ(a) = f (a)/a = 0, and also Eφ(r) and Hφ(r) are zero at ρ = a+ because Aφ(a) =

f (a)/a = 0. In addition, Ez(a+, φ) = E inc
z [ f (a) = 0, φ] = E inc

z (ρ = 0), which is independent of
φ; that is Ez(ρ = a+) (and likewise Hz(ρ = a+)) is independent of φ. Moreover, these boundary
values are compatible with Maxwell’s equations and the [Eφ(r), Hφ(r)] and [Bρ(r), Dρ(r)]
fields being continuous and thus zero across ρ = a (no delta functions in polarization at ρ = a
giving rise to these field components); see section 2.1. With these boundary conditions, the ρ-
and φ-components of the E(r) and H(r) fields are zero just inside the surface of the free-space
cylindrical cavity and a cylindrical mode expansion shows that the fields everywhere inside
the free-space cylindrical cavity must be zero. Lastly, observe from (46b), (46c) and (45b)
that (E × H) · ρ̂ = (E × H∗) · ρ̂ = 0 at ρ = a+. With f, ᾱ and Ā independent of frequency, this
implies from Poynting’s theorem that time-domain incident fields are cloaked under the initial
condition of zero fields in the cloak before the incident fields impinge upon the cloak; see
section 2.1.

Emphatically, however, Ez(r) and Hz(r) are not zero as ρ → a from inside V because
Az(a) = 1 and thus the solution compatible with zero fields inside the free-space cavity has
z tangential components of the E(r) and H(r) fields that are discontinuous across ρ = a. In
other words, unlike the spherical cloak, all the tangential components of the E(r) and H(r)
fields of the cylindrical cloak are not continuous across the inner surface defined by ρ = a.
This discontinuity of Ez(r) and Hz(r) across the inner surface of the cylindrical cloak at ρ = a
implies from Maxwell’s equations (1) that the curls of E(r) and H(r) contain delta functions at
ρ = a. Since the permittivity and permeability of the cloak are lossless, there can be no electric
or magnetic surface currents at ρ = a and thus (1)–(2) show that these delta functions in the
curls of (1) give rise to delta functions in the Bφ(r) and Dφ(r) fields at ρ = a (that is, delta
functions in the φ components of polarization densities at ρ = a). The delta functions in φ

polarization are compatible with αφ = ρ f ′(ρ)/ f (ρ), the relative permittivity and permeability
in the φ direction, because from the mean value theorem for continuous differentiable functions
with f (a) = 0

lim
ρ→a

αφ(ρ) = lim
ρ→a

ρ f ′(ρ)

f (ρ)
= lim

ρ→a

ρ

ρ − a
= ∞ . (47)

These delta functions at ρ = a for the cylindrical cloak were first found by Greenleaf et al [7],
who showed that they spread out to large but finite values of the Bφ(r) and Dφ(r) fields as ρ

gets close to a from inside V if the permeability or permittivity of the cloak differs slightly from
their perfect cloaking values.
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The equations in (44) with (45) determine a circular cylinder annular cloak of inner radius
a and outer radius b if the cylindrical region for ρ < a is free space. And, of course, it is assumed
that the infinite region ρ > b outside the cloak is free space (except for the sources of the incident
fields). For example, if in the region a 6 ρ 6 b

f (ρ) =
b(ρ − a)p

(b − a)p
, p > 0, (48a)

then

αz(ρ) =
b2 p(ρ − a)2p−1

(b − a)2pρ
, (48b)

αφ(ρ) =
pρ

ρ − a
, (48c)

αρ(ρ) =
ρ − a

pρ
, (48d)

Az(ρ) = 1, (48e)

Aφ(ρ) =
b(ρ − a)p

(b − a)pρ
, (48 f )

Aρ(ρ) =
bp(ρ − a)p−1

(b − a)p
. (48g)

For p = 1 these equations in (48) yield the cylindrical cloak of Cummer et al [12]. For p > 1,
Aρ(a) = 0 and the normal components of E(r) and H(r), that is, Eρ(r) and Hρ(r), are zero
across ρ = a. (For p = 1, Eρ(r) and Hρ(r) are discontinuous across ρ = a.)

Finally, we note that if the condition f (b) = b is omitted, the circular cylindrical annulus
will scatter but still produce zero fields in the region ρ < a. For H -wave incident fields, we can
choose f (ρ) =

√
ρ2 − a2 to yield one such scattering circular cylindrical annulus with

µ̄

µ0
= I (49a)

and

ε̄

ε0

=
ρ2

− a2

ρ2
ρ̂ρ̂ +

ρ2

ρ2 − a2
φ̂φ̂ + ẑẑ . (49b)

That is, the annulus is nonmagnetic with only the permittivity dyadic different from that of
free space. However, a simple perfectly conducting shell is also a scatterer with zero interior
cavity fields. A nonmagnetic circular cylinder annulus that behaves as an approximate cloak
(nonzero scattered and nonzero interior cavity fields) at optical frequencies has recently been
designed [32] and experimentally realized [33].
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4.1. Circular cylindrical concentrators

If the boundary condition in (45b) is omitted, then the fields for ρ < a are not generally zero
and any continuous, piecewise continuously differentiable function f (ρ), 06 ρ 6 b, in (44)
satisfying (45a) will give zero scattered fields. An interesting class of nonscattering circular
cylinders are defined by functions f (ρ), 06 ρ 6 b that concentrate and magnify the incident
fields near the center of the scatterer [34]. One particular coordinate function that concentrates
and magnifies the incident fields inside a radius a of the circular cylinder (with outside
radius b) is given by

f (ρ) =

Mρ, 06 ρ 6 a,
(b − Ma)ρ + ab(M − 1)

b − a
, a 6 ρ 6 b .

(50)

Note that f (ρ) in (50) is continuous across ρ = a so that f ′(ρ) does not produce any delta
functions in the parameters of (44) when f (ρ) is inserted to obtain

αz(ρ) =

M2, 06 ρ 6 a,
[(b − Ma)ρ + ab(M − 1)] (b − Ma)

(b − a)2ρ
, a 6 ρ 6 b,

(51a)

αφ(ρ) =

1, 06 ρ < a,
(b − Ma)ρ

(b − Ma)ρ + ab(M − 1)
, a < ρ 6 b,

(51b)

αρ(ρ) =

1, 06 ρ < a,
(b − Ma)ρ + ab(M − 1)

(b − Ma)ρ
, a < ρ 6 b,

(51c)

Az = 1 , 06 ρ 6 b, (51d)

Aφ(ρ) =

M, 06 ρ 6 a,
(b − Ma)ρ + ab(M − 1)

(b − a)ρ
, a 6 ρ 6 b,

(51e)

Aρ(ρ) =

M, 06 ρ < a,
b − Ma

b − a
, a < ρ 6 b .

(51 f )

Equations (51e) and (51f ) show that Aφ = Aρ = M for 06 ρ < a and thus the associated
components of the incident field for ρ < a are magnified by a factor of M ; that is,

E(r) = M
[

E inc
ρ (Mρ, φ, z)ρ̂ + E inc

φ (Mρ, φ, z)φ̂
]

+ E inc
z (Mρ, φ, z)ẑ , 06 ρ < a, (52a)

H(r) = M
[

H inc
ρ (Mρ, φ, z)ρ̂ + H inc

φ (Mρ, φ, z)φ̂
]

+ H inc
z (Mρ, φ, z)ẑ , 06 ρ < a, (52b)

while maintaining zero scattered fields for ρ > b. Equations (51a)–(51c) show that the relative
permittivity and permeability dyadics in the region 06 ρ < a are given by

ᾱ =
ε̄

ε0

=
µ̄

µ0

= ρ̂ρ̂ + φ̂φ̂ + M2ẑẑ . (53)

A similar circular cylindrical concentrator was first derived by Rahm et al [34].
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5. Cloaking of static fields

For static fields, ω = 0 and the equations in (1) reduce, outside the sources of the incident fields,
to simply

∇ × E(r) = 0, (54a)

∇ × H(r) = 0 . (54b)

The divergence equations

∇ · D(r) = 0, (55a)

∇ · B(r) = 0 (55b)

must augment (54a) and (54b), respectively. Thus, the cloaking equations derived in previous
sections for ω > 0 do not apply and, in particular, the relative permittivity–permeability
dyadic ᾱ(r) satisfying (15) and (16) does not cloak static fields. Nonetheless, we can use the
same straightforward, boundary value method to derive a permittivity–permeability dyadic for
cloaking static fields. (The similarity between the electrostatic equations ((54a) and (55a)), and
the magnetostatic equations ((54b) and (55b)), demands that a relative permittivity dyadic that
cloaks electrostatic fields is identical to a relative permittivity dyadic that cloaks magnetostatic
fields.) However, we shall find in sections 5.1 and 5.2 that some of the elements of the relative
permittivity dyadic for spherical and cylindrical cloaks, unlike the elements of the relative
permeability dyadic, violate causality-energy conditions as ω → 0 because magnetic current
loops do not exist that can produce ‘diaelectric’ polarization in the way that electric current loops
can produce diamagnetic polarization. Consequently, we shall use the magnetostatic differential
equations, (54b) and (55b), in the following derivation for the cloaking of static fields. (It should
be mentioned that we are using the term ‘cloak’ for static fields in the same way as throughout
the rest of the paper, namely, to refer to a lossless annulus with free-space inside and out. Static
‘cloaking’ of electric and magnetic fields has been formulated for conductive (lossy) bodies in
conductive background media [27, 28].)

Assume an anisotropic lossless cloaking material with the constitutive relationship given
in (2b), rewritten in terms of a relative permeability dyadic ᾱ(r) as

B(r) = µ0ᾱ(r) · H(r), (56)

so that

H(r) =
1

µ0

ᾱ −1(r) · B(r) (57)

and (54b) becomes

∇ ×
[
ᾱ −1(r) · B(r)

]
= 0, (58)

within the volume V of the cloaking material. Also, assume that the magnetic induction inside
the volume V takes the form

B(r) = Ā(r) · Binc[f(r)] . (59)

We thus want to find ᾱ(r) and Ā(r) in terms of f(r) that will satisfy (58) for all possible Binc(r)

∇ ×
{
ᾱ −1(r) · Ā(r) · Binc[f(r)]

}
= 0 , r ∈ V, (60a)
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along with (55b), that is

∇ ·
{
Ā(r) · Binc[f(r)]

}
= 0, (60b)

where, of course

∇ × Binc(r) = 0 , r ∈ V, (60c)

∇ · Binc(r) = 0 (60d)

and, as before, f(r) must obey the following boundary condition at the outer boundary of the
cloak:

f(r)
r→S−

b
= r . (61a)

To ensure that there is no surface current on the outer boundary Sb of the cloak, the
tangential magnetic field H(r) is required to be continuous across Sb, that is

n̂ ×
[
ᾱ −1(r) · Ā(r)

] r→S−

b
= n̂ × Ī . (61b)

Since (60a) and (60b) are applied separately, continuity of the normal component of B(r) must
also be imposed across the outer boundary of the cloak to ensure (through the uniqueness
theorem for static fields) that the scattered magnetostatic fields will be zero; specifically

n̂ · Ā(r)
r→S−

b
= n̂ · Ī = n̂. (61c)

The boundary condition as r → S+
a must be compatible with zero fields inside Sa and ensure

that there are no surface currents on the inner boundary Sa. This can be achieved by requiring
that the tangential magnetic field H(r) be zero as r → S+

a , that is

n̂ ×
[
ᾱ −1(r) · Ā(r)

] r→S+
a

= 0 . (61d)

5.1. Spherical magnetostatic cloak

For the spherical cloak, symmetry requires that

[f(r)] = [ f (ρ), g = θ, h = φ], (62a)

Ā(r) = Ar(r)r̂r̂ + As(r)
(
θ̂ θ̂ + φ̂φ̂

)
(62b)

and

ᾱ(r) = αr(r)r̂r̂ + αs(r)
(
θ̂ θ̂ + φ̂φ̂

)
(62c)

with the boundary conditions in (61) giving

f (b) = b, (63a)

As(b)

αs(b)
= 1, (63b)

Ar(b) = 1 (63c)
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and
As(a)

αs(a)
= 0. (63d)

Inserting the functions in (62) into the equations in (60) and proceeding as in section 3, we
find

αs(r) =
r f ′(r)

f (r)
, (64a)

αr(r) =
f (r)

r f ′(r)
, (64b)

As(r) = f ′(r), (64c)

Ar(r) =
f (r)

r
(64d)

with the boundary conditions

f (b) = b, (65a)

f (a) = 0. (65b)

The boundary condition in (65b) implies from (64a) and (64b) that the values of the tangential
components of the permeability dyadic approach infinity as r → a+, whereas the value of the
radial component goes to zero as r → a+. However, all the components of B(r) and H(r) remain
finite as r → a+ with the radial component of B(r) and the tangential components of H(r) going
to zero as r → a+. The general expressions for B(r) and H(r) are

B(r) =
f (r)

r
B inc

r [ f (r), θ, φ]r̂ − f ′(r)r̂ × r̂ × Binc[ f (r), θ, φ], (66a)

µ0H(r) = f ′(r)B inc
r [ f (r), θ, φ]r̂ −

f (r)

r
r̂ × r̂ × Binc[ f (r), θ, φ]. (66b)

As an example, if in the region a 6 r 6 b

f (r) =
b(r − a)p

(b − a)p
, p > 0, (67a)

then

αs(r) =
pr

r − a
, (67b)

αr(r) =
r − a

pr
, (67c)

As(r) =
pb(r − a)p−1

(b − a)p
, (67d)

Ar(r) =
b(r − a)p

r(b − a)p
. (67e)
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5.2. Cylindrical magnetostatic cloak

For the cylindrical cloak, the vanishing curl of the incident magnetic field implies that H inc
z is

a constant throughout space. Thus, we can assume that the constant is zero and consider only
the ρ- and φ-components of the magnetic field and magnetic induction. Symmetry then requires
that

[f(r)] = [ f (ρ), g = φ, h = z], (68a)

Ā(r) = Aρ(ρ)ρ̂ρ̂ + Aφ(ρ)φ̂φ̂ (68b)

and

ᾱ(r) = αρ(ρ)ρ̂ρ̂ + αφ(ρ)φ̂φ̂ (68c)

with the boundary conditions in (61) giving

f (b) = b, (69a)

Aφ(b)

αφ(b)
= 1, (69b)

Aρ(b) = 1, (69c)

and
Aφ(a)

αφ(a)
= 0. (69d)

Inserting the functions in (68) into the equations in (60) and proceeding as in section 3, we
find

αφ(ρ) =
ρ f ′(ρ)

f (ρ)
, (70a)

αρ(ρ) =
f (ρ)

ρ f ′(ρ)
, (70b)

Aφ(ρ) = f ′(ρ), (70c)

Aρ(ρ) =
f (ρ)

ρ
(70d)

with the boundary conditions

f (b) = b, (71a)

f (a) = 0. (71b)
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The boundary condition in (71b) implies from (70a) and (70b) that the values of the tangential
component of the permeability dyadic approaches infinity as ρ → a+ while the value of the
radial component goes to zero as ρ → a+. However, all the components of B(r) and H(r) remain
finite as ρ → a+ with the radial component of B(r) and the tangential component of H(r) going
to zero as ρ → a+. The general expressions for B(r) and H(r) are

B(r) =
f (ρ)

ρ
B inc

ρ [ f (ρ), φ, z]ρ̂ + f ′(ρ)B inc
φ [ f (ρ), φ, z]φ̂, (72a)

µ0H(r) = f ′(ρ)B inc
ρ [ f (ρ), φ, z]ρ̂ +

f (ρ)

ρ
B inc

φ [ f (ρ), φ, z]φ̂. (72b)

As an example, if in the region a 6 ρ 6 b

f (ρ) =
b(ρ − a)p

(b − a)p
, p > 0, (73a)

then

αφ(ρ) =
pρ

ρ − a
, (73b)

αρ(ρ) =
ρ − a

pρ
, (73c)

Aφ(ρ) =
pb(ρ − a)p−1

(b − a)p
, (73d)

Aρ(ρ) =
b(ρ − a)p

ρ(b − a)p
. (73e)

Note that the equations for the static-field cylindrical cloak, unlike those for the ω > 0
cylindrical cloak, have the same form as the equations for the spherical cloak (ρ simply
replacing r ). Also, comparing (70a) and (70b) with (44c) and (44d) shows that αφ(ρ) and αρ(ρ)

for the static (ω = 0) and time-harmonic (ω > 0) cylindrical cloaks are identical.

6. Implications of causality-energy conditions

We shall show in this section that causality-energy conditions, which the diagonal elements
of the relative permittivity–permeability dyadic must obey, imply that incident fields with a
finite (nonzero) bandwidth cannot be perfectly cloaked. The causality-energy conditions for
permittivity as ω → 0 are also used to show that electrostatic fields and low-frequency fields
for ω > 0, unlike magnetostatic fields, cannot be cloaked. This result is a consequence of the
causality-energy conditions for permittivity being more restrictive than those for permeability
because magnetic dipoles are caused by circulating electric currents rather than by the separation
of magnetic charge, whereas electric dipoles are caused by the separation of electric charge
rather than circulating magnetic current.

What is usually referred to as ‘causality’ conditions, we refer to as ‘causality-energy’
conditions because we find it difficult to justify their traditional derivation [35, section 84] from
the Kramers–Kronig dispersion relations. This traditional derivation from the Kramers–Kronig
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relations depends on the macroscopic elements of the permittivity and permeability dyadics
being well defined for all frequencies and yet all real materials (and metamaterials) fail to
be describable by macroscopic constitutive relations if the wavelength of the fields is on the
order of the distance between the microscopic dipoles. Moreover, above a certain frequency,
induced circulating currents that give rise to diamagnetism can no longer be described by a
spatially nondispersive permeability dyadic [35, sections 79, 82 and 103]. Therefore, we rely
on the derivation from electromagnetic energy conservation [36]–[38] to obtain the following
inequalities for the diagonal elements of the relative permittivity or permeability dyadic in a
frequency window where there is no loss

d(ωαll)

dω
− 1>

ω

2

dαll

dω
> 0 , l = 1, 2, 3. (74)

For the spherical cloak αll = (αr , αs, αs) and for the cylindrical cloak αll = (αρ, αφ, αz).
From (27b) and (28b), or (44d) and (45b), we see that (74) must hold for the spherical cloak
with αr(a) = 0 and for the cylindrical cloak with αρ(a) = 0 at all frequencies. Thus, even if
f (r) and f (ρ) are allowed to vary with frequency, it is impossible for all the inequalities in (74)
to hold at any frequency. That is, an ideal spherical or cylindrical cloak (nonscattering and zero
total interior cavity fields) over any nonzero bandwidth always violates causality and thus the
cloaking of realistic (time-dependent) incident fields must be approximate.

For a generally shaped annular cloak, the energy in any finite length pulse (fields with
nonzero bandwidth) must travel through the cloak in the same time that it would take without
the cloak present since the cloak does not scatter the incident fields. Consequently, the energy
in the pulse, which must bend around the inner cavity of the cloak, would have to travel faster
than the free-space speed of light inside the cloak material and thus violate causality [30]. Again
this implies that the cloaking of nonzero bandwidth fields must be approximate, though the
approximation may be a very good one for sinusoidal pulse lengths significantly larger in space
than the largest dimension of the cloak. Even in that case, nonetheless, the transient fields from
the leading and trailing edges of this lengthy sinusoidal pulse will not be cloaked.

6.1. Causality-energy conditions for diamagnetic materials (and metamaterials)

The inequalities in (74) were derived from electromagnetic energy conservation based on the
following electromagnetic power relation for polarized material [36]–[38]

Pe`(r, t) =
∂D
∂t

·E +
∂B
∂t

·H−
1

2

∂

∂t

(
ε0|E|

2 + µ0|H|
2
)

. (75)

It was proven in [39, section 2.1.10] that this Pe`(r, t) is equal to the power per unit volume
supplied to the polarization by the electromagnetic fields at the time t . The proof depended
on showing that the fields supplied an internal power contribution to pre-existing (as in
paramagnetic and ferro(i)magnetic materials) Amperian (‘current loop’) magnetic dipoles equal
to ∂(m · B0)/∂t , where m is the Amperian dipole moment and B0 is the local magnetic induction
applied to the magnetic dipole; see [39, equation (2.162)]. If the Amperian magnetic dipoles
do not exist before the local field is applied, that is, the applied field induces the Amperian
magnetic dipole moments (as in diamagnetic materials or metamaterials) and does not just
align pre-existing Amperian magnetic dipole moments (as in paramagnetic and ferro(i)magnetic
materials), this contribution can be zero and thus the power relation that becomes relevant for
obtaining inequalities for diamagnetic materials or metamaterials corresponding to (74) is given
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by [39, equation (2.139)]

P0
e`(r, t) =

∂D
∂t

·E +
∂B
∂t

·H−
1

2

∂

∂t

(
ε0|E|

2 + |B|
2/µ0

)
. (76)

Using (76) instead of (75) in the electromagnetic energy conservation derivation contained
in [36]–[38], we obtain the same inequalities as in (74) for the diagonal elements of a
lossless relative permittivity dyadic, but the following inequalities for diamagnetic materials
or metamaterials:

d(ωαd
ll)

dω
−
(
αd

ll

)2
>

ω

2

dαd
ll

dω
> 0 , l = 1, 2, 3, (77)

where the superscript ‘d’ on the alphas denote that the inequalities in (77) apply to diamagnetic
relative permeability. It should be pointed out that the relative permeability (like the relative
permittivity) can have values of αll < 1 and even <0 without being diamagnetic, and thus
these nondiamagnetic αll would obey the inequalities in (74) rather than (77). For example,
metamaterials consisting of arrays of resonant magnetodielectric spheres can have values of
relative permeability and permittivity considerably less than zero [40, figures 26 and 28], [41].

6.2. Implications of causality-energy conditions for static fields

Letting ω → 0 in the inequalities of (74) and (77) and assuming that limω→0 ωdαll/dω = 0 and
limω→0 ωdαd

ll/dω = 0, we find in addition to dαll/dω > 0 and dαd
ll/dω > 0

αll − 1> 0 , ω → 0 (78)

and
αd

ll(1 − αd
ll)> 0 , ω → 0 (79a)

or, equivalently

06 αd
ll 6 1 , ω → 0. (79b)

The inequality in (78) implies that the diagonal elements of the static relative permittivity
must be greater than unity. However, the equations in sections 5.1 and 5.2 applied to an
electrostatic cloak rather than a magnetostatic cloak show that the radial permittivity element
for an electrostatic cloak would have to take on values as small as zero. Moreover, without the
assumption that limω→0 ωdαll/dω = 0, the inequalities in (74) imply that either the inequality
in (78) holds or αll → −∞ as ω → 0. Thus, the spherical and cylindrical electrostatic cloaks
corresponding to the magnetostatic cloaks are impossible to produce because they require
permittivities that violate the fundamental restrictions of causality and/or energy conservation.

In contrast, the inequalities in (79b) allow for diamagnetic relative pemeabilities that
go to zero and thus there appears no fundamental reason that the spherical and cylindrical
magnetostatic cloaks derived in sections 5.1 and 5.2 could not be produced. Shore and
Yaghjian [40, figure 8] have shown that three-dimensional periodic arrays of closely packed
perfectly electrically conducting spheres exhibit approximately isotropic relative permeabilities
with values between 0.4 and 1.0 as ω → 0. More recently, Magnus et al [42, 43] have produced
a superconducting anisotropic static metamaterial with the relative permeability in one direction
having a value that is much less than unity.

Finally, we note that the conditions we have obtained from the inequalities in (74) as w → 0
also imply that the ω > 0 cloaking given in sections 2 and 3, like the electrostatic cloaking, is
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not realizable even at a single frequency if the frequency is low enough (because of the required
zero and near zero values of the radial relative permittivity). The ‘low enough’ frequency range
refers to the quasi-static regime of the individual dipole scatterers that comprise the material or
metamaterial.

7. Conclusion

Solving the one homogeneous first-order Maxwell differential equation in (15) holding for all
possible incident fields with ω > 0 and satisfying the boundary conditions in (16) is shown to
be sufficient to derive the lossless permittivity and permeability dyadics as well as the fields
inside an ideal electromagnetic annular cloak, which has zero scattered fields outside the cloak
and zero total fields within the inner cavity of the cloak, in terms of a general compressed
coordinate function f(r). It is shown that the relative permittivity and permeability dyadics of
any shaped annular cloak must be identical and that the tangential components of the E and
H fields as well as the normal components of the B and D fields must be continuous across
the outer surface of the cloak. The normal components of the B and D fields are required to
be zero at the inner material surface of the cloak. For the circular cylindrical cloak, these zero
normal-component boundary values do not lead to all the tangential components of the E and
H fields being continuous across the inner surface of the cloak—and thus delta functions arise
in the tangential components of the B and D fields, respectively, at the inner surface of such
cloaks [7]. Since homogeneous cavity modes can exist within the free-space interior region of
any cloak, it is shown that these homogeneous solutions inside the free-space cavity of the cloak
are uncoupled from the fields outside the free-space cavity that are produced by sources external
to the cloak and thus the cavity modes are not excited by external sources.

We find that spherical and circular cylindrical cloaks of inner radius a and outer radius b
can be formed with a general coordinate function obeying the boundary conditions f (b) = b
and f (a) = 0, and that the Pendry et al spherical cloak [1] and circular cylindrical cloak [12]
are particular examples of these spherical and circular cylindrical cloaks. For H -wave incident
fields, a nonmagnetic circular cylindrical annulus is found that has nonzero scattered fields but
still zero total fields within its interior cavity.

If the inner radius of the spherical or cylindrical cloak is zero (a = 0), the formulation
produces perfectly nonscattering bodies that are not limited to electrical sizes within the dipolar
or lower order multipolar regimes. Properly choosing the radial coordinate function yields
nonscattering spherical and circular cylindrical concentrators that magnify the incident fields
near their centers—one of which corresponds to the cylindrical concentrator in [34].

Except for the arbitrary incident fields and possibly the coordinate function f(r), the
equation (15) is independent of frequency. Therefore, if the coordinate function f(r) is
chosen independent of frequency, the associated relative permeability–permittivity dyadic is
independent of frequency. This frequency independence can hold only approximately over
a nonzero bandwidth, however, because of the restrictions imposed by causality and energy
conservation for lossless materials. Thus, the cloaking of realistic time-dependent incident fields
must be approximate.

The boundary value formulation for time-harmonic fields with ω > 0 is appropriately
modified to obtain cloaks for static fields (ω = 0). However, causality-energy conditions
prohibit the values of the relative permittivity required for electrostatic cloaking and thus only
magnetostatic cloaks are realizable. Moreover, the causality-energy conditions imply that even
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single-frequency cloaking (using the permittivity and permeability dyadics derived herein), in
the quasi-static frequency range of the individual dipole scatterers comprising the material or
metamaterial, is not realizable except for magnetostatic cloaking at ω = 0.

Lastly, we mention that the possibility of hiding an electrically large, geometrically
complicated body with a cloaking layer that is a fraction of a wavelength thick appears (to
us) highly unlikely in the foreseeable future even at microwave frequencies. Cloaking with
such thin cloaking layers on electrically large bodies would require some of the elements of the
identical anisotropic relative permittivities and permeabilities to have very high values and some
to have near zero values across the cloaking layer. Even if metamaterials could be developed
in the future to approximate these extreme values, they would likely be too lossy to keep the
scattering low in the forward hemisphere. Moreover, causality would preclude the possibility of
maintaining both the low loss and the bandwidth necessary for reasonably good cloaking in the
presence of pulsed incident fields interrogating electrically large bodies.
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