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Abstract. We study a robot finger model in the framework of the theory

of expansions in non-integer bases. We investigate the reachable set and its
closure. A control policy to get approximate reachability is also proposed.

1. Introduction. Aim of this paper is to give a model of a robot’s finger in the
framework of the theory of expansions in non-integer bases and to use the methods of
this theory to study the reachability set and its closure. A discrete dynamical system
models the position of the extremal junction of the finger, namely the reached
point, starting with an initial point and a default angle (initial configuration). A
configuration is a sequence of states of the system corresponding to a particular
choice for the controls, while the union of all the possible states of the system
is named reachable set. The closure of the reachable set is named approximate
reachable set. The finger is composed by phalanxes, whose configurations can be
studied by means of combinatorial analysis. The theory of expansions in non-integer
bases reflects on the model through the arbitrariness of the number of phalanxes
and it provides methods for the study of the asymptotic case, namely the limit
case of infinite phalanxes. This approach allows us to construct an explicit binary
control leading a phalanx to get close to any point in the approximate reachable
set with a priori fixed precision. Our model includes two binary control parameters
on every phalanx of the robot finger. The first control parameter rules the length
of the phalanx, that can be either 0 or a fixed value, while the other control rules
the angle between the current phalanx and the previous one. Such an angle can
be either π, namely the phalanx is consecutive to the previous, or a fixed angle
ω ∈ (0, π).

The ratio between any phalanx and the preceding is a constant ρ < 1. This
assumption ensures the boundedness of the reachability set and the set of possible
configurations to be self-similar. In particular the sub-configurations can be looked
at as scaled miniatures with constant ratio ρ, also named scaling factor, of the
whole structure. An important parameter of self-similar dynamics is the branching
factor, i.e., the number of possible branches of a configuration. In our case the
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(a) w = π/3 and the ratio

between phalanxes is 21/3
(b) w = π6/7 and the ratio

between phalanxes is 21/7

Figure 1. Two configurations with 5 phalanxes, fixed ω and fixed
ratio between phalanxes ρ.

branching factor is 4, namely the cardinality of the possible couples of controls.
In general, if for every given step the states do not overlap, the dimension of the
approximate reachable set is given by the relation D = B

S where B is the branching
factor and S is the scaling factor; we refer to [9] for a discussion in the case of
a robot-hand model whose approach is based on self-similar structures. For an
overview of the general subject we refer to [16] and to [1] and to the references
therein contained. The approximate reachable set in our model is intrinsically
overlapping, hence in the analysis we adopt a different approach. By geometrical and
combinatorial arguments, we show a condition ensuring the approximate reachable
set to have dimension 2 when the rotation angle is ω = π/3, namely to fill a region
of the plane. This region is determined by a particular class of configurations, the
full-rotation configurations.

We describe the obtained results and the organization of the paper. In Section 2
we introduce the model and we remark its relation with the theory of non-integer
number systems. In Section 3 we focus on two particular configurations: the full-
rotation and the full-extension configuration. We give a geometrical description of
the convex hull of the reachable points corresponding to full-rotation configurations
and we show a recursive relation describing the set of points that can be reached
with full-extension configurations. In Section 4 we investigate the structure of
the approximate reachable set by proving that it is a self-similar set and that it
is the (unique) fixed point of a particular iterated function system, say Fρ,ω. In
general, neither the reachable set nor the approximate reachable set are explicitly
known, nevertheless we show that the iteration Fρ,ω on the convex hull of the
approximate reachable set yields approximations of the approximate reachable set
whose accuracy is monotonically increasing with the number of iterations. Finally,
for every point x belonging to the approximate reachable set, we define the expansion
of x, namely a particular couple of control sequences ensuring the finger to reach an
arbitrarily small neighborhood of x. Expansions are characterized and we introduce
an algorithm generating them. The last section of this paper, Section 5, is devoted
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Figure 2. Full-rotation configurations.

to the particular case of ω = π/3. We give an explicit description of the convex hull
of the reachable points in the full-rotation, full-extension and general cases. We
then study some convexity issues and we get the following results: the approximate
reachable set is not a convex set, but if we restrict ourselves to the closure of the
full-rotation configurations, a simple condition characterizes its convexity.

For an overview on the theoretical aspects of expansions in non-integer bases
we refer to [15], [13] and [3]. In particular, expansions in non- integer bases were
introduced in [15]. For the geometrical aspects of the expansions in complex base,
namely the arguments that are more related to our problem, we refer to [5], [6],[7]
and to [11]. We also mention the paper [2] where connections between control theory
and expansions in non-integer bases are established.

2. The model. In this section we model a robot finger in the framework of non-
integer bases theory. In our model the robot finger is composed by n+ 1 junctions
and n phalanxes. We assume junctions and phalanxes to be thin, so to be respec-
tively approximate with their middle axes and barycentres.

We also assume axes and barycentres to be coplanar and, by employing the
isometry between R2, we use the symbols x0, . . . , xn ∈ C to denote the position of
the barycentres of the junctions, therefore the length lk of the k-th phalanx is

lk = |xk − xk−1|
and the configuration of robot finger is described by the system{

xk = xk−1 + lke
iωk

x0 = l0e
iω0

(1)

with ω0, . . . , ωk ∈ [0, 2π]. We now introduce two binary control sequences (uk)nk=1

and (vk)nk=1, respectively ruling the length of each phalanx and the angle between
two consecutive phalanxes. In particular, to represent phalanxes with a different
length at each junction we assume

lk =
uk
ρk
, (2)

with

uk =

{
1 extension

0 rotation or no motion
(3)

We assume that the length of the phalanxes is decreasing, hence ρ > 1.
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Remark 1. The length of the finger is finite for all n. Indeed

n∑
k=1

lk =

n∑
k=1

uk
ρk

<
1

ρ− 1
.

Example 1. If ωk = 0 for all k, then xk = x0 +
∑k−1
j=0 lj .

Let us now focus on (vk). In our model, the angle between two consecutive
phalanxes is either π or a fixed ω ∈ (0, π). If vk = 0 then the angle between the
k− 1-th phalanx and the k-th phalanx is π, while if vk = 1 then the angle between
the k − 1-th phalanx and the k-phalanx is ω so that

vk =

{
1 rotation of the angle ω

0 no rotation
(4)

(see Figure 3).

(a) vk+1 = 0.

xk−1 xk xk+1

π

(b) vk+1 = 1.

xk−1 xk

xk+1

ω

Figure 3. In both cases uk+1 = 1.

We also remark that in the case uk+1 = 0, namely when xk and xk+1 coincide,
the model keeps memory of the choice of vk+1, affecting the successive rotations,
see for instance Figures 4 and 5.

(a) vk+1 = 0;

xk−1 xk ≡ xk+1

π

(b) vk+1 = 1.

xk−1

w

xk ≡ xk+1

ω

Figure 4. In both cases uk+1 = 0.
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(a) vk+1 = 0;

xk−1 xk ≡ xk+1

xk+2

(b) vk+1 = 1.

xk−1 xk ≡ xk+1

xk+2

Figure 5. In both cases uk+1 = 0, uk+2 = 1 and vk+2 = 1.

As xk is the vertex of the angle between the k-th phalanx and the k + 1-th
phalanx, we have the relations

arg(xk+1 − xk)− arg(xk−1 − xk) = vk+1ω + (1− vk+1)π. (5)

Remark 2. In the case k = 0, (5) holds by introducing x−1 := 0. Remark that
this notation is consistent with (1), indeed x0 = x−1 + l0e

iω0 .

We have the following relation between ωk and the the first k control digits
(vj)

k
j=1.

Proposition 1. Let k ≥ 0 and vj ∈ {0, 1} for j = 1, . . . , k. Then

ωk = −
k∑
j=1

vj(π − ω) + ω0 + 2kπ (6)

Proof. By induction on k. If k = 0 then (6) is immediate. Assume now (6) as
inductive hypothesis and consider k ≥ 1. As (1) implies

xk+1 − xk = lk+1e
iωk+1 ;

we may deduce by (5) and (6)

ωk+1 = arg(xk+1 − xk)

= arg(xk−1 − xk) + vk+1ω + (1− vk+1)π

=π + arg(xk − xk−1) + vkω + (1− vk)π

=ωk − vk+1(π − ω) + 2π

=−
k+1∑
j=1

vj(π − ω) + ω0 + 2(k + 1)π

hence the thesis.

The following Corollary gives the case of full rotation or full extensions in a fixed
direction ω0.
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(f)

Figure 6. Various steps towards the initial condition x0 = 0 of a
robot finger with ω = 6π/7 and ρ = 21/3.

Corollary 1. Let k ≥ 1. If vj = 1 for every j = 1, . . . , k, then

ωk = −k(π − ω) + ω0 + 2kπ.

If vj = 0 for every j = 1, . . . , k, then ωk = ω0.

Generally

xk = x0 +

k∑
j=1

lje
iωj

Using (2) and Proposition 1 we obtain the system
xk = x0 + eiω0

k∑
j=1

uj
ρi
e−i

∑j
n=1(π−ω)vn

x0 = l0e
iω0

(7)
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Remark 3. Due its linearity, the system is easily invertible (see Figure 6) so to get
a dynamics driving the finger to retract its phalanxes:xj = xj−1 −

uk−j+1

ρk−j+1
e−i

∑k−j+1
n=1 vn(π−ω);

x0 = xk.
(8)

By rewriting (7) in explicit form we have

xk = x0 + eiω0

k∑
j=1

uj
ρj
ei

∑j
n=1 i(1−vn)(π−ω)e−i j(π−ω) (9)

Then setting

λ := ρei(π−ω) (10)

and

cj = uje
i
∑j
n=1 (1−vn)(π−ω), (11)

we have

xk = x0 + eiω0

k∑
j=1

cj
λj

(12)

In the analysis, we assume without loss of generality x0 = 0 and ω0 = 0, then in
what follows all reachability properties and notions of reachable sets will always be
referred to the origin,

To make the finger able to reach with high precision a point in the reachable set,
giving an appropriate sequence of 0 and 1, we need to analyze the behavior of xk
hence the sequence in non integer bases

k∑
j=1

cj
λj

for possible large number k.

3. Remarkable configurations.

3.1. Full-rotation configurations. In the full rotation configurations, the rota-
tion controls vk are constantly equal to 1. In view of the assumption

ω0 = x0 = 0,

of Corollary 1 and of (12), the system (1) takes the form

xk =

k∑
j=1

uj
ρj
e−i j(π−ω)

with uj ∈ {0, 1}. By setting λ := ρei(π−ω), we get the more compact equation

xk =

k∑
j=1

uj
λj
. (13)

In other words the full rotation configuration are finite expansions in base λ and
with alphabet {0, 1}. In Figure 7 we show all the full rotation configurations of
length 4 with ρ = 21/3 and ω = π/3.
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(a)
u = (0) v = (1)

(b)
u = (1) v = (1)

(c)
u = (0, 1) v = (1, 1)

(d)
u = (1, 1) v = (1, 1)

(e)
u = (0, 0, 1)
v = (1, 1, 1)

(f)
u = (1, 0, 1)
v = (1, 1, 1)

(g)
u = (0, 1, 1)
v = (1, 1, 1)

(h)
u = (1, 1, 1)
v = (1, 1, 1)

(i)
u = (0, 0, 0, 1)
v = (1, 1, 1, 1)

(j)
u = (1, 0, 0, 1)
v = (1, 1, 1, 1)

(k)
u = (0, 1, 0, 1)
v = (1, 1, 1, 1)

(l)
u = (1, 1, 0, 1)
v = (1, 1, 1, 1)

(m)
u = (0, 0, 1, 1)
v = (1, 1, 1, 1)

(n)
u = (1, 0, 1, 1)
v = (1, 1, 1, 1)

(o)
u = (0, 1, 1, 1)
v = (1, 1, 1, 1)

(p)
u = (1, 1, 1, 1)
v = (1, 1, 1, 1)

Figure 7. Full rotation configurations with ρ = 21/3 and ω = π/3.
The gray area represents the convex hull of the reachable points in
the general case.

We denote R
(fr)
k (λ) the reachable set in time k restricted to the full-rotation

configurations, namely:

R
(fr)
k (λ) :=


k∑
j=1

uj
λj
| uj ∈ {0, 1}

 (14)
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and we remark that the reachable sets are related by the recursive formula{
R

(fr)
k+1(λ) = R

(fr)
k (λ) ∪

(
R

(fr)
k (λ) + 1

λk+1

)
R

(fr)
0 (λ) = 0.

(15)

We are interested in a qualitative study of conv(R
(fr)
k (λ)), the convex hull of

R
(fr)
k (λ). To this end we note that R

(fr)
k (λ) is a finite set (with at most 2k el-

ements), hence its convex hull is a convex polygon that we call Pk(λ).
In view of (15) we have{

Pk+1 = conv
(
Pk ∪ (Pk + 1

λk+1 )
)

P0 = 0.
(16)

namely for every k ∈ N, Pk+1 is the convex hull of the union of Pk with its translation
Pk + 1

λk+1 . Hence it is useful for our purposes to set for every u,v ∈ C

u · v := |u||v| cos(arg u− arg v) = <(u)<(v) + =(u)=(v)

and the following result, whose proof can be found in [12].

Lemma 3.1. Let P be a polygon with clock-wise ordered vertices v1, . . . ,vl and let

nj := (vj − vj−1)⊥ = ei
π
2 (vj − vj−1)

for j = 1, . . . , l. Assume the index operations to be performed modulus l so that
n1 = ei

π
2 (v1 − vl). Then for every t ∈ C, t 6= 0, there exists two indices j1, j2 ∈

{1, . . . , l} such that

nj1−1 · t < 0 and nj1 · t ≥ 0 (17)

nj2−1 · t > 0 and nj2 · t ≤ 0. (18)

Moreover the convex hull of P ∪ (P + t) is a polygon whose vertices are:

vj1 , . . . ,vj2 ,vj2 + t, . . . ,vj1−1 + t,vj1 + t. (19)

In particular l edges of conv(P ∪P + t) are parallel to the edges of P and 2 edges
are parallel to t.

Remark 4. As the index operations on the vertices are considered modulus l, if
j1 > j2 the expression in (19) means

vj1 , . . . ,vl,v1, . . . ,vj2 ,vj2 + t, . . . ,vj1−1 + t,vj1 + t. (20)

conversely if j1 < j2 the extended version of (19) is

vj1 , . . . ,vj2 ,vj2 + t, . . . ,vl + t,v1 + t, . . . ,vj1−1 + t,vj1 + t. (21)

In this Section we use only the last statement of Lemma 3.1, namely the qualitative
part of the result. The explicit characterization of the vertices of conv(P ∪(P+t)) is
used in Section 5, where the convex hull of the reachable full-rotation configuration
is studied the particular case ω = π/3.

We are now in position to prove

Theorem 3.2. For every k ∈ N Pk is a polygon with 2k (possibly consecutive)
pairwise parallel edges. Each couple of parallel edges is parallel to λ−j, with j =
1, . . . , k.
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Proof. We remark that P1(λ) = {0, 1
λ} can be looked at as a polygon with two

vertices and with two overlapped and parallel to λ−1 edges. As

Pj+1 = conv(Pj ∪ (Pj +
1

λj+1
))

for every j = 1, . . . , k − 1, by iteratively applying Lemma 3.1 we get that Pk has
pairwise parallel edges and every couple of edges is parallel either to λ−1 or to any
of the successive translations, i.e., λ−2, . . . , λ−k.

3.2. Full-extension configurations. Full extensions configurations are charac-
terized by the fact that the extension controls uk are constantly equal to 1. In this
case the set of reachable points is

R
(fe)
k (ρ, ω) :=


k∑
j=1

1

ρj
e−i

∑j
n=1 vn(π−ω) | vn ∈ {0, 1}

 (22)

Proposition 2. For every ρ > 1 and ω ∈ (0, π)

R
(fe)
1 =

{
1

ρ
,
e−i(π−ω)

ρ

}
(23)

and for k ≥ 1

R
(fe)
k+1(ρ, ω) =

1

ρ

(
1 +R

(fe)
k (ρ, ω)

)⋃ e−i(π−ω)

ρ

(
1 +R

(fe)
k (ρ, ω)

)
. (24)

Proof. Equality (23) immediately follows by (22). Moreover any reachable point

xk+1 ∈ R(fe)
k+1(ρ, ω) satisfies

xk+1 =

k+1∑
j=1

1

ρj
e−i

∑j
n=1 vn(π−ω)

=
e−i v1(π−ω)

ρ
+

k+1∑
j=2

1

ρj
e−i v1(π−ω)−i

∑j
n=2 vn(π−ω)

=
e−i v1(π−ω)

ρ

1 +

k+1∑
j=2

1

ρj−1
e−i

∑j−1
n=1 vn+1(π−ω)


=
e−i v1(π−ω)

ρ

1 +

k∑
j=1

1

ρj
e−i

∑j
n=1 vn+1(π−ω)


=
e−i v1(π−ω)

ρ
(1 + x̃k)

where

x̃k =

k+1∑
j=1

1

ρj
e−i

∑j
n=1 ṽn(π−ω) ∈ R(fe)

k (ρ, ω)

(in particular we set ṽn = vn+1). Thesis follows by taking into account both cases
v1 = 0 and v1 = 1.
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(a)
u = (1, 1, 1, 1)
v = (0, 0, 0, 0)

(b)
u = (1, 1, 1, 1)
v = (1, 0, 0, 0)

(c)
u = (1, 1, 1, 1)
v = (0, 1, 0, 0)

(d)
u = (1, 1, 1, 1)
v = (1, 1, 0, 0)

(e)
u = (1, 1, 1, 1)
v = (0, 0, 1, 0)

(f)
u = (1, 1, 1, 1)
v = (1, 0, 1, 0)

(g)
u = (1, 1, 1, 1)
v = (0, 1, 1, 0)

(h)
u = (1, 1, 1, 1)
v = (1, 1, 1, 0)

(i)
u = (1, 1, 1, 1)
v = (0, 0, 0, 1)

(j)
u = (1, 1, 1, 1)
v = (1, 0, 0, 1)

(k)
u = (1, 1, 1, 1)
v = (0, 1, 0, 1)

(l)
u = (1, 1, 1, 1)
v = (1, 1, 0, 1)

(m)
u = (1, 1, 1, 1)
v = (0, 0, 1, 1)

(n)
u = (1, 1, 1, 1)
v = (1, 0, 1, 1)

(o)
u = (1, 1, 1, 1)
v = (0, 1, 1, 1)

(p)
u = (1, 1, 1, 1)
v = (1, 1, 1, 1)

Figure 8. Full extension configurations with ρ = 21/3 and ω =
π/3: the control digits uk are constantly equal to one. We remark
the self-intersecting configurations in (G) and (H).

4. Approximate reachability and control sequences. We define approximate
reachability set the following

R∞(ρ, ω) :=

( ∞⋃
k=1

Rk(ρ, ω)

)
=


∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω) | uj , vn ∈ {0, 1}

 . (25)
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Remark 5. R∞(ρ, ω) is a bounded set. Indeed if x ∈ R∞(ρ, ω) then

|x| =

∣∣∣∣∣∣
∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω)

∣∣∣∣∣∣ ≤
∞∑
j=1

∣∣∣∣ujρj e−i∑j
n=1 vn(π−ω)

∣∣∣∣ =

∞∑
j=1

uj
ρj

=
1

ρ− 1
.

By simple computations we have the following result, stating that every point in
the approximate reachable set may be reached by the finger with arbitrary precision.

Proposition 3. Let ρ > 1, ω ∈ (0, π) and x ∈ R∞(ρ, ω). For every k ≥ 1 there
exists xk ∈ Rk(ρ, ω) such that

|x− xk| ≤
1

ρk(ρ− 1)
. (26)

4.1. Approximate reachable set. We approach the study R∞(ρ, ω) by means
of the Iterated Function System (IFS) theory. To consider the set of representable
numbers as the attractor of an iterated function system is a rather classical approach
in the study of expansions in non-integer bases (see for instance [7]). Relations
between representability in non-integer bases and discrete control systems where
established by Y. Chitour and B. Piccoli in [2], where the reachability of linear
discrete control systems is discussed by means of results coming from the theory of
expansions in non-integer bases. In this section we extend the idea of Chitour and
Piccoli in two different directions: we consider a different linear dynamics, indeed
both rotation and translation are controlled, and we deep the relation between dis-
crete control systems and expansions in non-integer bases by using fractal geometry
arguments.

For a general introduction on fractal geometry and, in particular on fractals
generated by iterated function systems, we refer to [4]. We recall that an IFS F is
a finite set of contractive maps, namely

F = {fh : C→ C|h = 1, . . . ,H}

and for every x, y ∈ C and h = 1, . . . ,H

|fh(x)− fh(y)| ≤ ch|x− y|

for some 0 < ch < 1. The Hutchinson operator acts on the power set of C as follows

F(X) :=

H⋃
h=1

fh(X) =

H⋃
h=1

⋃
x∈X

fh(x).

We now state an adapted version of Hutchinson’s classical theorem, originally
proved in [10].

Theorem 4.1. Let F be an iterated function system. There exists a unique closed
bounded set R, the attractor, such that R = F(R). For an arbitrary X ⊂ C let
Fk(X) = F(Fk−1(X)). Then for closed bounded X,

R = lim
k→∞

Fk(X).

in the Hausdorff metric.

Attractors can be constructed by remarking that if X ⊂ C satisfies

F(X) ⊂ X (27)
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then

R =

∞⋂
k=1

Fk(X),

namely the sequence Fk(X) provides increasingly good approximations of R [4].

Remark 6. For linear iterated function systems, X = conv(R) satisfies (27).
Indeed if x̃ ∈ F(conv(R)) then x̃ = fh(x) for some h = 1, . . . ,H and some
x ∈ conv(R). In particular

x = fh(αx1 + (1− α)x2)

for some α ∈ [0, 1] and x1, x2 ∈ R such that x = αx1 + (1− α)x2. As fh is a linear
map we also have

x̃ = αfh(x1) + (1− α)fh(x2)

and setting x̃1 := fh(x1) and x̃2 := fh(x2) we may rewrite the above equality as
follows

x̃ = αx̃1 + (1− α)x̃2.

Since x1, x2 ∈ R = F(R) then x̃1, x̃2 ∈ R, and consequently x̃ is a convex combina-
tion of elements of R, namely x̃ ∈ conv(R).

Remark 6, together with the following Proposition, motivates our interest on the
convex hull of the reachable set (see Figure 9).

Proposition 4. For every ρ > 1 and ω ∈ (0, π), the approximate reachability set
R∞(ρ, ω) is the (unique) fixed point of the IFS

Fρ,ω = {fh : C→ C | h = 1, . . . , 4}

where

f1 : x 7→ 1
ρx f2 : x 7→ e−i(π−ω)

ρ x

f3 : x 7→ 1
ρ (x+ 1) f4 : x 7→ e−i(π−ω)

ρ (x+ 1).
(28)

Proof. R∞(ρ, ω) is the fixed point of Fρ,ω if and only if

R∞(ρ, ω) =

4⋃
h=1

fh(R∞(ρ, ω)).

We prove the above equality by double inclusion. First of all remark that for every
h = 1, . . . , 4

fh(x) =
e−iv(π−ω)

ρ
(u+ x) (29)

for some u, v ∈ {0, 1}. In particular

• h = 1 if and only if u = v = 0;
• h = 2 if and only if u = 0 and v = 1;
• h = 3 if and only if u = 1 and v = 0;
• h = 4 if and only if u = v = 1.
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Now, let x ∈ R∞(ρ, ω). We have

x =

∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω)

=
e−iv1(π−ω)

ρ

u1 +

∞∑
j=1

uj+1

ρj
e−i

∑j
n=1 vn+1(π−ω)



Therefore, setting u = u1 and v = v1 in (29), we obtain

x = fh

 ∞∑
j=1

uj+1

ρj
e−i

∑j
n=1 vn+1(π−ω)


for some h = 1, . . . , 4. As

∞∑
j=1

uj+1

ρj
e−i

∑j
n=1 vn+1(π−ω) ∈ R∞(ρ, ω).

we get x ∈
⋃4
h=1 fh(R∞(ρ, ω)) and, by the arbitrariness of x,

R∞(ρ, ω) ⊆
4⋃

h=1

fh(R∞(ρ, ω)).

Now consider

x̃ ∈
4⋃

h=1

fh(R∞(ρ, ω))

so that

x̃ = fh(x)

for some h = 1, . . . , 4 and some x ∈ R∞(ρ, ω). In view of (29) and of the definition
of R∞(ρ, ω), for appropriate u, v ∈ {0, 1} the above equality is equivalent to

x̃ =
e−iv(π−ω)

ρ
(u+ x)

=
e−iv(π−ω)

ρ

u+

∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω)


=

∞∑
j=1

ũj
ρj
e−i

∑j
n=1 ṽn(π−ω)

where ũ1 = u, ṽ1 = v and, for every j > 1, ũj = uj−1 and ṽj = vj−1. Hence
x̃ ∈ R∞(ρ, ω) and, by the arbitrariness of x̃, we get the inclusion

4⋃
h=1

fh(R∞(ρ, ω)) ⊆ R∞(ρ, ω)

and hence the thesis.
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(a) conv(R∞(21/3, π/3)) (b) F21/3,π/3(conv(R∞(21/3, π/3)))

(c) F4
21/3,π/3

(conv(R∞(21/3, π/3))) (d) F8
21/3,π/3

(conv(R∞(21/3, π/3)))

Figure 9. Various approximations of R∞(21/3, π/3). The set
conv(R∞(21/3, π/3)) is explicitly characterized in Section 5.

4.2. Expansions of a reachable point. In Proposition 3 we showed that for
every x ∈ R∞(ρ, ω) there exists an arbitrary close reachable point. In particular for
every given ε > 0, if k ∈ N satisfies

1

ρk(ρ− 1)
< ε

then there exists xk ∈ Rk(ρ, ω) satisfying

|x− xk| < ε. (30)

Our goal is to determine some control sequences (uj)
k
j=1 and (vj)

k
j=1 depending on

x such that xk in (30) satisfies

xk =

k∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ρ).

To this end we focus on the particular class of expansions.
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Definition 4.2. Let x ∈ R∞(ρ, ω). A couple of infinite binary control sequences(
(uj)

∞
j=1, (vj)

∞
j=1

)
is an expansion of x if

x =

∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω). (31)

Remark 7. If
(
(uj)

∞
j=1, (vj)

∞
j=1

)
is an expansion of x then∣∣∣∣∣∣x−

∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω)

∣∣∣∣∣∣ ≤ 1

ρk(ρ− 1)
< ε

for every ε > 0 and any sufficiently large k.

We want to find sufficient and necessary conditions for a couple of control sequences
to be an expansion of a given x ∈ R∞(ρ, ω). To this end, we recall the definitions

f1 : x 7→ 1
ρx f2 : x 7→ e−(π−ω)i

ρ x

f3 : x 7→ 1
ρ (x+ 1) f4 : x 7→ e−(π−ω)i

ρ (x+ 1)
(32)

and we introduce the decision function

d : {1, 2, 3, 4} → {0, 1} × {0, 1}

such that

d(h) = (u, v)

if and only if

fh(x) =
e−ivω

ρ
(u+ x).

Remark 8. We have

d(1) = (0, 0); d(2) = (1, 0);
d(3) = (1, 0); d(4) = (1, 1).

Lemma 4.3. Let k ≥ 1, h1, . . . , hk ∈ {1, 2, 3, 4}, (uj , vj) = d(hj) for j = 1, . . . , k
and r ∈ C. Then

fh1
◦ · · · ◦ fhk(r) =

k∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω) +

r

ρk
e−i

∑k
n=1 vn(π−ω) (33)

Proof. By induction on k. If k = 1 then it follows by the definition of decision
function that for every h1 = {1, 2, 3, 4}

fh1(r) =
u1
ρ
e−iv1(π−ω) +

r

ρ
e−iv1(π−ω) (34)
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where (u1, v1) = d(h1). Fix now k ≥ 1 and assume (33) as inductive hypothesis.
For every hk+1 ∈ {1, 2, 3, 4}

fh1
◦ · · · ◦ fhk ◦ fhk+1

(r) = fh1
◦ · · · ◦ fhk(fhk+1

(r))

= fh1
◦ · · · ◦ fhk

(
uk+1

ρ
e−ivk+1(π−ω) +

r

ρ
e−ivk+1(π−ω)

)
=

k∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω)

+
1

ρk

(
uk+1

ρ
e−ivk+1(π−ω) +

r

ρ
e−ivk+1(π−ω)

)
e−i

∑k
n=1 vn(π−ω)

=

k+1∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω) +

r

ρk+1
e−i

∑k+1
n=1 vn(π−ω).

This proves the inductive step and, hence, the thesis.

Theorem 4.4. With the same notations of (32) and of Remark 8 Let ρ > 1,
ω ∈ (0, π), x ∈ R∞(ρ, ω) and (uj)

∞
j and (vj)

∞
j be two infinite binary sequences.

Set for every j ≥ 1

hj := d−1(uj , vj),

r0 := x

and

rj := f−1hj (rj−1)

Then
(
(uj)

∞
j=1, (vj)

∞
j=1

)
is an expansion of x, namely

x =

∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ρ), (35)

if and only if (rj)
∞
j=0 is bounded. In particular if (35) holds, then rj ∈ R∞(ρ, ω) for

every j ≥ 0.

Proof. Assume (35). By definition of rk and by Lemma 4.3 for every k ≥ 1

rk = f−1hk ◦ · · · f
−1
h1

(x)

= (fh1
◦ · · · ◦ fhk)−1(x)

=

x− k∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω)

 ρke−i
∑k
n=0 vn(π−ω)

=

∞∑
j=1

uj+k
ρj

e−i
∑j
n=1 vn+k(π−ω)

hence for every k ≥ 1,

rk ∈ R∞(ρ, ω)

and, also in view of Remark 5, we get that (rk)∞j=0 is bounded.
Suppose now that (rk)∞k=0 is bounded. By the relation

rk = f−1hk ◦ · · · f
−1
h1

(x)
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and by Lemma 4.3

x = fh1
◦ · · · fhk(rk) =

k∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω) +

rk
ρk
e−i

∑k
n=0 vn(π−ω).

Therefore the boundedness of (rk)∞k=0 implies

lim
k→∞

k∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω) +

rk
ρk
e−i

∑k
n=0 vn(π−ω) =

∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω).

and, consequently, (35).

4.3. Control algorithms. In view of Theorem 4.4, to construct a couple of control
sequences approximating x ∈ R∞(ρ, ω) we may proceed as follows. We set r0 = x
and we remark that R∞(ρ, ω) = Fρ,ω(R∞(ρ, ω)) implies the existence of h1 ∈
{1, 2, 3, 4} such that

r0 ∈ fh1(R∞(ρ, ω))

and we define

r1 := f−1h1
(r0).

By construction, r1 ∈ R(ρ,∞) therefore there exists h2 such that r1 ∈ fh2
(R∞(ρ, ω))

and we may define

r2 := f−1h2
(r0).

By iterating this argument we get the sequences (rj)
∞
j=1 and (hj)

∞
j=1 with the fol-

lowing properties:

rj = f−1hj (rj−1)

and rj−1 ∈ R∞(ρ, ω) for every j ≥ 0. By Theorem 4.4, if (uj , vj) = d(hj) for every
j ≥ 1 then

x =

∞∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ρ).

Remark 9. If h′, h′′ ∈ {1, . . . , 4} the intersection

fh′(R∞(ρ, ω)) ∩ fh′′(R∞(ρ, ω))

could be not empty. In particular, if

rj−1 ∈ fh′(R∞(ρ, ω)) ∩ fh′′(R∞(ρ, ω)),

then hj is arbitrarily chosen in {h′, h′′}. This ambiguity possibly gives rise to
different expansions and to infinite different algorithms to generate expansions.
The described method is a generalization of a classical techniques for expansions in
non-integer bases in the unidimensional case.
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We now construct an expansion where, at every step, the choice to not rotate
and to not extend the phalanxes is privileged. We set

r0 = x; (36)

hj =


1 if rj−1 ∈ f1(R∞(ρ, ω));

2 if rj−1 ∈ f2(R∞(ρ, ω)) \ f−11 (R∞(ρ, ω));

3 if rj−1 ∈ f3(R∞(ρ, ω)) \
⋃2
h=1 f

−1
h (R∞(ρ, ω));

4 otherwise

(37)

rj = f−1hj (rj−1); (38)

(uj , vj) = d(hj) (39)

By construction rj ∈ R∞(ρ, ω) hence, by Theorem 4.4,

x =

∞∑
j=1

uj
ρj
e
∑j
n=1 vn(π−ρ)i. (40)

Moreover (37) implies that, when it is possible, null controls are chosen.

5. Case ω = π/3. Before we discuss this model case we wish to point out that
the results obtained here can be generalized to the case ω = qπ with fixed q ∈ Q,
nevertheless this would involve more sophisticated combinatorial arguments. The
aim of this paper is mainly to show the connections between the model and the
theory of expansions in non-integer bases and we privileged a model case in order
to make the computations more handly. The case ω = qπ with fixed q ∈ Q will be
object of a further study.

In general the configurations that can be obtained in our model are combina-
tions of rotations of the angle π − ω and translations, in particular every extended
phalanx is parallel to an integer power of ei(π−ω) on the complex plane (see (1) and
Proposition 1 and recall the assumption ω0 = 0). By choosing ω = qπ with q ∈ Q,
the number of possible directions for phalanx is finite and, in particular, if ω = π/3
the possible directions are ei2π/3, ei4π/3 and ei2π. Since we assumed ω ∈ (0, π),
this case realizes the minimal number of possible different directions and numerical
simulations suggest that it provides the minimal number of extremal points for the
convex hull of the reachable set.

Here we obtain an explicit description of the extremal points of the convex hull of
the reachable set and a convexity condition for the set of points that can be reached
by full-rotation configurations.

5.1. The full rotation case with ω = π/3. We now discuss the particular case
of ω = π/3, so that fixing ρ > 1

λ = ρei
2π
3

and, in particular
λ3 = ρ3.

We recall the notations

R
(fr)
k (λ) :=


k∑
j=1

uj
λj
| uj ∈ {0, 1}


and

Pk(λ) := conv(R
(fr)
k (λ))
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In general a polygon on the complex plane is a simple finite chain of edges whose
endpoints are the vertices. An extremal vertex of a polygon is a vertex which is
the common point of two edges not lying on the same line. Clearly a polygon is
characterized by the ordered list of its extremal vertices, hence we introduce the
notation

Vk(λ) := {uj | uj is an extremal vertex of Pk(λ)}.

For k = 0, . . . , 5 we computed Vk(λ) by hand:

V0(λ) = {0}

V1(λ) =

{
0,

1

λ

}
V2(λ) =

{
0,

1

λ
,

1

λ
+

1

λ2
,

1

λ2

}
V3(λ) =

{
1

ρ3
,

1

ρ3
+

1

λ
,

1

λ
,

1

λ
+

1

λ2
,

1

λ2
,

1

λ2
+

1

ρ3

}
(41)

V4(λ) =

{
1

ρ3
,

1

ρ3
+

1

ρ3λ
,

1

ρ3λ
,

1

ρ3λ
+

1

λ2
,

1

λ2
,

1

λ2
+

1

ρ3

}
(42)

V5(λ) =

{
1

ρ3
,

1

ρ3
+

1

ρ3λ
,

1

ρ3λ
,

1

ρ3λ
+

1

ρ3λ2
,

1

ρ3λ2
,

1

ρ3λ2
+

1

ρ3

}
(43)

=
1

ρ3

{
1, 1 +

1

λ
,

1

λ
,

1

λ
+

1

λ2
,

1

λ2
,

1

λ2
+ 1

}
,
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Figure 10. Pk(λ) = conv(Vk) with k = 1, . . . , 5 and λ = 21/3ei2π/3.
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while for larger k’s we have

Theorem 5.1. Let k ≥ 1,

Sk0,k,ρ3 :=

k∑
j=k0

1

ρ3j

and

ak := S1,k,ρ3 , bk :=
1

λ
S1,k−1,ρ3 , ck :=

1

λ2
S1,k−1,ρ3

Then

V3k(λ) = {ak, ak + bk, bk, bk + ck, ck, ck + ak} (44)

V3k+1(λ) = {ak, ak + bk+1, bk+1, bk+1 + ck, ck, ck + ak} (45)

V3k+2(λ) = {ak, ak + bk+1, bk+1, bk+1 + ck+1, ck+1, ck+1 + ak} (46)

Proof. By induction on k. The inductive base k = 1 is given by (41),(42) and (43).
Assume now (44),(45) and (46) as inductive hypothesis. To prove the inductive step
we need to show

V3(k+1)(λ) = {ak+1, ak+1 + bk+1, bk+1, bk+1 + ck+1,

ck+1, ck+1 + ak+1} (47)

V3(k+1)+1(λ) = {ak+1, ak+1 + bk+2, bk+2, bk+2 + ck+1,

ck+1, ck+1 + ak+1} (48)

V3(k+1)+2(λ) = {ak+1, ak+1 + bk+2, bk+2, bk+2 + ck+2,

ck+2, ck+2 + ak+1} (49)

Since the proves of (47), (48) and (49) are similar, we focus only on (47). Call
u1
3k+2, . . . ,u

6
3k+2 the extremal vertices of P3k+2(λ), so that by inductive hypothesis

u1
3k+2 = ak

u2
3k+2 = ak + bk+1

...

u6
3k+2 = ck+1 + ak,

and consider the normal vectors

n1
3k+2 := e−i

π
2 (u1

3k+2 − u6
3k+2)

and for j > 1

nj3k+2 := e−i
π
2 (uj3k+2 − uj−13k+2).

In view of the recursive relation

P3(k+1)(λ) = conv

(
P3k+2 ∪

(
P3k+2(λ) +

1

λ3(k+1)

))
we want to apply Lemma 3.1 to have a list of vertices of P3(k+1)(λ). Then we select
from such a list the extremal vertices, so to get V3(k+1)(λ). In view of Lemma 3.1,

we need to find a couple of indices j1 and j2 such that, setting t := 1
λ3(k+1) = 1

ρ3(k+1) ,

nj1−13k+2 · t < 0 and nj13k+2 · t ≥ 0 (50)

nj2−13k+2 · t > 0 and nj23k+2 · t ≤ 0. (51)
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We have that j1 = 3 and j2 = 6. Indeed

n2
3k+2 · t = S1,k,ρ3

(
−
√

3

2
− 1

2
i

)
· 1

ρ3(k+1)
> 0; (52)

n3
3k+2 · t = −i Si,k,ρ3 ·

1

ρ3(k+1)
= 0; (53)

and

n5
3k+2 · t = S1,k,ρ3

(√
3

2
− 1

2

)
· 1

ρ3(k+1)
< 0; (54)

n6
3k+2 · t = i Si,k,ρ3 ·

1

ρ3(k+1)
= 0. (55)

By Lemma 3.1 the (possibly not extremal) vertices of P3(k+1) are

u3
3k+2, u4

3k+2, u5
3k+2, u6

3k+2,

u6
3k+2 + t, u1

3k+2 + t, u2
3k+2 + t, u3

3k+2 + t.

Since the order on the vertices of a polygon is invariant for circular shift, we may
rearrange the above vertices in the following manner

u1
3k+2 + t, u2

3k+2 + t, u3
3k+2 + t,u3

3k+2,

u4
3k+2, u5

3k+2, u6
3k+2,u

6
3k+2 + t.

By a direct computation we have that the only not-extremal vertices are u3
3k+2 + t

and u6
3k+2 because they are convex combinations of other vertices. Hence,

V3(k+1)(λ) =
{
u1
3k+2 + t,u2

3k+2 + t,u3
3k+2,u

4
3k+2, u5

3k+2,u
6
3k+2 + t

}
=

{
ak +

1

ρ3(k+1)
, ak + bk+1 +

1

ρ3(k+1)
, bk+1, bk+1 + ck+1,

ck+1, ck+1 + ak +
1

ρ3(k+1)

}
= {ak+1, ak+1 + bk+1, bk+1, bk+1 + ck+1, ck+1, ck+1 + ak+1} .

5.2. A full extension case with ω = π/3. We assume the full extension condition
uk = 1 for every k ∈ N and, as in Section 5.1, that w = π/3. We provide an explicit

characterization of the convex hull of R
(fe)
k (ρ, ω).

Lemma 5.2. Let

conv(R
(fe)
k (ρ, π/3)) = conv({vjk | j = 1, . . . , J}) (56)

then

conv(R
(fe)
k+1(ρ, π/3)) = conv

({
1

ρ
(1 + vjk)

}⋃{
e−i

2π
3

ρ
(1 + vjk)

})
(57)
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Figure 11. (A), (B) and (C) respectively represent
Pk(21/3ei2π/3) = conv(Vk) with k = 6, 7, 8. In (D) Pk(21/3ei2π/3)
with k = 2, . . . , 6 are overlapped, so that the clearest area is
P2(21/3ei2π/3) and the underlying darker areas range between
k = 3 and k = 6.

Proof. By Proposition 2

R
(fe)
k+1(ρ, π/3) =

1

ρ

(
1 +R

(fe)
k (ρ, π/3)

)⋃ e−i
2π
3

ρ

(
1 +R

(fe)
k (ρ, π/3))

)
(58)

hence the inclusion

conv(R
(fe)
k+1(ρ, π/3)) ⊇ conv

({
1

ρ
(1 + vjk)

}⋃{
e−i

2π
3

ρ
(1 + vjk)

})
is immediate, because since for every j = 1, . . . , J

vkj ∈ R
(fe)
k (ρ, π/3)

then
1

ρ
(1 + vjk),

e−i
2π
3

ρ
(1 + vjk) ∈ R(fe)

k+1(ρ, π/3)

for every j = 1, . . . , J . Define now

{zj | j = 1, . . . , 2J} :=

{
1

ρ
(1 + vjk)

}⋃{
e−i

2π
3

ρ
(1 + vjk)

}
.
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and fix x ∈ conv(R
(fe)
k+1(ρ, π/3)), so that

x = αx1 + (1− α)x2 (59)

for some α ∈ [0, 1] and some x1, x2 ∈ R(fe)
k+1. Now, (56) implies that

x1 =
e−iv1

2π
3

ρ
(1 + x̃1)

for an appropriate v1 ∈ {0, 1}. As

x̃1 =

J∑
j=1

µ1
jv

j

for some µ1
1, . . . , µ

1
J ≥ 0 with

∑J
j=1 µ

1
j = 1, then for an appropriate J(x1) ⊂

{1, . . . , 2J}
x1 =

∑
j∈J(x1)

µ1
jz
j

Similarly there exist µ2
1, . . . , µ

2
J ≥ 0 with

∑J
j=1 µ

2
j = 1 such that

x2 =
∑

j∈J(x2)

µ2
jz
j

for some J(x2) ⊂ {1, . . . , J}. Hence setting for every j = 1, . . . , 2J

µj :=


αµ1

j + (1− α)µ2
j if j ∈ J(x1) ∩ J(x2)

αµ1
j if j ∈ J(x1) \ J(x2)

(1− α)µ2
j if j ∈ J(x2) \ J(x1)

0 otherwise

we have µ1, . . . , µ2J ≥ 0,
∑2J
j=1 µj = 1 and, in view of (59),

x =

2J∑
j=1

µjz
j .

Therefore x ∈ conv({zj | j = 1, . . . , 2J}) and thesis follows by the arbitrariness of
x.

Theorem 5.3. For every ρ > 1 and for every k ≥ 1 then the convex hull of

R
(fe)
k (ρ, π/3) is a (possibly degenerate) triangle, whose vertices are

v1
k :=

k∑
j=1

1

ρj
, v2

k :=

k∑
j=1

1

ρj
e−2πi/3 and v3

k :=
1

ρ
e−2πi/3 +

k∑
j=2

1

ρj
e−4πi/3.

Proof. By induction on k. If k = 1 then

R
(fe)
1 (ρ, π/3) =

{
1

ρ
,

1

ρ
e−

2π
3

}
= {v1

1,v
2
1 = v3

1}

hence the base of the induction is immediate. Consider now k > 2. By inductive
hypothesis

conv(R
(fe)
k (ρ, π/3)) = conv({v1

k,v
2
k,v

3
k}) (60)
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Figure 12. Convex hull of R
(fe)
k (21/3, π/3) with k = 2, . . . , 8.

hence by Lemma 5.2

conv(R
(fe)
k+1(ρ, π/3)) = conv

(
1

ρ
(1 + {v1

k,v
2
k,v

3
k})⋃ 1

ρ
e−2πi/3(1 + {v1

k,v
2
k,v

3
k})
)
. (61)

By the definition of v1
k,v

2
k and of v3

k we may rewrite the above equality

conv(R
(fe)
k+1(ρ, π/3)) = conv

({
v1
k+1, v2

k+1, v3
k+1,

1

ρ
(v2
k + 1),

1

ρ
(v3
k + 1),

e−
2πi
3

ρ
(v3
k + 1)}) (62)

therefore to complete the proof of the inductive step, we need to prove that the
reachable points

1

ρ
(v2
k + 1),

1

ρ
(v3
k + 1) and

e−
2πi
3

ρ
(v3
k + 1)

can be written as a convex combination of v1
k+1,v

2
k+1 and v3

k+1. Thesis hence
follows by following relations

• if α =
1

ρ

k+1∑
j=1

1

ρj

−1 then

1

ρ
(v2
k + 1) = αv1

k+1 + (1− α)v2
k+1; (63)
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• if α =

k+1∑
j=3

1

ρj

k+1∑
j=1

1

ρj

−1 and β =

k+1∑
j=3

1

ρj

k+1∑
j=2

1

ρj

−1 then

1

ρ
(v3
k + 1) = αv1

k+1 + (1− α− β)v2
k+1 + βv3

k+1; (64)

• if α =

k+1∑
j=3

1

ρj

k+1∑
j=1

1

ρj

−1 and β =
1

ρ

 k∑
j=1

1

ρj

−1 then

e−
2πi
3

ρ
(v3
k + 1) = αv1

k+1 + (1− α− β)v2
k+1 + βv3

k+1. (65)

5.3. General configurations with ω = π/3. In this section we investigate the
convex hull of the reachable configurations in the general case by assuming ω = π

3 .
We recall that any reachable point of the system (1) is of the form

xk =

k∑
j=1

uj
ρj
e−i(π−ω)

∑j
n=1 vn

with uj , vj ∈ {0, 1}. We now show that a reachable point can be expressed by a
recursive formula.

Proposition 5. For every ρ > 1, ω ∈ [0, π) and k ≥ 0, if xk+1 ∈ Rk+1(ρ, ω) then

xk+1 =
e−iv1(π−ω)

ρ
(u1 + x̃k) (66)

for some x̃k ∈ Rk(ρ, ω) and u1, v1 ∈ {0, 1}.
Moreover if ω = π

3

<(xk+1) =
1

ρ

(
1− 3

2
v1

)
(u1 + <(x̃k)) +

√
3

2ρ
v1=(x̃k). (67)

and

=(xk+1) =
1

ρ

(
1− 3

2
v1

)
=(x̃k)−

√
3

2ρ
v1 (u1 + <(x̃k)) . (68)

Proof. If xk+1 ∈ Rk+1(ρ, ω) then

xk+1 =

k+1∑
j=1

uj
ρj
e−i

∑j
n=1 vn(π−ω)

=
u1
ρ
e−iv1(π−ω) +

k+1∑
j=2

uj
ρj
e−i

∑j
n=2 vn(π−ω)e−iv1(π−ω)

=
e−iv1(π−ω)

ρ
(u1 +

k∑
j=1

ũj
ρj
e−i

∑j
n=1 ṽn(π−ω))

=
e−iv1(π−ω)

ρ
(u1 + x̃k)

with x̃k ∈ Rk(ρ, ω) and u1, v1 ∈ {0, 1}.



ROBOT’S FINGER AND EXPANSIONS IN NON-INTEGER BASES 97

Equalities (67) and (68) follow by the relations

<(xy) = <(x)<(y)−=(x)=(y)

and

=(xy) = <(x)=(y) + =(x)<(y);

indeed

<(xk+1) = <

(
e−

2π
3 iv1

ρ

)
< (u1 + x̃k)−=

(
e−

2π
3 iv1

ρ

)
= (u1 + x̃k)

=
1

ρ

(
1− 3

2
v1

)
(u1 + <(x̃k)) +

√
3

2ρ
v1=(x̃k).

and

=(xk+1) = <

(
e−

2π
3 iv1

ρ

)
=(u1 + x̃k) + =

(
e−

2π
3 iv1

ρ

)
<(u1 + x̃k)

=
1

ρ

(
1− 3

2
v1

)
=(x̃k)−

√
3

2ρ
v1(u1 + <(x̃k)).

Next result is a preliminary approximation of conv(Rk(ρ, ω)) and before stating
it we introduce the following notation

Sk0,k1 :=

k1∑
j=k0

1

ρj
. (69)

Remark 10. With notation given in (69), by Theorem 5.3 the vertices v1
k,v

2
k and

v3
k of the convex hull of R

(fe)
k (ρ, π/3) satisfy

v1
k = S1,k; v2

k = S1,ke
−i 2π3 ; v3

k =
e−i

2π
3

ρ
+ S2,ke

−i 4π3 .

Proposition 6. Let ρ > 1, and for every k ≥ 1 define

wk := S1,ke
−i 4π3 .

Then

Rk(ρ, ω) ⊂ Tk(ρ, ω) := conv({v1
k,v

2
k,wk}). (70)

Proof. By induction on k. If k = 1 then

R1(ρ, ω) =

{
0,

1

ρ
,
e−i

2π
3

ρ

}
=
{

0,v1
1,v

2
1

}
hence we just need to check that 0 ∈ T1(ρ, ω). If α = β = 1

3 then

αv1
1 + βv2

1 + (1− α− β)w1 = 0;

hence 0 is a convex combination of the vertices of T k(ρ, ω) and

R1(ρ, ω) ⊂ T1(ρ, ω).
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Now assume (70) as inductive hypothesis and consider xk+1 ∈ Rk+1(ρ, ω). By
Proposition 5 and by (70) we have that for some x̃k ∈ Rk(ρ, ω), some u1, v1 ∈ {0, 1}
and some αk, βk ∈ [0, 1] with αk + βk ∈ [0, 1]:

xk+1 =
e−iv1

2π
3

ρ
(u1 + x̃k)

=
e−iv1

2π
3

ρ

(
u1 + αkv

1
k + βkv

2
k + (1− αk − βk)wk

)
.

To complete the proof we show that xk+1 can be written as a convex combination
of v1

k+1,v
2
k+1 and wk+1, namely we need to show the real solutions α and β of the

equation

αv1
k+1 + βv2

k+1 + (1− α− β)wk+1 =

=
e−iv1

2π
3

ρ

(
u1 + αkv

1
k + βkv

2
k + (1− αk − βk)wk

)
to satisfy

α, β, α+ β ∈ [0, 1]. (71)

By a direct computation we have

• if v1 = 0 then

α =
1

3
(2u1 + 1)

ρk(ρ− 1)

ρk+1(ρ− 1)
+

ρk − 1

ρk+1 − 1
αk

β =
1

3
(1− u1)

ρk(ρ− 1)

ρk+1(ρ− 1)
+

ρk − 1

ρk+1 − 1
βk

and α, β ∈ [0, 1] because u1 ∈ {0, 1}, αk, βk ∈ [0, 1] and ρ > 1. Moreover

1 − α − β =
1

3
(1 − u1)

ρk(ρ− 1)

ρk+1(ρ− 1)
+

ρk − 1

ρk+1 − 1
(1 − αk − βk) ∈ [0, 1]. (72)

• if v1 = 1 then, also remarking

e−i
2π
3 v1

k = v2
k,

e−i
2π
3 v2

k = v3
k

and

e−i
2π
3 v3

k = v1
k,

we get

α =
1

3
(1− u1)

ρk(ρ− 1)

ρk+1(ρ− 1)
+

ρk − 1

ρk+1 − 1
(1− αk − βk)

β =
1

3
(2u1 + 1)

ρk(ρ− 1)

ρk+1(ρ− 1)
+

ρk − 1

ρk+1 − 1
αk

and, consequently α, β, 1− α− β ∈ [0, 1].
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Corollary 2. For every xk ∈ R(ρ, π/3):

− 1

2
S1,k ≤ <(xk) ≤ S1,k; (73)

−
√

3

2
S1,k ≤ =(xk) ≤

√
3

2
S1,k (74)

and √
3

2
<(xk) +

1

2
=(xk) ≤ 0. (75)

Proof. By Proposition 6,

xk ∈ T k(ρ, π/3)

and, in particular,

xk = αS1,k + βS1,ke
−i 2π3 + (1− α− β)S1,ke

−i 4π3

for some α, β, α+ β ∈ [0, 1]. Therefore

<(xk) = −1

2
S1,k +

3

2
αS1,k

and, by choosing respectively α = 0 and α = 1 we obtain the inequalities in (73).
Moreover

=(xk) =

√
3

2
S1,k −

√
3
(
β +

α

2

)
S1,k

and the relations α ≥ 0 and 0 ≤ α+ β ≤ 1 imply (74). Finally β ≥ 0 implies
√

3

2
<(xk) +

1

2
=(xk) =

√
3

2

(
−1

2
S1,k +

3

2
αS1,k

)
+

1

2

(√
3

2
S1,k −

√
3
(
β +

α

2

)
S1,k

)

= −β
√

3

2
S1,k

≤ 0.

Next result refines the upper bound of =(xk)

Corollary 3. For every k ≥ 2 and xk ∈ Rk(ρ, π/3)

=(xk) ≤
√

3

2
S2,k. (76)

Proof. By Proposition 5, for every k ≥ 1

xk+1 =
e−iv1

2π
3

ρ
(u1 + x̃k)

for some x̃k ∈ Rk(ρ, π/3) and some u1, v1 ∈ {0, 1} and, in particular,

=(xk+1) =
1

ρ
(1− 3

2
v1)=(x̃k)−

√
3

2ρ
v1(u1 + <(x̃k)).

Then Corollary 2 implies that if v1 = 0 then

=(xk+1) =
1

ρ
=(x̃k) ≤

√
3

2ρ
S1,k =

√
3

2
S2,k+1.
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Figure 13. The gray area is the convex hull of R4(21/3, π/3), the
underlying black area is the triangle T4(21/3, π/3).

and if v1 = 1 then

=(xk+1) = −1

2
=(x̃k)−

√
3

2
(u1 + <(x̃k))

≤
√

3

4ρ
S1,k +

√
3

4ρ
S1,k

=

√
3

2
S2,k+1.

Remark 11. The estimation

=(xk) ≤
√

3

2
S2,k.

is sharp, indeed

S2,ke
− 4πi

3 ∈ Rk(ρ, π/3)

and

=(S2,ke
− 4πi

3 ) =

√
3

2
S2,k.

Experimental data suggest the vertices of the convex hull of Rk(ρ, π/3) to be v1
k,

v2
k, v3

k and the following

v4
k := S2,ke

− 4π
3 i; (77)

Remark 12. The vertex v1
k is reached by the all-zero rotation control sequence

vj = 0, j = 1, . . . , k and the all-one extension control sequence uj = 1, with
j = 1, . . . , k. The vertex v2

k corresponds to the rotation control sequence v1 = 1
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(a)
u = (1, 1, 1, 1)
v = (0, 0, 0, 0)

(b)
u = (1, 1, 1, 1)
v = (1, 0, 0, 0)

(c)
u = (1, 1, 1, 1)
v = (1, 1, 0, 0)

(d)
u = (0, 1, 1, 1)
v = (1, 1, 0, 0)

Figure 14. Extremal configurations.

and vj = 0 for j = 2, . . . , k and to the all-one extension control sequence. The
vertex v3

k is reached if v1 = v2 = 1, vj = 0 for j = 3, . . . , k and to the all-one
extension control sequence. Finally we get the vertex v4

k if v1 = v2 = 1, vj = 0 for
j = 3, . . . , k and u1 = 0 and uj = 1 for j = 2, . . . , k.

Moreover the vertices v1
k, . . . ,v

4
k are clock-wise ordered on the complex plane.

Our goal is to prove v1
k, . . . ,v

4
k to be the vertices of conv(Rk(ρ, π/3)), namely

conv({v1
k,v

2
k,v

3
k,v

4
k}) = conv(Rk(ρ, π/3)) (78)

So far, excepting Theorem 5.1, our argument for the study of convex hulls con-
sisted in a trivial inductive application of the definition of convex set, namely we
showed an explicit convex combination for every reachable point. In this case, this
approach leads to involved formulas and consequent long computations, hence we
prefer an indirect method. First remark that the vertices v1

k, . . . ,v
4
k are reachable

points, thus
conv({v1

k,v
2
k,v

3
k,v

4
k}) ⊆ conv(Rk(ρ, π/3)).

To prove the other inclusion

conv(Rk(ρ, π/3)) ⊆ conv({v1
k,v

2
k,v

3
k,v

4
k}) (79)

we need to show that every reachable point belongs to conv({v1
k,v

2
k,v

3
k,v

4
k}). The

convex hull of a finite set of complex numbers is in general a polygon on the complex
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plane and we may employ the isomorphism between C and R2 to have access to
results related to the Point-In-Polygon Problem (see for instance [8] and [14]). A
polygon can be looked at as the limited intersection of a finite number of half-planes,
whose generating lines are given by the edges, namely the differences between two
consecutive vertices. The exterior criterion states that a point belongs to a convex
polygon if and only if it belongs to the “same side” of each half-plane. Moreover, if
the vertices are clock-wise ordered, the point must belong to the right side of each
half-plane. This can be formalized by introducing the so called edge-function: let
be v1 and v2 a couple of clock-wise ordered consecutive vertices and x ∈ R2

Hv1,v2(x) := (x− v2) · (v2 − v1)⊥.

We have that

Hv1,v2(x) =



< 0
if x belongs to the right side of the half-plane generated by
v1 and v2

= 0 if x belongs to the line intersecting both v1 and v2

> 0
if x belongs to the left side of the half-plane generated by
v1 and v2

(80)
hence a point belongs to the polygon if Hv1,v2(x) ≥ 0 for every couple of clock-wise,
consecutive vertices v1 and v2.

In the complex plane geometry, the vector n is normal to e if the difference
between their arguments is π

2 , namely

n = e
π
2 ie.

We also recall that the scalar product on the complex plane is given by

u · v = <(u)<(v) + =(u)=(v).

We adapt the exterior criterion to our case as follows.

Proposition 7. Define

n1
k := e

π
2 i(v1

k − v4
k); n2

k := e
π
2 i(v2

k − v1
k);

n3
k := e

π
2 i(v3

k − v2
k); n4

k := e
π
2 i(v4

k − v3
k).

(81)

We have

x ∈ conv({v1
k,v

2
k,v

3
k,v

4
k})

if and only if for every h = 1, . . . , 4

(x− vhk) · nhk ≤ 0.

Next results state that the reachable points xk satisfy the conditions of Proposi-
tion 7.

Lemma 5.4. For every ρ > 1, k ≥ 1 and xk ∈ conv(Rk(ρ, π/3))

(xk − v1
k) · n1

k ≤ 0.

Proof. For simplicity we consider xk+1 with k ≥ 0 instead of the equivalent case of
xk with k ≥ 1. First of all recall from Proposition 5

xk+1 =
e−iv1

2π
3

ρ
(u1 + x̃k)
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for some x̃k ∈ Rk(ρ, π/3) and some u1, v1 ∈ {0, 1}. By the definition of v1
k+1

<(v1
k+1) = S1,k+1; (82)

=(v1
k+1) = 0 (83)

and by the definition of n1
k+1

n1
k+1 = i

(
S1,k − S2,ke

−i 4π3
)

and

<(n1
k+1) =

√
3

2
S2,k+1; (84)

=(n1
k+1) = S1,k+1 +

1

2
S2,k+1. (85)

We now distinguish the cases v1 = 0 and v1 = 1. If v1 = 0 then by Proposition 5

<(xk+1) =
1

ρ
(u1 + <(x̃k)) (86)

=(xk+1) =
1

ρ
=(x̃k). (87)

This, together with u1 ∈ {0, 1}, (75) in Corollary 2 and Corollary 3, implies

(xk+1 − v1
k+1) · n1

k+1 =u1

√
3

2
S2,k+1 +

1

ρ

(√
3

2
<(x̃k) +

1

2
=(x̃k)

)
S2,k+1

+
1

ρ
=(x̃k)S2,k+1 −

√
3

2
S1,k+1S2,k+1

≤
√

3

2
S2,k+1 +

√
3

2
S2,k −

√
3

2
S1,k+1S2,k+1

=−
√

3

2ρk+2
S2,k+1

<0.

If v1 = 1 then by Proposition 5

<(xk+1) = − 1

2ρ
(u1 + <(x̃k)) +

√
3

2
=(x̃k) (88)

=(xk+1) = − 1

2ρ
=(x̃k)−

√
3

2
(u1 + <(x̃k)) . (89)

and by Corollary 2 and u1 ∈ {0, 1}

(xk+1 − v1
k+1) · n1

k+1 =−
√

3

4ρ
(3S1,k+1 + S2,k+1)(u1 + <(x̃k))

+
1

4ρ2
=(x̃k)−

√
3

2
S1,k+1S2,k+1

≤
√

3

8ρ
(3S1,k+1 + S2,k+1)S1,k +

√
3

8ρ2
S1,k −

√
3

2
S1,k+1S2,k+1

=0.
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Lemma 5.5. For every ρ > 1, k ≥ 1 and xk ∈ conv(Rk(ρ, π/3))

(xk − v2
k) · n2

k ≤ 0 (90)

and
(xk − v3

k) · n3
k ≤ 0. (91)

Proof. By Lemma 6, xk belongs to Tk(ρ, π/3), the triangle whose vertices are w1
k =

v1
k, w2

k = v2
k and

w3
k = S1,ke

−i 4π3 = v3
k +

√
3

ρ
i.

Therefore (90) is immediate. Now

n3
k = ei

π
2 (v3

k − v2
k) = ei

π
2

(
w3
k −w2

k −
√

3

ρ

)
= ei

π
2
S2,k
S1,k

(w3
k −w2

k) (92)

therefore
(x−w3

k) · n3
k ≤ 0;

moreover

n3
k = ei

π
2

(
e−i

2π
3

ρ
+ S2,ke

−i 4π3 − S1,ke
−i 2π3

)
= −
√

3

ρ
S2,k

and, consequently,

(xk − v3
k) · n3

k = (xk −w3
k) · n3

k + i

√
3

ρ
· n3

k ≤ i
√

3

ρ
· n3

k = 0.

Lemma 5.6. For every ρ > 1, k ≥ 1 and xk ∈ conv(Rk(ρ, π/3))

(xk − v4
k) · n4

k ≤ 0.

Proof. The proof is very similar to the proof of Lemma 5.4. We consider xk+1 with
k ≥ 0 instead of the equivalent case of xk with k ≥ 1 and we recall from Proposition
5

xk+1 =
e−iv1

2π
3

ρ
(u1 + x̃k)

for some x̃k ∈ R(ρ, π/3) and some u1, v1 ∈ {0, 1}. By the definition of v4
k+1

<(v1
k+1) = −1

2
S2,k+1; (93)

=(v1
k+1) =

√
3

2
S2,k+1; (94)

(95)

and by the definition of n4
k+1

n4
k+1 = −

√
3

2ρ
+ i

1

2ρ

We now distinguish the cases v1 = 0 and v1 = 1. If v1 = 0 then by Proposition 5

<(xk+1) =
1

ρ
(u1 + <(x̃k)) (96)

=(xk+1) =
1

ρ
=(x̃k) (97)
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and this, together with Corollary 2, implies

(xk+1 − v4
k+1) · n4

k+1 =

√
3

2ρ2
<(x̃k) +

1

2ρ2
=(x̃k)−

√
3

2
S2,k+1

≤
√

3

4ρ2
S1,k +

√
3

4ρ2
S1,k −

√
3

2ρ
S2,k+1

=0.

If v1 = 1 then, again by Proposition 5

<(xk+1) =
1

ρ
(u1 + <(x̃k)) (98)

=(xk+1) =
1

ρ
=(x̃k) (99)

and, consequently,

(xk+1 − v4
k+1) · n4

k+1 =

√
3u1

2ρ2
− 1

ρ2
=(x̃k)−

√
3

2
S2,k+1

≤
√

3

2ρ2
S1,k −

√
3

2ρ2
S1,k

=0.

In view of the above reasonings we may finally conclude

Theorem 5.7. For every ρ > 1 and for every k ≥ 1

conv(Rk(ρ, π/3)) = conv({v1
k,v

2
k,v

3
k,v

4
k}). (100)

5.4. Approximate reachability for ω = π/3. The study of R∞(ρ, ω) is rather
complicated even in the case ω = π/3: we give a non-convexity result and an
approximation from above of R∞(ρ, π/3). For h = 1, . . . , 4 define

vh∞ := lim
k→∞

vhk

so that

v1
∞ =

1

ρ− 1
, v2

∞ =
e−i

2π
3

ρ− 1
,

v3
∞ =

e−
2π
3 i

ρ
+

e−i
4π
3

ρ(ρ− 1)
, v4

∞ =
e−i

4π
3

ρ(ρ− 1)
.

Letting k →∞ in Theorem 5.7, we get

conv(R∞(ρ, π/3)) = conv
({

v1
∞, v2

∞, v3
∞, v4

∞
})

(101)

and, in particular

R∞(ρ, π/3) ⊆ conv
({

v1
∞, v2

∞, v3
∞, v4

∞
})
.

We now prove that the above inclusion is always strict.

Proposition 8. For every ρ > 1, R∞(ρ, π/3) is not convex.

Proof. Fix α ∈ (0, 1) and consider

xα := αv3
∞ + (1− α)v4

∞ ∈ conv(R∞(ρ, π/3)).
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(a) R6(2
1/3, π/3) (b) R7(2

1/3, π/3)

(c) R8(2
1/3, π/3) (d) R10(2

1/3, π/3)

Figure 15. Gray areas represent conv(R∞(21/3, π/3)).

We want to show that xα 6∈ R∞(ρ, π/3). In order to get a contradiction, suppose
on the contrary that xα ∈ R∞(ρ, π/3). By Proposition 4

R∞(ρ, π/3) = Fρ,π/3(R∞(ρ, π/3)) =

4⋃
h=1

fh(R∞(ρ, π/3))

where for every h = 1, . . . , 4

fh(x) =
e−iv

2π
3

ρ
(u+ x)

for appropriate v, u ∈ {0, 1}. Hence xα ∈ R∞(ρ, π/3) implies the existence of
x ∈ R∞(ρ, π/3) such that

xα =
e−iv

2π
3

ρ
(u+ x) (102)
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for some u, v ∈ {0, 1}. By solving the above equation with respect to x and by
recalling the definition of xα, we obtain

x = αe−i(1−v)
2π
3 +

1

ρ− 1
e−i(2−v)

2π
3 − u. (103)

As we assumed x ∈ R∞(ρ, π/3) then

x ∈ conv(R∞(ρ, π/3)) = conv({v1
∞,v

2
∞,v

3
∞,v

4
∞})

and in particular

(x− v1
∞) · n1

∞ ≤ 0

(x− v2
∞) · n2

∞ ≤ 0

(x− v3
∞) · n3

∞ ≤ 0

(x− v4
∞) · n4

∞ ≤ 0.

(104)

But

• if v = 0 in (103) then (x− v4
∞) · n4

∞ > 0;
• if v = 1 and u = 0 in (103) then (x− v2

∞) · n2
∞ > 0;

• if v = 1 and u = 1 in (103) then (x− v3
∞) · n3

∞ > 0

and we get the required contradiction.

We want to show a (rough) approximation from below of R∞(ρ, π/3). To this end,

consider the full rotation case and recall the notation λ = ρe
2π
3 i. Letting k →∞ in

(14) we have

R(fr)
∞ =


∞∑
j=1

uj
λj
| uj ∈ {0, 1}

 . (105)

Define now

u1
∞ :=

1

ρ3 − 1
; u2

∞ :=
1

ρ3 − 1
(1 + λ);

u3
∞ :=

1

ρ3 − 1
λ = λu1

∞; u4
∞ :=

1

ρ3 − 1
(λ+ λ2) = λu2

∞;

u5
∞ :=

1

ρ3 − 1
λ2 = λu3

∞; u6
∞ :=

1

ρ3 − 1
(λ2 + 1);

By Theorem 5.1 we have

conv(R(fr)
∞ ) = conv

({
uh∞ | h = 1, . . . , 6

})
=: X(fr)

∞ . (106)

Remark 13. X
(fr)
∞ is a hexagon on the complex plane whose edges are pairwise

parallel.

Our goal is to show a necessary and sufficient condition on ρ to have R
(fr)
∞ =

X
(fr)
∞ , so that

X(fr)
∞ ⊂ R∞(ρ, π/3).

Our approach is based on the uniqueness of the fixed point of IFSs. First of all
remark

R(fr)
∞ =

1

λ
R(fr)
∞ ∪ 1

λ
(R(fr)
∞ + 1).

In other words R
(fr)
∞ is the (unique) fixed point of the IFS

F (fr)
ρ,π/3 :=

{
g1 : x 7→ 1

λ
x, g2 : x 7→ 1

λ
(1 + x)

}
.
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Remark 14. By the definition given in (28)-Proposition 4, g1 = f2 and g2 = f4.

We have

Lemma 5.8. For every ρ > 1

R(fr)
∞ = X(fr)

∞

if and only if

F (fr)
ρ,π/3(X(fr)

∞ ) = X(fr)
∞ . (107)

Proof. Thesis immediately follows by the fact that R
(fr)
∞ is the unique fixed point

of F (fr)
ρ,π/3.

Figure 16. g1(X
(fr)
∞ ) ∪ g2(X

(fr)
∞ ) with ρ = 21/3 − 0.1

Theorem 5.9. R
(fr)
∞ = X

(fr)
∞ if and only if ρ ≤ 21/3.

Proof. By Lemma 5.8 and by the definition of F (fr)
ρ,π/3, it suffices to show that

g1(X(fr)
∞ ) ∪ g2(X(fr)

∞ ) = X(fr)
∞ . (108)

Remark that g1(X
(fr)
∞ ) and g2(X

(fr)
∞ ) are two hexagons on the complex plane, whose

mutual positions are described in Figures 16, 17 and 18: we just need to show that
the situation therein represented is general. By the definition of g1 and g2, we have
that for every ρ > 1

• by a direct computation

g1(u3
∞) = u1

∞ g2(u1
∞) = u5

∞

g1(u4
∞) = u2

∞ g2(u2
∞) = u6

∞

g1(u5
∞) = u3

∞ g2(u6
∞) = u4

∞
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Figure 17. g1(X
(fr)
∞ ) ∪ g2(X

(fr)
∞ ) with ρ = 21/3

Figure 18. g1(X
(fr)
∞ ) ∪ g2(X

(fr)
∞ ) with ρ = 21/3 + 0.1

• g1(u1
∞) and g2(u4

∞) are internal points of X
(fr)
∞ , indeed setting

α :=
ρ− 1

ρ
β :=

ρ− 1

ρ2

we have

α, β, 1− α− β ∈ (0, 1)

and

g1(u1
∞) =

1

ρ3 − 1

1

λ
= αu1

∞ + βu3
∞ + (1− α− β)u5

∞,
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g2(u4
∞) =

1

ρ3 − 1
(1 + λ) +

1

λ
= (1− α− β)u1

∞ + αu3
∞ + βu5

∞;

• the points g1(u3
∞) = u1

∞, g1(u2
∞), g2(u3

∞) and g2(u2
∞) = u6

∞ are aligned,
indeed setting

γ :=
1

ρ3
(109)

we have

g1(u2
∞) = (1− γ)u1

∞ + γu6
∞

g2(u3
∞) = γu1

∞ + (1− γ)u6
∞

(110)

• the points g1(u5
∞) = u3

∞, g1(u6
∞), g2(u5

∞) and g2(u6
∞) = u4

∞ are aligned,
indeed

g1(u6
∞) = γu3

∞ + (1− γ)u4
∞

g2(u5
∞) = (1− γ)u3

∞ + γu4
∞.

(111)

By the reasonings above (108) holds if and only if the following pairs of edges are
overlapped:

• the edge with endpoints u1
∞ and g1(u2

∞) and the edge with endpoints g2(u3
∞)

and u6
∞;

• the edge with endpoints u3
∞, g1(u5

∞) and the edge with endpoints g2(u6
∞) and

u4
∞;

In view of (110) and (111) this is equivalent to have

γ =
1

ρ3
≥ 1

2

and, consequently, to

ρ ≤ 21/3.

Corollary 4. If ρ ≤ 21/3 then for every y ∈ X(fr)
∞ and for every ε > 0 there exists

xk ∈ Rk(ρ, π/3) such that

|y − x| < ε.

Proof. Fix ε > 0 and consider k ∈ N such that

1

ρk(ρ− 1)
< ε.

By Theorem 5.9 we have

y ∈ X(fr)
∞ = R(fr)

∞ (ρ, π/3) ⊂ R∞(ρ, π/3).

Hence thesis follows by Proposition 3.
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and Université Paris Diderot, 2010.

[13] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960),
401–416.

[14] J. Pineda, A parallel algorithm for polygon rasterization, Proceedings of the 15th annual

conference on Computer graphics and interactive techniques, 22 (1988), 17–20.
[15] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad.

Sci. Hungar, 8 (1957), 477–493.
[16] B. Siciliano and O. Khatib, “Springer Handbook of Robotics,” 2008.

Received July 2011; revised December 2011.

E-mail address: anna.lai@sbai.uniroma1.it

E-mail address: paola.loreti@sbai.uniroma1.it

http://www.ams.org/mathscinet-getitem?mr=MR1838414&return=pdf
http://dx.doi.org/10.1007/PL00009881
http://www.ams.org/mathscinet-getitem?mr=MR1611948&return=pdf
http://dx.doi.org/10.1023/A:1006557705401
http://www.ams.org/mathscinet-getitem?mr=MR1102677&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0661773&return=pdf
http://dx.doi.org/10.1007/978-1-4612-5648-9_7
http://www.ams.org/mathscinet-getitem?mr=MR0860860&return=pdf
http://dx.doi.org/10.4153/CMB-1986-078-1
http://www.ams.org/mathscinet-getitem?mr=MR0912163&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0625600&return=pdf
http://dx.doi.org/10.1512/iumj.1981.30.30055
http://www.ams.org/mathscinet-getitem?mr=MR1211917&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0142719&return=pdf
http://dx.doi.org/10.1007/BF02020954
http://www.ams.org/mathscinet-getitem?mr=MR0097374&return=pdf
http://dx.doi.org/10.1007/BF02020331
mailto:anna.lai@sbai.uniroma1.it
mailto:paola.loreti@sbai.uniroma1.it

	1. Introduction
	2. The model
	3. Remarkable configurations
	3.1. Full-rotation configurations
	3.2. Full-extension configurations

	4. Approximate reachability and control sequences
	4.1. Approximate reachable set
	4.2. Expansions of a reachable point
	4.3. Control algorithms

	5. Case =/3
	5.1. The full rotation case with =/3
	5.2. A full extension case with =/3.
	5.3. General configurations with =/3
	5.4. Approximate reachability for =/3

	6. Acknowledgments
	REFERENCES

