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The importance of the analysis of the radiofrequency signal is by now recognized in the field of tissue
characterization via ultrasound. The RF signal contains a wealth of information and structural details that
are usually lost in the B-Mode representation. The HyperSPACE (Hyper SPectral Analysis for
Characterization in Echography) algorithm presented by the authors in previous papers for clinical appli-
cations is based on the radiofrequency ultrasonic signal. The present work describes the method in detail
and evaluates its performance in a repeatable and standardized manner, by using two test objects: a com-
mercial test object that simulates the human parenchyma, and a laboratory-made test object consisting
of human blood at different dilution values. In particular, the sensitivity and specificity in discriminating
different density levels were estimated. In addition, the robustness of the algorithm with respect to the
signal-to-noise ratio was also evaluated.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When an ultrasonic wave propagates through soft tissue, an
interaction occurs between the mechanical energy of the wave
and the local structure, generating energy absorption, reflection,
and scattering. The energy propagated back toward the ultrasonic
transducer constitutes the ultrasonic echo signal called the
radiofrequency (RF) signal. The RF signal contains information
about ultrasound–tissue interaction [1–8] and a processing
method must be used that is capable of extracting this information.

The amplitude is related to the distribution of mechanical impe-
dance (density, elastic characteristics) of the backscattering med-
ium, the scatterer concentration and the ratio between the sizes
of the microstructure and the wavelength [1,3,9,10]. The phase
information, related to the interferences, depends on the mutual
distances and geometrical organization of the tissue microstruc-
ture scatterers. These interferences and reflectivity variations in
the time domain are responsible for spectral amplitude modulation
in the frequency domain. In this context, over the last thirty years
quantitative ultrasound (QUS) techniques have been developed
[11–13] to improve tissue characterization as a support for
diagnostics. Indeed, in order to gain further information for tissue
characterization and differentiation purposes, it is essential not
only to preserve the shape of the RF signal spectrum, but also to
identify the spectral parameters that are best correlated with the
investigated structures [3,4,9,14–25].

Our group used the RF signal for our investigation techniques
[26,27] and developed the RULES (Radiofrequency Ultrasonic Local
EStimators) algorithm [28–32] based on the analysis of the local
power spectrum obtained by DWPT (Discrete Wavelet Transform).
Even though significant results have been achieved in various
research fields [23,27–29,33,34], they have been below expecta-
tions. In fact, the method was dependent on the instrumental
parameters of the acquisition setup [24,25] and the number of
extracted features was insufficient for characterizing tissue with
good specificity and sensitivity as demonstrated by the results
obtained by comparing the RULES with the method discussed in
this paper [35].

The proposed investigation method called HyperSPACE (Hyper
SPectral Analysis for Characterization in Echography) is able to
extract local information about the tissue under investigation
and implements a sub-band spectral decomposition. The method
in not directly based on the analysis of the power spectrum of
the RF signal, as with RULES and the principal QUS techniques,
however it works in a spectral domain of N-dimensions; this is
the origin of the Hyper suffix in the name, where N is the number
of sub-bands into which the RF signal bandwidth is decomposed.
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The method was applied in an important experimentation
involving ten Italian hospital clinics in order to differentiate the
two most common breast pathologies [35–37]. High values of sen-
sitivity and specificity in differentiating fibroadenoma and infil-
trating ductal carcinoma were obtained and compared with
histological examinations.

In previous works, we focused our attention on the training
phase of the algorithm and the description of the results. In the
present paper, the fundamental steps of the algorithm are
explained in detail. Moreover, the sensitivity of the method, the
dependence of the method on the instrumental parameters, and
the robustness of the algorithm with respect to the signal-to-
noise ratio (SNR) have been estimated. To do this, it was important
to test the method starting from the analysis of a single parameter
by using commercial and simple test objects. Two different test
objects were used. The first, a commercial CIRS model 047 (Com-
puterized Imaging Reference Systems, Inc. Norfolk, Virginia
23513 USA) test object, consists of background material that sim-
ulates the human parenchyma with a series of aggregates at differ-
ent densities inserted to simulate the presence of cysts. The second
was a laboratory test object consisting of a transfusion bag con-
taining human blood at different concentrations. Due to the char-
acteristics of the two test objects, density was chosen as the
parameter for evaluating the properties of the HyperSPACE
algorithm.
2. Investigation method

The proposed algorithm can be classified as a QUS technique
based on the analysis of the backscattered ultrasonic RF signal.
Moreover, it performs a sort of Texture Analysis [13,38–40] as it
tries to characterize the echographic image by extracting the typ-
ical features that determine the texture. In diagnostic ultrasounds,
texture analysis can be performed either directly by analyzing the
correlations among spatial gray-levels of B-Mode images, or indi-
rectly with QUS techniques applied to the spectral features. The
purpose of the algorithm is to identify a new spectral domain
where the signal parameters, correlated with the mechanical char-
acteristics and structural organization of the medium under inves-
tigation, can be extracted.

The investigation method works in a hyperspace consisting of N
spectral dimensions obtained from a sub-band decomposition of
the RF signal in order to read the local spectral amplitude modula-
tions generated by the distribution of the scatterers. Another speci-
fic characteristic of the method is the implementation of ‘‘local
normalization” that takes into account the effective energy of the
ultrasonic wave which insonifies the ‘‘local” portion of the med-
ium. In addition, the proposed normalization allows the algorithm
to be independent from the instrumental acquisition parameters of
the echographic scanner, such as Time Gain Compensation (TGC)
and transmission power.

The HyperSPACE algorithm procedure is illustrated in Fig. 1. The
processing procedure is broken down into four main phases that
are explained in detail below.
2.1. Sub-band decomposition

The first step consists of the decomposition of the signal in the
spectral sub-bands, while in the second, the HyperSPACE coeffi-
cients are produced. The third is a training procedure applied in
order to identify sets of parameters, called Configurations, that
are able to characterize the investigated medium. In the fourth
phase, the RF frames are classified according to the parameters
identified in the previous phase.
The HyperSPACE implements a decomposition of the spectrum
by performing a convolution in the time domain between each
track of the RF frame with N bandpass filters, the impulse
responses h(t) of which have a high degree of correlation with
the echographic signal. From among the possible options, the Mor-
let function, widely used in literature for ultrasonic signals, was
chosen as the impulse response [16,41–44]:

hðtÞ ¼ bffiffiffiffiffiffiffi
2p

p e
b2 t2

2 cosðlktÞ ð1Þ

In the time domain this signal represents a cosine function
modulated by a Gaussian function. The parameters b and lk deter-
mine the time duration of the response (i.e. its spectral bandwidth)
and the central frequency location of the filter respectively. These
filters exhibit the same compact support in the time domain. In the
spectral domain, they show a different central frequency and the
same bandwidth. The bandwidth of the filters and their central fre-
quency spacing depends on the degree of spectral resolution
selected.

In this work, the RF signal was acquired with a sampling fre-
quency of 50 MHz and a bank of 24 filters was generated by choos-
ing a constant value of b in order to obtain a bandwidth of 1 MHz at
�12 dB, the choice of which is explained in Section 4. The value of
lk was set so that the central frequencies of the filters were
multiples of 1 MHz. These 24 spectral sub-bands represent the
dimensions of the domain in which the HyperSPACE analyzes
the signal. The decomposition procedure of the RF signal is illus-
trated in Fig. 2, where it can be observed how each track of the
RF frame (Fig. 2a and b) is decomposed by a filter bank. In Fig. 2c
several impulse responses of the filters are shown. If Sb1, Sb2, . . . ,
SbN are the N sub-bands into which the signal spectrum is
decomposed, then the RF signal at time t0 can be represented by
N coefficients c1, c2, . . . , cN, that are the convolution coefficients
between the signal and each filter of the bank as shown in
Fig. 2d. In this way, it is possible to know the corresponding N coef-
ficients in the transformed domain for any instant t0 of the RF sig-
nal. For each RF track formed by Y samples, Y vectors of length N
are obtained and consequently, CSb matrices with dimensions X
by Y are derived for each frame constituted by X tracks. Each of
these CSb matrices contains the coefficients, called ci,m,Sb, relating
to a particular sub-band, indicated by the subscript Sb; the other
two subscripts i and m indicate the position within the matrix
(and hence the track and the time instant associated with the coef-
ficient). In our case, 24 CSb matrices are produced for each RF
frame.

2.2. HyperSPACE coefficient generation

In order to increase the performance of a method it is neces-
sary to make it as independent as possible from any amplitude
variations determined by the settings of the instrumental acquisi-
tion set-up, or by the characteristics of previously encountered
structures. For this reason, a distinctive feature of the proposed
method consists of performing a normalization process that takes
the actual ultrasonic signal into account locally, i.e. within a win-
dow of limited size, which is present in the investigated portion
of the sample. This operation, which can be called ‘‘Local Normal-
ization”, is illustrated in Fig. 3, where the entire procedure of the
HyperSPACE coefficient generation is shown. The first step
(Fig. 3a) consists of a local average performed to reduce the vari-
ability of the coefficients. This is carried out by sliding a partially
overlapped window on top of the absolute values of each of the N
CSb matrices. The size of the N matrices obtained, called Local
Average Matrices (LAMSb), is K by J depending on the choice of
the size of the sliding window and the overlaps, according to (2):



Fig. 1. HyperSPACE (Hyper SPectral Analysis for Characterization in Echography) block diagram. The first step consists of the decomposition of sub-bands for spectral
coefficients extraction, the second entails the generation of the HyperSPACE coefficients. The third step is the training procedure on ROI applied on the HyperSPACE
coefficients for Configuration generation. The last step is the Classification phase over the entire frame for revealing the presence of Configurations.

Fig. 2. Sub-Bands decomposition. In (a) the B-Mode of an ultrasonic radiofrequency (RF) frame, related to a transfusion bag of blood is reported. Each track of the RF frame (b)
is convolved with N filters (c) and Y tracks of spectral coefficients c1, c2, . . . , cN are produced, as shown in (d). In (c) some impulse responses of the N filters are illustrated.

Fig. 3. Local Normalization and Hyperspace Coefficients generation. A local averaging is applied on the absolute values of the Nmatrices of spectral coefficients (CSb), in order
to obtain Local Average Matrices (LAMSb) as shown in (a). The Local Normalization Matrix (LNM) is produced by calculating the mean value of the matrices LAMSb relating to
the central frequencies of the employed transducer (b). The HyperSPACE matrices HSSb are obtained by dividing point to point each matrix LAMSb by the LNM as
illustrated in (c).

S. Granchi et al. / Ultrasonics 68 (2016) 89–101 91



92 S. Granchi et al. / Ultrasonics 68 (2016) 89–101
K ¼ ½ðX �Win X þ 1Þ=Step X�
J ¼ ½ðY �Win Y þ 1Þ=Step Y� ð2Þ

In this work, the window dimensions are Win_X = 6 tracks
(1.2 mm), Win_Y = 80 pixels (1.2 mm) and the overlaps Step_X = 2
tracks and Step_Y = 10 pixels.

In (3) the formula that links the coefficients ci,m,Sb to dk,j,Sb is as
follows:

dk;j;Sb ¼ 1
Win X �Win Y

XWin X

i¼1

XWin Y

m¼1

jci;m;Sbj ð3Þ

The N LAMSb matrices are therefore constituted by the coeffi-
cients dk,j,Sb. In order to assess the magnitude of the ultrasonic sig-
nal that locally affects each investigation window considered, the
Local Normalization Matrix (LNM) is calculated. In Fig. 3b, it can
be seen how the LNM consists of the mean value of the LAMSb

matrices corresponding to the central frequencies of the probe
employed. The ek,j coefficients are thus obtained according to the
following formula:

ek;j ¼ 1
1þ Pf � Pi

XPf

Sb¼Pi

dk;j;Sb ð4Þ

where Pi and Pf are the indices related to the initial and final sub-
bands respectively, chosen by considering the central frequency of
the transducer used; for the probe LA523 (Esaote S.p.A, Firenze,
Italy), Pi = 4 and Pf = 10.

At this point, each of the LAMSb is divided by the LNM matrix in
order to obtain N new locally normalized matrices (HSSb) consti-
tuted by the hsk,j,Sb coefficients (Fig. 3c) defined by:

hsk;j;Sb ¼ dk;j;Sb

ek;j
ð5Þ

These values are the HyperSPACE hs coefficients and represent
the coordinates of the original samples of the RF frame in the
new domain.

At this point, two other phases of the algorithm are carried out,
called Training and Classification respectively.

2.3. Training

In the Training phase, Regions of Interest (ROIs) are selected on
the B-Mode (Fig. 4a) by the operator. The selection of ROIs is an
important operation for ensuring a proper training of the algo-
rithm. In the clinical environment, physicians depending on their
experience and based on the echographic appearance draw a
closed line around the area to be characterized on the B-Mode. In
a laboratory environment, such as in this study, the ROI is selected
by taking the echographic appearance and the geometrical, struc-
tural and physiological characteristics provided by manufacturers
of the test objects into account.

Subsequently, the hsk,j,Sb coefficients relating to the selected
ROIs are analyzed. Fig. 4a shows the B-Mode of a portion of a com-
mercial CIRS model 047 test object (described in detail in Section 3)
containing three aggregates with densities differing from the back-
ground material they are immersed in. From left to right, the
aggregates with +3 dB, +6 dB, and +9 dB are selected respectively
on the B-Mode with three different ROIs: ROI 1, ROI 2, and ROI 3.
The coefficients of the three ROIs relating to areas with different
physical characteristics have different shapes and positions in the
hyperspace considered. In order to characterize their distributions,
the coefficients are therefore subjected to a clustering process
through the iterative algorithm K-means [45]. By considering a
partition of data into N clusters, the K-means algorithm is able to
define the position of the centroids through an iterative procedure
that minimizes the total point-to-centroid distances summed over
all N clusters. After this, each cluster is identified by its centroid
and by a distance function able to evaluate the degree of separation
between clusters.

Fig. 4b shows the different clusters into which the hsk,j,Sb coeffi-
cients related to the ROI 3 are divided. The combination of all the
clusters relating to each ROI identifies a hyper volume in the
hyperspace characterized by the M centroid and the M by N dis-
tances of the clusters it consists of, and which will be called a Con-
figuration (Fig. 4c). This hyper-volume can also be synthetically
localized by an average centroid. This is obtained by computing
the arithmetic mean of the M centroids belonging to the
Configuration.
2.4. Classification

In the Classification phase the hsk,j,Sb coefficients relating to the
whole frame are analyzed and it is determined whether each coef-
ficient belongs to one of the Configurations developed during the
Training or not. For each hsk,j,Sb coefficient, the distance from the
centroid of the considered Configuration is calculated in each
dimension. If the coefficient is found inside the hyper volume
defined by the Configuration, this coefficient will be considered
as belonging to the latter. The visualization of the final result is car-
ried out by associating a color code to the pixels of the image
related to the hsk,j,Sb coefficients that belong to each Configuration.
This color is then superimposed on the B-Mode grayscale image
(Fig. 5). Therefore, if for example three Configurations are present
in a frame, the final B-Mode will have three overlapping color
codes corresponding to the areas identified by the three Configura-
tions. Fig. 5a illustrates the B-Mode relating to a section of the
commercial test object described above. Fig. 5b contains the final
results of the Classification. The three Configurations are shown
on the B-Mode in red, green and blue, allowing easy identification
of the three aggregates with different densities.
3. Materials and methods

The algorithm was tested using calibrated test objects in order
to evaluate the ability of the method to detect density variations.
Two different test objects with variable densities were used.

The first, as mentioned above, was a commercial CIRS model
047 test object consisting of a background material that simulates
the human parenchyma with a series of aggregates with different
densities (from �9 dB to +9 dB) and with diameters of 2.4 mm,
4 mm and 6.4 mm, inserted to simulate the presence of cysts.
The second was a laboratory test object consisting of a transfusion
bag containing human blood immersed in a tank filled with
degassed water.

The laboratory tests were performed according to the guidelines
of the University of Florence, on human blood provided by a
healthy donor who had previously signed an informed consent
form. The transfusion bag was filled with different blood concen-
trations obtained from multiple dilutions with physiological solu-
tion. Bags with a capacity of 250 ml and the anticoagulant CPDA
(Citrate – Phosphate – Dextrose – Adenine) were used. Through a
calibrated and repeatable procedure, 31 different values of Frac-
tional Dilution (FD) were obtained. The FD was defined as follows:

FD = Volblood/Volblood+physiological solution, where Volblood is
the quantity of blood introduced into the bag and
Volblood+physiological solution corresponds to the entire volume of the
liquid contained in the same bag. In Fig. 6, the sequence of FD
values for the blood samples is reported in a logarithmic diagram.

Fifty RF frames were acquired and processed for each concen-
tration in order to assess the parameter variations as a function



Fig. 4. Training Phase procedure. In (a) Regions Of Interest (ROIs) are identified in the B-Mode image in order to select their hs coefficients. The Coefficients are clustered by K-
means algorithm and M clusters are generated for each selected ROI, as shown in (a). In (b) the clusters of ROI 3 are considered. The N-dimensional volume which collects the
M clusters in each ROI is called Configuration, as visualized in (c) for the ROI 3.

Fig. 5. The Classification phase is performed on the entire analyzed frame in order to detect the presence of the identified Configurations. The figure shows the results
obtained on CIRS model 047 (Computerized Imaging Reference Systems, Inc. Norfolk, Virginia 23513 USA) tissue mimicking phantom. The phantom presents cysts with a
density differing from the background material. (a) B-Mode image. (b) HyperSPACE results. Each Configuration is associated to a different color. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Values of Fractional Dilutions (FD) of the all blood analyzed samples.
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of the FD. This second test object was selected to allow use of a
simple and repeatable biological tissue with a variable distribution
of scatterers.

In fact, as widely discussed in literature [46–49], blood can be
described as a medium [47,48,50] composed of aggregates of red
blood cells immersed in plasma. The back-propagated RF signal
depends on the concentration of the scatterers and other parame-
ters related to the blood flow. The relation between the frequency
of the RF signal, the concentration, and the blood flow parameters
has been extensively studied and tested by Cloutier et al.
[47,48,51]. Fig. 7 contains the acquisition system. All RF data were
collected by means of the FEMMINA (Fast Echographic Multi
parameters Multi Image Novel Apparatus) [52,53], a hardware-
software platform developed by the Ultrasound and Non-
Destructive Testing Laboratory. FEMMINA was used to perform
multi-parameter extractions and multi-image data representations
starting from the acquired RF signal. For this experiment, FEM-
MINA was connected to a commercial ultrasound scanner (Mylab
90, Esaote S.p.A, Firenze, Italy), as shown in Fig. 6, which was
modified to provide the RF signal output. The ultrasound scanner
provides RF beam-formed data sampled at 50 MHz and amplified
by the Time Gain Compensation (TGC) module. The data are
Fig. 7. Acquisition set-up. FEMMINA is connected to the commercial ultrasound
scanner Mylab 90 (Esaote S.p.A, Firenze, Italy). The ultrasonic probe is an LA523
linear array (Esaote S.p.A, Firenze, Italy) with a nominal frequency of 7.5 MHz.
transferred to FEMMINA by means of a 1 Gbit/s optical fiber con-
nection. FEMMINA acquires RF data in real time mode at the same
frame rate as the scanner. RF data frames can also be stored in the
PC memory and then saved on the hard disk to enable an off-line
frame-by-frame evaluation. The ultrasonic probe used for this
experimentation was an LA523 linear array with a nominal fre-
quency of 7.5 MHz.
4. Experimental results

The algorithm was tested on the CIRS model 047 test object in
order to achieve three targets:

1. to evaluate the possibility of differentiating the density of hyper
echoic cysts with respect to the background material;

2. to verify whether HyperSPACE is able to reduce attenuation
effects, allowing the same Configuration to better identify cysts
with the same density at different depths, also thanks to the
Local Normalization procedure described in Section 2 and illus-
trated in Fig. 3;

3. to observe how the Local Normalization makes it possible to
detect the same Configuration for the same cyst by varying
the ultrasound scanner acquisition settings such as focus depth,
transmission power, and total gain.

Before carrying out these experiments, several preliminary tests
were performed in order to select the best frequency range subdi-
vision. Different sub-band widths of filters were tested: 3 MHz,
1.5 MHz, 1 MHz and RF frames referring to proximal cysts of the
CIRS model 047 were processed. The goodness of the processed
images was evaluated in terms of ability to discriminate the den-
sity levels and differentiate the cysts from the surroundings. The
best compromise was obtained using a 1 MHz frequency sub-
band width, as can be observed in Fig. 8 which contains processed
HyperSPACE images using 3 MHz, 1.5 MHz and 1 MHz sub-band
widths. To achieve the first two objectives, 10 RF frames related
to sections not spatially correlated with each other were acquired
by moving the probe on the CIRS model 047. The acquired sections
contain two rows of cysts with diameters of 2.4 mm and 4 mm
respectively at different depths. The acquisition settings were the
following: a transmission power of 80%, TGC of 50% at each depth,
a total gain of 55%, and a focus position at 20 mm. One of these RF
frames was used to train the algorithm and three different ROIs,
one for each cyst proximal to the transducer, were selected as illus-
trated in Fig. 9a. As mentioned above in Section 2, the selection of
ROIs is important for ensuring proper training of the algorithm and
for this reason we selected the three cysts depending as much as
possible on their size. The other 9 sections were used in the Clas-
sification phase. The Training phase allowed for identifying the
three Configurations, each representing a different degree of den-
sity. The Configurations are colored in red, green and blue for the
+3 dB, +6 dB, and +9 dB densities respectively. In Fig. 9b and c, it
is possible to see how cysts with the same density are character-
ized by the same Configurations. In particular, it is important to
observe how the algorithm detects the presence of the aggregates
with a density of +3 dB, which is barely distinguishable from the
backgroundmaterial in the B-Mode image. It is even more interest-
ing to note how the cysts with the same density are characterized
by the same Configurations, regardless of their different depths,
thanks also to the Local Normalization process which reduces the
attenuation effects.

In order to test the Configurations by changing the acquisition
settings, three other measurement campaigns were performed.
For each one, 7 RF frames relating to the same section of the CIRS
model 047 were acquired by modifying only one parameter of the



Fig. 9. Training and Classification phase results for CIRS test object. In (a) the selected ROIs are shown. In the Training, only proximal cysts are considered for setting the
Configurations. (b) and (c), show the results of the processed frame in Training and Classification, after normalization procedure.

Fig. 8. Three processed HyperSPACE images obtained by decomposing the signal spectrum by means of filters banks with different bandwidths. The first, on the left, is related
to a decomposition bank of 8 filters with bandwidth = 3 MHz, the second to a bank of 16 filters with bandwidth = 1.5 MHz and the last to a bank of 24 filters with
bandwidth = 1 MHz.
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ultrasound scanner at each acquisition. Each of the 7 acquired
frames was classified by means of the Configurations identified
in the previous training phase, as shown in Fig. 9.

In the first set, the focus depth was changed from a distance of
52 mm to 10 mm. The results relating to the focus depths of
52 mm, 20 mm and 15 mm are shown in Fig. 10a, b and c respec-
tively. In the second set, the parameter considered was the total
gain, the dynamics of which were increased from 55% to 90%.
The frames with a gain of over 65% were not classified due to the
spectral modification effects caused by the saturation of the
acquisition system electronics. The results obtained for gains of
55%, 60% and 65% are shown in Fig. 10d, e and f respectively. Gains
greater than 65% cause signal saturation and thus the HyperSPACE,
which performs a spectral analysis, cannot be applied because
it would produce results affected by errors. The incorrect classifica-
tion of several regions in the images 10e and 10f is a consequence
of this phenomenon. In fact, the colors representing the three Con-
figurations are also in the background surrounding the cysts.

The last set was related to the variations in the transmission
power parameter within a dynamics range of from 25% to 100%.
Figs. 10g–i show the results obtained from the processing of three
frames acquired at transmission powers of 80%, 60%, and 40%
respectively. As can be seen from all three acquisition campaigns,
the algorithm demonstrated good stability due to the three density
levels being properly characterized for all the classified frames,
irrespective of the variations in the acquisition settings considered.
The algorithm was then tested on the test object consisting of
human blood. Fig. 11 shows some of the dilutions with different
FDs represented in one of the possible two-dimensional projec-
tions of the hyperspace, corresponding to SbX = 3 MHz and
Sby = 13 MHz. These two sub-bands have been chosen by way
of example. It can be observed how the distribution of the hs
coefficients is influenced by changing the FD. This induced us
to consider the possibility of identifying different concentra-
tion levels with specific Configurations. In fact, the clusters
of the coefficients labeled FD = 0, which refers to the physio-
logical solution, and FD = 0.005, FD = 0.01, FD = 0.48 and
FD = 1.00 corresponding to the human blood, are easily distin-
guished in this specific two-dimensional projection of the
hyperspace.

The use of this test object made it possible to test the algorithm
performances. First of all, the capability of producing a Configura-
tion to detect low concentration levels in order to evaluate the
electronic sensitivity of the method and moreover the ability to
set two different Configurations for acquisitions with FDs very
close to each other and with very similar echogenicity in the
B-Mode image. For these reasons, FD = 0.01, FD = 0.48 and
FD = 0.68 were chosen for training the algorithm. The other frames
corresponding to different FD values were only used in the
Classification phase. The training produced three Configurations:
the first is shown in red relates to FD = 0.68, the second in green
to FD = 0.48 and the last in blue to FD = 0.01.



Fig. 10. In (a–c) Classification results obtained at variable focus depths. In (d–f) Classification results obtained for different gains and in (g–i) Classification results obtained for
different transmission powers. The analyzed sections contain two rows of cysts with diameters of 2.4 mm (proximal) and 4 mm (at a greater depth).
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The average values of the gray levels calculated within a win-
dow inside the blood bag for each of the 31 dilutions are reported
in Fig. 12. It is worth noting, for example, how the frames with
FD = 0.48 and FD = 0.68 show very similar gray-level values.
Fig. 13 contains the colored area percentages relating to the three
Configurations produced in the training phase. The percentages
were estimated on each of the 31 frames, with respect to the entire
frame in order to take into account the capability of each Configu-
ration both to characterize only one specific FD value and not to
mark areas outside the bag blood, as represented in the B-Mode
of Figs. 12 and 14 by the regions below the strong reflection. A
good degree of selectivity for the Configurations relating to
FD = 0.48 (green), and FD = 0.68 (red) can be observed, as they
are minimally superimposed. Fig. 14 contains nine processed
images relating to different dilutions. In addition to the three
frames used in the training phase, several frames subjected to
the classification phase only are also reported. Also in this case,
as confirmed by Fig. 13, it is possible to observe how the three
Configurations seem to be very selective, i.e. the colored areas on
the classified frames are either very small or absent. In Fig. 14 it
is evident that the two green and red Configurations, in addition
to differing one from the other, do not appear in the frames with
dilutions close to FD = 0.48 or FD = 0.68. It can also be observed
how the frames used for the training phase are not uniformly colored,
due to the inevitable formation of aggregation centers [47].

In order to calculate the specificity (SpFDK) and sensitivity (SeFDK)
of each Configuration, the following expressions were applied [54]:

SeFDK ¼ TPFDK

TPFDK þ FNFDK
SpFDK ¼ TNFDK

TNFDK þ FPFDK
ð6Þ



Fig. 13. Percentage of Colored Area calculated on every frame with different FD
depending on the FD values. The percentage is calculated for the entire frame. It can
be noted how the three colors have very low superimpositions for different FD
values and are very specific for the FD selected for the training.

Fig. 11. Example of coefficients hs at different FD values is shown in a two-
dimensional projection of the N dimension hyperspace. The choice of these sub-
bands in the figure is only to give an example. It is worth noting that different
clusters correspond to different FD values.
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where
TPFDK: area of regions into blood bags with FD ¼ FDK truly
stained by Configuration for FD ¼ FDK;
FNFDK: area of regions into blood bags with FD ¼ FDK falsely not
stained by Configurations for FD ¼ FDK;
FPFDK: area of regions into blood bags with FD– FDK falsely
stained by Configuration for FD ¼ FDK;
TNFDK: area of regions into blood bags with FD– FDK truly not
stained by Configurations for FD ¼ FDK.

Estimated values for the defined Configurations are reported in
Table 1.

The obtained values are due to the choice of having trained the
method favoring the specificity with respect to sensitivity. Actually,
in many cases the clinical diagnosis is concerned, not only to detect
the presence of disease, but especially to differentiate its nature from
other types of pathologies with high level of safety. Another consid-
eration needs to be made about SeFDK, that, according to the defini-
tion of TPFDK and FNFDK, resulted to be affected by the non
homogeneous FD distribution into the blood bags, as said above.
Fig. 12. Gray level mean value calculated on the B-Mode images, in relation to different F
therefore it is very difficult to distinguish the different dilution levels through the analy
Moreover, the minimum FD level detectable by the BLUE Con-
figuration was FD = 0.01 and represent the electronic sensitivity
of HyperSPACE method. In fact, it was decided to set a Configura-
tion for FD = 0.005, however, FD = 0 was also marked in the Classi-
fication, demonstrating that noise and no blood was detected.

It must be pointed out that to assess the stability of a processing
method, it is necessary to evaluate its performance as a function of
the signal-to-noise (SNR) ratio. In order to achieve this for the
HyperSPACE, the acquisition with FD equal to 1 is considered.
Moreover, an acquisition was performed with the transducer
immersed in water with identical parameters to those used in
the acquisition with FD = 1. Different values of synthetic coherent
noise created in the Matlab environment (MathWorks, Natick,
Massachusetts, USA) were added to this acquisition to obtain 32
different frames with increasing noise. The synthetic noise was fil-
tered by the frequency response of the probe used. On each of
these frames, the same ROI was selected in the focalized region
and the noise was calculated for the 32 different values of the
added synthetic noise, according to the formula:
D values. For FD from 0.25 up to 0.9, the gray level mean has small fluctuations and
sis of the B-Mode images.



Fig. 14. Results obtained on blood bags with different FD values are reported. Three Configurations have been set: the blue for FD = 0.01, the green for FD = 0.48 and the red
for FD = 0.68. They are very specific, that is, they mainly characterize the frames of the blood bags with these FD specific values of FD and only very small colored spots are
visible for the other FD values. The algorithm also shows a high electronic sensitivity, in fact, it is capable of detecting the presence of blood for very small concentrations
(FD = 0.01). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Values of specificity (SpFDK) and sensitivity (SeFDK) of each Configuration.

Configuration Fractional dilution (FDK) SeFDK (%) SpFDK (%)

Red 0.68 71.0 99.6
Green 0.48 50.2 99.6
Blue 0.01 44.5 99.8
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SNR ¼ 10 � log 10 ððSignalþ Electronic NoiseÞFD1Þ2
ðElectronic NoiseWATER þ Synthetic NoiseÞ2

ð7Þ
where
(Signal + Electronic Noise)FD: acquired signal for FD = 1;
Electronic NoiseWATER: acquired signal in water.



Fig. 15. The acquisition with FD equal to 1.0 was gradually added with synthetic additive noise. A ROI was selected in all the processed frames and its percentage of colored
area was evaluated. (a) Selected ROI. (b) Resulting curve at different levels of SNR.

S. Granchi et al. / Ultrasonics 68 (2016) 89–101 99
Fig. 15a contains the frame for FD = 1 with the selected ROI. In
this region the SNR is equal to 28 dB, as derived from formula (7)
with no added synthetic noise. The FD = 1 RF frame without any
synthetic noise was processed in order to define a specific Config-
uration relating to the corresponding concentration level. After
which, each frame corresponding to a different value of SNR was
processed. The consistency of the colored-area Configuration was
tested by evaluating the area percentage with respect to the entire
ROI area for each different level of added noise.

Fig. 15b contains the graph representing the percentages of cov-
ered area as a function of SNR.

It can be observed how the percentage of the colored area
remains unchanged at 100% of the ROI until the SNR level reaches
3 dB. When the noise increases further, the percentage of colored
area decreases in an almost linear manner until finally disappear-
ing when the SNR level is equal to �10 dB.

5. Discussion

Over the last three decades, researchers using QUS techniques
have demonstrated that the interaction between the ultrasonic sig-
nal and the investigated structures gives rise to alterations in the
RF amplitude and frequency. As already affirmed by the authors
in previous publications, the HyperSPACE algorithm extracts spec-
tral features correlated to the structures of the investigated med-
ium. More specifically, the medium density was analyzed in this
work by using two stable and repeatable test objects. The use of
these kinds of test objects allowed for the standardization and
repeatability of the procedures. With the commercial CIRS model
047, it was possible to change the analyzed parameter with differ-
ent resolutions through different dilution levels in the blood bags,
as well as ensure the replicability of results.

The study of spectral parameters enables detection of RF signal
alterations due to the organizational and structural characteristics.
The analysis of the results highlights how spectral parameters
extracted via use of the proposed method provide a significant
increase in information regarding the investigated structure in
comparison with that supplied by the B-Mode. For example, from
the analysis of the B-Mode of the CIRS phantom in Fig. 5, the
+3 dB cysts are difficult to distinguish; in addition, from the obser-
vation of the B-Modes related to blood bags as shown in Fig. 12, it
is very difficult to discriminate the levels of dilution from FD = 0.25
up to FD = 0.9. The HyperSPACE exploits a different type of process-
ing that analyzes the signal in a new spectral domain in which it
appears possible to obtain more information about the structure
and the organization of the investigated medium. In fact, during
the Training phase, the proposed method is able to characterize
the three cysts with three different densities by providing a Config-
uration for each density value. In the Classification, the cysts are
correctly detected by the same Configurations without marking
external areas even in uncorrelated sections or for different acqui-
sition settings of the ultrasound scanner, as illustrated in Fig. 10.

In addition, the analysis of blood bags has demonstrated that it
is possible to define a Configuration for every FD level with high
specificity. The clusters referring to different FD values in fact have
different shapes and positions in the hyperspace as confirmed in
Fig. 11. In the present experimentation, only three Configurations
were set and discussed for the sake of simplicity.

Indeed, the ‘‘local normalization” of the coefficients is a specific
and innovative characteristic of the proposed method as it enables
normalization of the spectral contents of each ‘‘local” portion of the
investigated medium from the energy of the ultrasonic wave that
has actually insonified it.

The results obtained from the analysis of different SNR levels
have demonstrated the stability of the colored area, confirming
the validity of the selected Configuration. By gradually inserting
the synthetic additive noise, the percentage of the colored area
remains unchanged at 100% of the ROI until the SNR level reaches
3 dB. When the noise further increases, the percentage of colored
area decreases in an almost linear manner until finally disappear-
ing when the level of SNR is equal to �10 dB. This fact is very
encouraging for future applications in tissue characterization
where low SNR conditions occur as in the case of micro vascular-
ization detection.
6. Conclusion

This paper presents the fundamental stages and properties of
the HyperSPACE analysis method. The algorithm has already been
applied to in vivo experimentation on breast tissue differentiation
where it has achieved significant results. Based on RF ultrasonic
signal processing, it works in a N-dimensional spectral domain.
In the Training phase, the method characterizes areas at different
densities by selecting ROIs with different structural organizations
and producing Configurations. In the Classification phase, where
the entire frame is processed, the aim of the method is to detect
the regions of the investigated medium the hyperspace hs coeffi-
cients of which belong to previously identified Configurations.
Regions with the same density are correctly detected by the speci-
fic Configurations without marking any other portions. The ability
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of the HyperSPACE to differentiate density levels has been evalu-
ated via use of two stable and repeatable test objects.

The two specific characteristics of the method are the identifica-
tion of a new spectral domain, the dimension of which depends on
the number of sub-bands into which the RF signal is decomposed,
and the ‘‘local normalization” that allows for analyzing variations
in the back-propagated signal compared to the actual ultrasonic
signal present in the investigated portion of the medium. More-
over, the HyperSPACE has demonstrated great robustness with
respect to the signal-to-noise ratio. In fact, the method was able
to recognize the Configuration with a 50% covered area at a SNR
equal to �7 dB.
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