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Abstract Purpose: Renal cell carcinomas are often multifocal. We investigated the genomic signatures
of multifocal clear cell renal cell carcinoma to determine whether multiple tumors in the same
kidney bear a clonal relationship to one another.
Experimental Design: A total of 62 tumors from 26 patients who underwent radical neph-
rectomy were examined. All patients had multiple separate clear cell renal carcinomas. Loss of
heterozygosity analyses were done using five microsatellite polymorphic markers that represent
putative tumor suppressor genes on chromosome 3p14 (D3S1300), 7q31 (D7S522), 8p22
(D8S261), 9p21 (D9S171), and 17p13 (TP53). X chromosome inactivation analyses were
also done on the renal tumors from the 10 female patients. Chromosome 3p deletion status was
determined by dual color interphase fluorescence in situ hybridization analysis in all tumors.
Results:Nineteenof the 26 (73%) patients withmultifocal clear cell renal cell carcinoma showed
allelic loss in at least1of 5 microsatellite loci in separate tumors analyzed. A disconcordant pattern
of allelic loss between coexisting kidney tumors was observed in 7 cases. Six cases showed
discordant 3p deletion patterns by dual color interphase fluorescence in situ hybridization
analysis. Of the eight informative female cases studied by X chromosome inactivation,
one showed a discordant nonrandom pattern of X chromosome inactivation. Overall, evidence
of independent origin of the multifocal renal tumors was observed in12 of 26 cases (46%).
Conclusions:Our data suggest that in a significant number of cases of multifocal clear cell renal
cell carcinoma, the spatially separate tumors are of different clonal origin and arise independently.

Approximately 5% to 25% of patients undergoing radical
nephrectomy for renal cell carcinoma harbor multifocal tumors
at the time of diagnosis (1–7). Because conventional chemo-
therapeutic agents are largely unsuccessful against renal cell
carcinoma, surgical extirpation is regarded as the most effec-
tive means of treatment. In recent years, more conservative
nephron sparing surgery, as an alternative to traditional radical
nephrectomy, has gained popularity (8–10). With the in-
creased use of nephron sparing surgical excision of renal
neoplasms, concern has been expressed that limited surgical

resections may not encompass multifocal renal cell tumors,
specifically those that are too small to be visualized radiolo-
gically, with the result that such unresected tumors would
ultimately require additional treatment (1, 4, 9, 11). Conse-
quently, a clear understanding of the genetic relationships
between multifocal renal tumors in the same patient and a
reasonably accurate knowledge of the malignant potential of
each lesion could have important diagnostic, therapeutic, and
prognostic implications.

Clear cell renal cell carcinoma (CCRCC) is the most common
type of malignant neoplasm that arises in the kidney, account-
ing for 70% to 80% of cases (12, 13). Previous investigators,
based on their findings, have hypothesized that multifocal
renal cancers of clear cell type are monoclonal, and that
so-called satellite neoplasms represent intrarenal metastases
(14, 15). However, there is strong clinical evidence that multi-
focal renal cell carcinomas may arise independently rather than
through intrarenal metastasis, as the monoclonal theory
implies (1–7). The presence of multifocality may be a
consequence of ‘‘field effect’’ during renal carcinogenesis, with
subsequent risk for tumor recurrence. Patients with multifocal
CCRCCs have a higher risk of developing contralateral CCRCC,
synchronously or metachronously, than patients with unilateral
solitary CCRCCs (16, 17). The presence of multifocality does
not correlate with a significantly increased risk of cancer
progression and metastasis, a finding that argues against the
likelihood of intrarenal metastasis as an explanation for this
finding in such cases (7, 17, 18).
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In our previous study (19), we showed that the multiple
tumors in patients with papillary renal cell carcinoma arise
independently. Understanding the nature of tumor multi-
focality and clonal origin of renal tumors may further our
understanding of the genetic basis of tumor progression and
provide biological insights for cancer treatment and prognosis.
In the current study, we assessed the clonal relationships be-
tween 62 coexisting, separate tumors from 26 patients diag-
nosed with multifocal CCRCC, using loss of heterozygosisty
(LOH), X chromosome inactivation, and interphase fluores-
cence in situ hybridization (FISH) analyses of chromosome
3p deletion.

Materials andMethods

Patients. Sixteen men and 10 women (n = 26) with multifocal renal
tumors underwent surgery from 1995 to 2006 at the participating
institutions. Patients had a mean age of 59 y (range, 21-84 y). All
patients had two or more renal tumors diagnosed histologically
as CCRCC (Fig. 1). Twenty-one synchronous cases (>2 tumors
coexisting at the time of surgery, and the 2 tumors located at least
1 cm apart) and 5 metachronous cases (1 or more tumors were
surgically removed with a time interval after the first renal surgery) were
included in this study. In five cases, bilateral tumors were observed.
Pathologic stage was assigned according to the 2002 tumor-node-
metastasis classification system (20) and histologic grade was assigned
using the Fuhrman nuclear grading system (21).

Tissue samples and microdissection. Histologic sections were pre-
pared from formalin-fixed, paraffin-embedded tissue and were stained
with H&E for microscopic evaluation (Fig. 1). These slides were
examined microscopically to confirm that CCRCC was present. Laser
capture microdissection of the tumors was done on corresponding
unstained sections using a PixCell II Laser-Capture Microdissection
system (Acturus Engineering) as previously described (22–25).
Approximately 600 to 1,000 cells of each tumor were microdissected
from the 4-Am histologic sections. This number of cells yields f4 to
6 ng genomic DNA. Similar numbers of normal cells were micro-
dissected from each specimen for use as controls.

Detection of loss of heterozygosity. The genomic DNAs were
extracted from microdissected cells (22, 26, 27). PCR was used to
amplify genomic DNA at five specific loci on five different chromo-
somes: 3p14 (D3S1300), 7q31 (D7S522), 8p22 (D8S261), 9p21
(D9S171), and 17p13 (TP53; refs. 28–31). Previous studies have
shown that LOH at these loci frequently occurs in renal cell carci-
nomas(28–31). PCR amplification and gel electrophoresis were done
as previously described (32–37). Approximately 100 to 200 pg of

genomic DNA was used as template for PCR. We recognized that the

amount of template used for LOH analysis was critical to reliably
perform PCR (38). The use of a-32[P]-dATP incorporation PCR has

shown to increase the sensitivity compared with the fluorescence-

labeled PCR method; also, the sensitivity could be adjusted by expo-
sure time.

The criterion for allelic loss was complete or nearly completes
absence of one allele in tumor DNA (19, 35). PCRs for each

polymorphic microsatellite marker were repeated at least twice from

the same DNA preparations and the same results were obtained.
Detection of X chromosome inactivation. X chromosome inactivation

analysis was done on all tumors from female patient, as previously

described (35). Eight-microliter aliquots of the DNA extract were
digested overnight at 37jC with 1U of HhaI restriction endonuclease

(New England Biolabs, Inc.) in a total volume of 10 AL. Control
reactions for each sample were incubated in the digestion buffer

without HhaI endonuclease. After the incubation, 3 AL of digested and

nondigested DNA was amplified in a 25 AL PCR reaction containing
0.1 AL a-32[P]– labeled dATP (3,000 Ci/mmol/L), 4 Amol/L of each

AR-primers(39), 4% DMSO, 2.5 mmol/L MgCl2, 300 Amol/L each
deoxynucleotide triphosphate, and 0.65U Taq DNA polymerase

(Perkin-Elmer). Each PCR amplification had an initial denaturation at

95jC for 8 min, followed by 38 cycles at 95jC for 40 s, 63jC for 40 s,
and 72jC for 60 s, then followed by a single extension step at 72jC
for 10 min. The PCR product was separated by denatured polyacryl-
amide gel and visualized by autoradiography.

Analysis of X chromosome inactivation. The cases were considered to

be informative if two androgen receptor allelic bands were detected
after PCR amplification in normal control samples that had not been

treated with HhaI (22, 40). Only informative cases were included in the

analysis. In tumor samples, nonrandom X chromosome inactivation
was defined as complete or nearly complete absence of one AR allele

after HhaI digestion, which indicated a predominant methylation of
one allele (nonrandom inactivation) in the cellular population. Tumors

were considered to be of the same clonal origin if identical nonrandom

androgen receptor allelic inactivation patterns were detected in each
separate tumor. Tumors were considered to be of independent origin if

the dissimilar predominance of androgen receptor alleles after HhaI

digestion (different allelic inactivation patterns) was detected in each
tumor (22, 40, 41).

FISH. FISH methods as described previously (19, 42). Briefly,
4-Am tissue sections were prepared from buffered formalin-fixed,
paraffin-embedded tissue blocks containing tumor. The slides were
deparaffinized with two washes of xylene, 15 min each, and
subsequently washed twice with absolute ethanol, 10 min each and
then air dried in the hood. FISH was done with centromeric
a-satellite DNA probes for chromosome 3 (CEP3; Spectrum Orange)
and subtelomeric probe for 3p25 (3pTel25; Spectrum Green). The
probes were from Vysis (Downers Grove) and were diluted with
tDenHyb 2 (Insitus) in a ratio of 1:100. The slides were examined
using a Zeiss Axioplan 2 microscope (ZEISS) with the following
filters from Chroma (Chroma): SP-100 for 4¶,6-diamidino-2-phenyl-
indole, FITC MF-101 for Spectrum Green (3pTel25) and Gold 31003
for Spectrum Orange (CEP 3). The images were acquired with a
charge-coupled device camera and analyzed with MetaSystem Isis
Software (MetaSystem). Five sequential focus stacks with 0.4-mm
intervals were acquired and then integrated into a single image to
reduce thickness-related artifacts.

The method of in situ hybridization analysis was partially described
previously (42–51). In brief, for each slide, 100 to 150 nonoverlapp-
ing nuclei from tumor tissue were scored for signals from each probe
under the fluorescence microscope with �1,000 magnification. The
ratio of 3p/CEP3 signals was determined. The method to analyze 3p
deletion was based on previous studies of deletion of chromosomes
1p and 19q in oligodendrogliomas (52, 53). The cutoff value for 3p
deletion was defined as a 3p/CEP3 ratio of <0.7, as previously described
(42–46, 50, 51).

Translational Relevance
In the current study, we investigated 26 patients with

multifocal clear cell renal cell carcinoma using loss of
heterozygosity, X chromosome inactivation, and interphase
fluorescence in situ hybridization to assess tumor clonality.
Nearly half (46%) of the tumors examined displayed
discordant allele loss patterns, discordant nonrandom
X chromosome inactivation patterns, or discordant 3p
deletion status, consistent with the concept that these
separate renal tumors represent clonal neoplasms of inde-
pendent origin, rather than a primary tumor with intrarenal
metastases. Elucidation of tumor clonality is potentially
important in assessing therapeutic options and prognosis
in cases of multifocal clear cell renal cell carcinoma.
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Statistical analysis. Correlations between genetic alterations and
different clinical variables were analyzed using Pearson/Spearman
correlation test. A P value of 0.05 was considered significant, and all
P value tests were two sided.

Results

Clinicopathologic characteristics. A total of 62 separate
tumors from 16 men and 10 women were analyzed in this
study. Sixteen patients (62%) were males and 10 (38%) were
females. The clinical data of patients are summarized in
Table 1. The pathologic stages of the carcinomas were as
follows: T1, 25 tumors (40%); T2, 5 tumors (8%); and T3, 32
tumors (52%). The majority of coexisting tumors showed a
comparable tumor stage. Forty-eight tumors from 21 patients
occurred synchronously, and 14 tumors from 5 patients were
of metachronous onset. The Fuhrman nuclear grade of
individual tumors was as follows: grade 1, 3 tumors (4%);
grade 2, 27 tumors (44%); grade 3, 24 tumors (39%); and
grade 4, 8 tumors (13%).
LOH. In 19 of the 26 patients with multifocal CCRCC

(73%), allelic loss was shown in 1 or more of the separate
tumors in at least 1 of the 5 loci analyzed (Supplementary
Table S1; Fig. 2). The frequencies of allelic loss in the
informative CCRCCs were 17% (4 of 24) with D3S1300,
29% (7 of 24) with D7S522, 22% (5 of 23) with D8S261, 24%
(6 of 25) with D9S171, and 46% (11 of 24) with TP53. The
number of specific loci lost in a single tumor ranged from
one to three. A disconcordant pattern of allelic loss between
coexisting kidney tumors was observed in seven cases.
X chromosome inactivation analysis. X chromosome inacti-

vation analysis was done in 10 female patients. Eight cases

showed nonrandom pattern of X chromosome inactivation;
two cases were noninformative. One case (case 16) showed a
discordant nonrandom X chromosome inactivation pattern,
whereas tumors from the other 7 informative female cases
showed concordant nonrandom X chromosome inactivation
patterns (Fig. 2).
FISH. FISH analysis was done on all 62 tumors from 26

patients for chromosome 3p and the centromere of chromo-
some 3 (Fig. 1E and F). Chromosome 3p deletion was observed
in 55 tumors (89%). Tumors from 20 cases (77%) showed
similar chromosome 3p deletion patterns, whereas tumors in
6 cases (23%) showed discordant chromosome 3p deletion
patterns (Supplementary Table S1).

In total, 3 of 5 bilateral tumors showed shown discordant
allele loss patterns, discordant nonrandom X chromosome
inactivation patterns, or discordant chromosome 3p deletion
patterns.
Correlations between genetic alterations and clinicopathologic

variables. We correlated molecular genetic alterations with
various clinical and pathologic variables. There was no cor-
relation between LOH/chromosome 3p deletion and other
clinicopathologic characteristics such as patient age, gender,
histologic grade, and tumor stage (all P > 0.05).

Discussion

Radical nephrectomy has long been considered the gold
standard of surgical therapy for renal cell carcinoma. With
advances in radiologic imaging, an increasing proportion of
renal cancers are detected incidentally, and a high proportion
of these tumors are small. As a result, nephron sparing surgical

Fig. 1. Gross appearance, histology, laser capture microdissection, and FISH images of multifocal clear cell carcinoma. A, representative gross appearance of multifocal
CCRCC (A) shows the tumors are confined in the kidney and located at least1cm apart.B, typical histology of CCRCC (B).C andD, laser capturemicrodissectionof the same
cancer tissue (C) and the tissue isolated (D). E, disomic cancer cells showed two red signals (CEP3) and three green signals (3p); F, cancer cells with chromosome arm 3p
deletion showed two red signals and only one green signal.
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Table 1. Clinicopathologic characteristics

Case no Age/sex Tumor foci Meta/synchronous Tumor stage Fuhrman nuclear grade Laterality

1 77/M F1 S T3 4 R
F2 4
F3 4
F4 4

2 55/F F1 S T3 2 L
F2 2

3 48/M F1 S T1 2 R
F2 2

4 46/M F1 M T3 2 R
F2 T3 3 L

5 62/M F1 S T3 2 R
F2 2

6 65/M F1 S T3 3 R
F2 3

7 41/M F1 S T1 2 R
F2 2

8 45/M F1 S T1 2 R
F2 2

9 47/M F1 S T3 3 R
F2 3

10 55/M F1 S T2 2 L
F2 2

11 84/M F1 S T3 4 R
F2 4

12 79/M F1 S T3 3 R
F2 3
F3 3

13 82/M F1 S T2 4 L
F2 4

14 72/M F1 S T1 3 L
F2 3
F3 3

15 46/M F1 S T3 2 L
F2 2

16 72/F F1 M T2 3 R
F2 T3 2 L

17 37/F F1 M T1 3 R
F2 T1 2 L

18 21/F F1 M T1 1 R
F2 2
F3 T1 2 L

19 72/F F1 S T1 2 R
F2 3

20 34/F F1 M T1 2 R
F2 2
F3 2
F4 2
F5 T1 3 L

21 29/F F1 S T1 1 L
F2 1

22 77/F F1 S T3 3 R
F2 3

23 79/F F1 S T1 3 L
F2 3

24 81/F F1 S T3 3 L
F2 3

25 65/M F1 S T3 3 L
F2 3
F3 3

26 53/M F1 S T3 2 R
F2 2
F3 2

Abbreviations: F, different tumor focus; M, metachronous; S, synchronous; L, left kidney; R, right kidney.
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techniques have become popular for renal cancer therapy, even
in patients with normally functioning contralateral kidneys.
Some authors have expressed concern that conservative surgery
for renal cell carcinoma may predispose the patient to local
recurrence due to the presence of residual small potentially
malignant tumors in the unresected renal tissue. Additional
tumors undetectable by conventional radiologic examination
have been found in 13% to 25% of kidneys resected by radical
nephrectomy (4–6). Local tumor recurrence after nephron
sparing surgery may be due to incomplete resection of the
primary tumor, remaining multicentric lesions, or the devel-
opment of new primary or metastatic foci of renal cell
carcinoma in the renal remnant (1, 9). Better understanding
of the clonal relationships between multifocal tumors may be

of importance for patient management. Multiple tumors that
arise independently due to ‘‘field effect’’ (polyclonal tumors)
may be associated with a better prognosis than multiple tumors
that result from intrarenal metastasis of a biologically more
aggressive neoplasm that has attained the capablity for
metastasis (monoclonal tumors).

A rational approach to the assessment of multifocal renal
tumors requires a clear understanding of the biological nature
and molecular signatures of the individual renal neoplasms
(2, 54). Previous studies (14, 15) of multifocal CCRCCs exam-
ined the possible monoclonal basis of these types of renal
cancer, focusing primarily on microsatellite analyses of chro-
mosome 3p. Their findings led these investigators to propose
that in most cases multifocal clear cell and nonpapillary lesions

Fig. 2. Representative results of loss of heterozygosity
(A) and X chromosome inactivation (B) analysis. DNA
sample was prepared from normal tissue (N) and
separate tumor loci (F1, F2, etc.) amplified by PCR using
microsatellite markers (A) or human androgen receptor
gene (HUMARA) locus primers (B) and separated by
PAGE.A, typical discordant patterns of LOHin D3S1300
(case16), D7S522 (case 5), and concordant LOH
pattern in D7S522 (case 2), D8S261 (case14), D9S171
(case 5), andTP53 (case 5 and16). Normal informative
LOH patterns (no allelic loss) were also seen in D3S1300
(left), D8S261 (left), and D9S171 (right). B, both
discordant (case16) and concordant (case 23) patterns
nonrandom X chromosome inactivation. Arrows,
allelic bands. -, without HhaI digestion; +, with HhaI
digestion. Numbers under the gel picture, case numbers
(see SupplementaryTable S1andTable1).
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are the result of intrarenal metastases. Miyake et al. (14)
implied that nephron sparing surgery might be inadequate, and
might entail a risk of failure to prevent postoperative local
tumor recurrence due to incomplete resection of unrecognized
metastatic cancers in the residual kidney, bearing the same
malignant characteristics as the resected primary tumor. It is
interesting to note that, in Junker’s study (15), only 13 (68%)
of the 19 cases seemed to possess concordant LOH patterns,
whereas the remaining 6 revealed discordant patterns of allelic
loss. Neither of the above studies examined X chromosome
inactivation status of the tumors, or used other cytogenetic
investigations such as FISH.

Although previous reports in the literature seem to conclude
that multifocal CCRCC arise from a single clone, there was
actually discordant LOH on chromosome 3p (15). Miyake et al.
(14) reported discordant LOH in 2 of 10 cases (20%). Thus,
these earlier reports presented evidence supporting independent
clonal origin in some cases of multiple clear cell renal tumors
from the same patient. Our current work extends and expands
these observations. Using the combination of LOH, X chromo-
some inactivation, and interphase FISH, we showed that nearly
half of cases of multifocal CCRCC may arise independently.
Different patterns of nonrandom X chromosome inactivation in
separate tumors, which is unequivocal evidence of independent
clonal origin, was first reported in the current study.

Several caveats should be mentioned. LOH has been widely
regarded as a marker of clonality because LOH is presumably
an early event during tumorigenesis (41). When comparing
different tumors, concordant patterns of LOH on multiple loci
is consistent with common clonal origin of the tumors; in
contrast, discordant patterns of LOH are compatible with
independent origin of the tumors. Nonetheless, LOH may also
represent differential tumor progression in satellite tumors
arising from a single clone. In the current study, there were
discrepancies between 3p deletions by LOH and FISH analysis.
These discrepancies may be due to divergence of methodology,
microsatellite markers analyzed, and different patient popula-
tions. FISH analyses detect large fragment alterations, whereas
LOH studies detect genetic alterations at the allelic level.
We analyzed the microsatellite locus D3S1300 at 3p14.2, but

the FISH probe targets 3p25, covering the region of VHL gene.
Chromosomal segment loss during the process of carcinogen-
esis may be variable. If the loss is downstream of D3S1300
(without involve of D3S1300), it will show 3p deletion by FISH
without LOH on D3S1300. If the loss was from upstream of
D3S1300, the case may show both LOH and 3p deletion.

In the current study, we investigated 26 patients with
multifocal CCRCC using loss of heterozygosity, X chromosome
inactivation, and interphase FISH to assess tumor clonality.
Nearly half of the tumors examined displayed discordant allele
loss patterns, discordant nonrandom X chromosome inactiva-
tion patterns, or discordant 3p deletion status, consistent with
the concept that these separate tumors occurring in the same or
opposite kidneys, synchronously or metachronously, represent
clonal neoplasms of independent origin, rather than a primary
tumor with one or more intrarenal or extrarenal metastases.
Our observations did not support the notion that the
underlying biological basis of CCRCC multifocality in the
great majority of instances is intrarenal metastasis of primary
tumors. Our findings refute the contention that nearly all cases
of multifocal CCRCC are of monoclonal origin, and show that
a large proportion of cases of multifocal CCRCC are not
clonally related, arise independently, and, thus, are not a result
of intrarenal metastasis. We recommend that the terms
‘‘satellite’’ or ‘‘secondary tumors’’ should not be used because
they imply intrarenal metastasis. Our data support the current
clinical practice of nephron sparing surgery in patients with
multifocal CCRCC, when technically feasible. The likelihood of
a field effect of renal carcinogenesis in a large proportion of
such patients emphasizes the need for close and ongoing
surveillance for the development of new renal neoplasms.

The precise mechanisms responsible for the independent and
multicentric origin of CCRCC are currently unknown. A better
understanding of their clonality is potentially important in
assessing therapeutic options and prognosis in cases of
multifocal CCRCC.
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