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A resampling approach to test stress-field uniformity from fault data

Dario Albarello
Dip. di Scienze della T erra, Geofisica, Università di Siena, V ia L aterina, 8–53100 Siena, Italy. E-mail: dario@ibogfs.df.unibo.it

Accepted 1999 October 1. Received 1999 September 15; in original form 1998 August 21

SUMMARY
Several methods have been proposed to constrain the stress field from fault plane
orientations and slip directions within a crustal volume characterized by brittle
deformation. All the methods are based on the assumption that the stress field is
uniform in the volume considered. If this hypothesis is not checked in advance, however,
the methodology may lead to misleading conclusions. In this work, a procedure is
defined to check stress-field uniformity by a statistical analysis of the available fault
data. Since, in most cases, the statistical features of the uncertainties that affect such
data are not well known, a distribution-free approach is proposed. It is based on a
simple search algorithm, devoted to selecting stress configurations compatible with
available data, combined with a bootstrap resampling approach. The test results are
more conservative than the ones so far proposed in the literature. When the test allows
stress heterogeneities to be safely excluded, approximate confidence intervals for the
principal stress directions can be obtained; otherwise, the level of stress heterogeneity
present in the volume under study can be assessed. An application of the proposed
procedure to a sample of fault data deduced from seismological data is presented.

Key words: fault plane solutions, inversion, statistical methods, stress distribution.

Despite some reasonable objections (Pollard et al. 1993),
INTRODUCTION

the assumption that slip direction corresponds to the direction
The definition of the tectonic stress field is of great importance of resolved shear stress on the fault plane seems to be physically
for geodynamic and seismic hazard studies. In situations where plausible and reliable in most cases. On the other hand, as a
direct measurements are lacking, fault data (i.e. fault plane result of the complexity of tectonic processes, the reliability of

orientations and slip directions) can be used to constrain the the stress uniformity assumption is problematic in many cases.
regional deviatoric stress field. However, since the unknown Thus, in order to avoid misleading conclusions, the reliability
mechanical heterogeneities of crustal rocks are the most of this assumption should be carefully checked for each case
important factor in controlling fault kinematics, the relationship studied. To this end, two procedures have been proposed, by

between the fault geometry and stress responsible for faulting Wyss et al. (1992) and Yin and Ranalli (1993). In both cases,
is not unique (McKenzie 1969). Thus, to deduce stress from assumptions are required about the statistical properties of
fault geometries, a number of additional assumptions are the uncertainties that affect observed slip directions and fault
necessary (see, e.g. Michael 1984; Gephart and Forsyth 1984; orientations: the average values of such uncertainties in the

Caputo and Caputo 1988; Angelier 1990; Yin and Ranalli first approach; and the form of the relative parent probability
1993; Choi 1995; Yin 1996). distributions in the second. However, in most cases, the experi-

The first assumption is that, on each fault plane, slip occurs mental uncertainties that affect individual fault geometries and
in the direction of the shear stress resolved on the same plane. relative parent distributions are not well known. It is therefore

Furthermore, it is assumed that it is possible to select a crustal difficult both to make a careful check of stress-field uniformity

volume in which the unknown stress field is uniform. Faults and to assess reliable confidence intervals for the final results
within this volume are thus analysed in order to identify the of stress-field inversion. The aim of the present work is to
regional stress field. In particular, the ‘best-fitting’ stress con- develop a simple algorithm to overcome these difficulties by

figuration is sought which minimizes any conventional ‘loose’ allowing a check on the stress-field uniformity hypothesis with-

out restrictive assumptions about the experimental uncertainties.function representative of angular differences between resolved

shear stress on the considered fault planes and observed slip. In the following, only the principal stress directions will be of

concern, and no attempt will be made to obtain informationA discussion concerning the statistical and numerical properties

of the various ‘loose’ functions and search procedures so far about other important parameters of the stress tensor (e.g. the

stress ratio, etc.).proposed can be found in Yin and Ranalli (1993).
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The case of negligible experimental uncertainties is con- the fault geometries within the volume of interest are com-
patible with these principal stress directions, they constitute asidered first, and a simple distribution-free test is developed

on the basis of geometrical and probabilistic considerations. ‘stress-field solution’ representative of the actual stress field in

the volume under study. This result is the basis of the ‘rightThen, to take experimental errors into account, the test is
combined with a numerical resampling procedure which allows dihedra’ approach proposed by Angelier and Melcher (1977)

for the graphical inversion of the stress field from faulting data,the hypothesis of stress-field uniformity to be checked and

the confidence intervals for principal stress directions to be and can be used as a simple test for stress-field uniformity: in
fact, the lack of a stress-field solution implies that stress is notapproximated.
uniform in the volume under study. However, this condition

is necessary but not sufficient for stress-field uniformity. A
A DISTRIBUTION-FREE TEST FOR finite probability exists that, even when the stress field is not
STRESS-FIELD UNIFORMITY uniform, at least one stress field solution will be found by

chance. To demonstrate this, we consider the case of N faults
The case of negligible experimental uncertainties within a given crustal volume. In the general case that the

stress field is not uniform, the volume can be considered to beIn the assumption of shear faulting, fault geometry is fully
composed of K subdomains, each characterized by a uniformdescribed by two perpendicular vectors U and N (boldface is
stress field significantly different from those active in the otherused in the following to indicate vectors), which represent,
subdomains.respectively, the slip direction and the normal to the fault

We assume that the stress field active in the ith subdomainplane. An alternative description can be supplied by the use of
is responsible for n

i
of the available fault geometries. A tentativethe two axes T and P related to U and N by the following

direction for the unknown principal stress axis s1 (or s3 ) isvectorial relations:
considered. In the case that it corresponds to the actual s1
(or s3 ) axis in any ith subdomain, the considered direction liesT=

1

√2
(U+N ) ,

in the P (or T) dihedron corresponding to each of the n
i
faults

in the ith subdomain. However, since the P (or T) dihedron of
each fault includes 50 per cent of all possible directions, aP=

1

√2
(U−N ) (1)

probability of 0.5 exists that, by chance, the explored direction
is also compatible with the N−n

i
faults that belong to different

(see, for example, Jost and Herrmann 1989). In practice, the T stress domains. Thus, the probability that all the faults in the
and P axes bisect the four solid angles (right dihedra) defined crustal volume under study are compatible by chance with the
by two perpendicular planes: the ‘principal’ one, normal to N, considered direction despite the stress-field inhomogeneity is
and the ‘auxiliary’ one normal to U.

0.5N−n
i
.The two opposite right dihedra including the T axis are said

to be dilatational (or T) and the remaining ones are said to be
This probability becomes vanishingly small as N approaches

compressional (or P). Eq. (1) shows that interchanging U and
reasonable sample sizes (say, >20). Thus, it appears that anN does not affect the directions of the T and P axes. This
‘apparent’ stress-field uniformity can be safely excluded for any

makes the description of fault geometries in terms of the P
practical purpose. However, if the search for possible stress

and T axes less informative, but particularly useful in the case
axes is performed by exploring a number M ( large) of possible

of seismic fault plane solutions where U and N cannot be
solutions, the probability P(H0 ) that at least one direction

discriminated by seismological data alone. Furthermore, the T
compatible with the whole set of fault data will be found by

and P directions are physically meaningful, being representative
chance could become significant. In fact, it holds that

of the principal strain axes (e3 and e1 , respectively) locally
accommodated by the fault displacement (Marrett and

P(H
0
)=1− a

M

i=1
(1−0.5N−n

i
) , (3)Allmendinger 1990).

Under the assumption that seismic slip occurs in the direction
where n

i
is zero when no fault in the sample is the effect of theof the shear stress resolved on the fault plane, it is possible to

ith explored principal stress direction, and the number M ofdemonstrate (McKenzie 1969; Carey-Gahilardis and Vergely
explored directions includes both possible s1 and s3 directions.1992) that the direction of the principal deviatoric stress s1
Eq. (3) shows that P(H0) could become significant for reasonableresponsible for the slip may lie everywhere in the compressional
sample sizes N given that M is sufficiently large.dihedra, while the principal direction s3 is located somewhere

Various inhomogeneity patterns can be explored with eq. (3).in the dilatational dihedra along a direction perpendicular to
In the extreme case that no explored direction corresponds tos1 . In particular,
any of the active stresses (n

i
=0), eq. (3) becomes

P(H
0
)=1− (1−0.5N )M . (4)

|s
1
ΩT|>|s

1
ΩP| ,

|s
3
ΩT|<|s

3
ΩP| ,

s
3
Ωs

1
=0 ,

(2)

If an exhaustive search is performed over a sufficiently dense grid,

it seems more realistic to assume that all stress configurations
where the dot indicates the scalar product of the relevant that exist in the K subdomains are actually explored. In this
vectors (eigenvalues of the stress tensor are not considered). case, eq. (3) assumes the form
When relationships (2) hold for a given fault geometry, we
can say that this fault geometry is compatible with a stress P(H

0
)=1−Ca

K

i=1
(1−0.5N−n

i
)D [(1−0.5N)M−K] . (5)

field represented by the principal stress axes s1 and s3 . If all
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T esting stress-field uniformity 537

As expected, in the case of a uniform stress field (K=1 in
eq. 5), the probability of finding at least one stress-field solution
is unity.

The case of the highest level of stress-field complexity that
can actually be detected corresponds to the presence of K
different subdomains, one for each available fault geometry

(K=N, n
i
=1 and K<M). In this case, eq. (5) becomes

P(H
0
)=1− (1−0.5N−1 )N (1−0.5N )M−N . (6)

Some numerical results showing the dependence of P (H0 ) on
N and M are given in Fig. 1. These results indicate that strong
stress-field heterogeneities can be easily detected when a

reasonable data set (say, N>10) is available.
This is not true, however, when low levels of heterogeneity

in the stress field are of concern. To illustrate this, we note

that a low level of stress-field complexity can be associated
with the presence of only two stress subdomains in the volume
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under study. In this case (K=2 in eq. 5), it can be easily Figure 2. Probability that at least one stress-field solution is found
shown (Appendix A) that, if there are N−n and n fault by chance in the presence of the lowest possible level of stress

heterogeneity. Probability values are given as a function of the numbergeometries in the first and second domain, respectively, when
N of available fault geometries and the number M of exploredN increases the probability of finding at least one stress-field
directions for maximum and minimum principal stress. The values havesolution by chance converges to 0.5n. This result also holds in
been obtained from eq. (5) with the parameters K=2, n1=N−1,the case that n stress domains, each responsible for one fault
n2=1.

only, coexist in the volume under study with a main stress field
responsible for N−n events. How rapidly this convergence
occurs as N increases is shown in Fig. 2 for K=2 and n=1,

which corresponds to the extreme case of ‘least’ detectable of stress heterogeneity: this probability is the significance level
corresponding to the hypothesis H0 that stress field is hetero-heterogeneity; that is, the lowest level of stress-field complexity.

These results can be used to check the hypothesis of stress- geneous. As an example, if at least one stress-field solution is

found after a grid search carried out over 200 possible directionsfield uniformity when experimental errors can be considered
negligible. The procedure as follows. Taking into account N by taking 20 fault geometries into account, the hypothesis

that a high-level stress-field heterogeneity exists in the volumefault geometries, an exhaustive search is performed over a

dense grid of M possible stress directions. If no stress-field under study (see Fig. 1 and eq. 6) can be safely excluded at a
10−3 significance level.solution is found, the hypothesis of stress-field homogeneity

can be safely excluded. In the case that at least one solution

is found, eqs (3) to (6) can be used to compute the probability
General case: taking experimental uncertainties into

that such a solution has been found by chance in the presence
account

In the previous discussion, the presence of at least one stress-
field solution has been considered as a necessary condition for
uniformity. On this basis, sufficiency conditions for stress-field

uniformity have been analysed by estimating probabilities of
‘apparent’ uniformity arising by chance for different levels of
actual heterogeneity in the stress field. These probabilities do

not take into account random fluctuations induced in the data
sample by random experimental errors, which result in the

apparent ‘displacement’ of P and T directions from the actual
ones. In this situation, it is possible that, by chance, ‘apparent’
stress homogeneity could arise from a heterogeneous stress

field or ‘apparent’ uniformity could result from a heterogeneous
stress field. Thus, the presence of at least one stress-field
solution is neither a sufficient nor necessary condition for

stress-field uniformity.
As tentatively shown in Appendix B, the case of apparent

uniformity induced by experimental errors seems to be less

important, at least for a reasonable dimension of the data set,
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due to its low probability of occurrence. Thus, hereafter we only
Figure 1. Probability that at least one stress-field solution is found

consider the case of ‘apparent’ heterogeneity induced by random
by chance in the presence of the highest possible level of stress

fluctuations of fault geometrical parameters due to experi-heterogeneity. Probability values are given as a function of the number
mental errors. In this case, eqs (3) to (6), being representativeN of available fault geometries and the number M of explored
of ‘true’ heterogeneity only, supply upper limits for the prob-directions for maximum and minimum principal stress. The values

have been obtained from eq. (5) with the parameters K=N, n
i
=n=1. ability that at least one stress-field solution is found by chance
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under the relevant hypothesis of stress heterogeneity. This By using the bootstrap technique, eqs (3) to (7) can be used to
check stress-field uniformity in cases in which unknown experi-reasonable conjecture allows a check to be made of stress-field

uniformity when unknown experimental errors are present. mental errors affect the data. The starting set comprises N fault

geometries, sampled from a parent multivariate populationLet us assume that a number L of fault samples are available,
each representative of the same active stress field. A grid search characterized by unknown statistical properties. By randomly

resampling from the original data set, L (a large number) newof possible stress solutions is performed for each sample, and

Q samples characterized by at least one stress-field solution samples are obtained, each characterized by the same parent
population and representative of the same stress field. For eachare found. By eqs (3) to (6) the ‘upper bound’ of probability

P(H0 ) that at least one stress solution is found by chance is sample, a grid search is performed and the eventual presence

of at least one stress-field solution is checked. If Q such casescomputed under any hypothesis H0 about the stress-field
heterogeneity level. The probability that, by chance, a number are actually found, eq. (7) can be used to check the signifi-

cance level associated with any hypothesis H0 of stress-fieldQ out of L examined samples are characterized by at least

one stress-field solution under any hypothesis (H0 ) about the heterogeneity.
stress-field complexity level is simply found by the binomial
equation

Approximate confidence intervals for principal stress
directions

∑
L

J=Q
L !

J!(L −J )!
P(H

0
)[1−P(H

0
)]L−J . (7)

The bootstrap procedure described above can also be used to

approximate possible confidence intervals for principal stress
In the case that such a probability is lower than a threshold directions in cases when stress-field heterogeneity can be
a, that specific level of stress-field complexity can be excluded excluded.
at a significance level a. If this condition is not satisfied, stress- By following the approach described above, L sets, each
field heterogeneity of the explored type cannot be excluded, with N fault geometries, are obtained by randomly resampling
no matter whether it is ‘true’ or ‘apparent’. (with replacement) from the original data set, also comprising

The test becomes more effective as the sample L becomes N fault plane solutions. For each set, M possible directions
larger. Thus, the application of such a procedure to check are evaluated as possible principal stress directions compatible
stress-field uniformity requires a large number of data sets, with the relevant set of resampled fault plane solutions. Out
each resulting from the same stress field and characterized by of the L runs, the mth direction resulted in a possible principal
random experimental variations sampled from the same parent stress direction r (m) times. If L is large, the ratio r(m)/L can be
population. Of course, with both the actual stress field and considered an estimate of the probability P that the direction
statistical features of the experimental errors being unknown, m actually represents a principal stress direction compatible
such data sets cannot be realistically drawn from experimental with the original data set.
campaigns. However, as first proposed by Michael (1987) a Thus, the set of those directions m such that
bootstrap resampling procedure can be used to obtain such

r(m)/L >a (8)
data samples from the only available data set.

The bootstrap method (see, e.g. Efron & Tibshirani 1986) is approximates the 1−a confidence interval for the inferred
based on the assumption that realizations of a random variable principal stress axis.
contain all the necessary information about relevant parent Confidence intervals defined in this way include a number
probability distribution. This assumption is corroborated by a of possible stress-field solutions, each characterized by the same
fundamental result of mathematical statistics which implies reliability. Since no ‘best fit’ criterion has been introduced, it
that an empirical distribution function is the maximum likeli- is not possible to select any particular solution as the ‘best’ one.
hood estimator of the parent probability distribution of the
sampled random variable. It can be shown that, if the experi-

A CASE STUDY
mental data set of n elements is sufficiently extended to be
representative of the parent population, each new data sample The approach described above to check stress-field uniformity
obtained by randomly extracting (with replacement) n values and to approximate confidence intervals for inverted principal
from the original set is characterized by the same statistical stress directions has been applied to the data set reported
properties as the original sample. in Table 1 for the hypothesis that unknown experimental

Several numerical procedures can be adopted to obtain errors affect the data. This sample comprises 25 seismic fault
such new samples (Efron 1990). The simplest one requires plane solutions analysed by Cocina et al. (1997) to constrain
the arrangement of the original data set (of n elements) in the the stress-field in the western sector of the Etna Volcano
form of a sequential array. Then, a pseudo-random number (southern Italy) at crustal depths (h≥10 km). By following the
generator (e.g. Press et al. 1992) is used to generate a sequence approach proposed by Gephart and Forsyth (1984) and Wyss
of n integers in the range from 1 to n. Each number of the et al. (1992), which is a standard procedure for stress-field
random series is used to pick up the corresponding element of inversion (see also Caccamo et al. 1996; Frepoli & Amato
the array. The collection of all these elements will represent a 1997; Eva et al. 1997), Cocina et al. (1997) suggest that the
‘randomly resampled’ data set. This procedure can be iterated stress field in the explored crustal volume is uniform. In order
in order to obtain an arbitrary number of data sets, each of n to check this conclusion, the data set in Table 1 has been
elements. In a statistical sense, each new sample is a ‘clone’ analysed using the bootstrap procedure proposed here.
of the original data set. The important point is that such a Up to 104 samples have been generated by randomly
‘clone’ can be realized without any knowledge about parent resampling from the data set in the Table. For each sample, a

grid of 253 possible directions for principal stress axes haspopulations (Efron and Tibshirani 1986).
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Table 1. Earthquake fault plane solutions used by Cocina et al. (1997) to constrain the stress field in the western sector of the Etna Volcano

(southern Italy). Fault geometries are indicated by T and P directions, each represented in terms of trend (degrees eastwards) and plunge (degrees

from the horizontal ). Mag is the earthquake magnitude.

N Year Mon Day H Min Lat. (°N) Lon. (°E) Mag Depth km P axis T axis

tr. (°) pl. (°) tr. (°) pl. (°)

1 1990 9 3 6 36 37.76 14.96 1.5 26 213 24 9 63

2 1990 9 3 9 43 37.77 14.95 1.6 24 220 22 358 60

3 1990 9 3 10 52 37.76 14.95 1.5 28 220 22 358 60

4 1991 1 26 10 36 37.7 14.98 1.5 31 265 10 360 24

5 1991 1 26 13 12 37.71 14.97 1.1 25 65 77 203 9

6 1991 1 27 4 46 37.71 14.98 1.1 24 72 52 177 11

7 1991 1 27 11 12 37.71 14.98 1.1 26 169 80 350 10

8 1991 1 27 15 36 37.71 14.98 1.2 22 270 14 173 27

9 1991 1 27 18 38 37.72 14.98 1.1 22 310 72 194 8

10 1991 4 20 15 48 37.75 14.97 1.8 22 223 24 19 63

11 1991 4 20 15 51 37.76 14.95 1.5 27 242 17 338 17

12 1991 4 20 16 0 37.75 14.95 1.6 22 237 2 331 58

13 1991 4 20 16 1 37.74 14.95 1.6 21 47 3 314 31

14 1991 4 20 21 24 37.76 14.94 1.4 23 240 6 334 21

15 1991 4 20 21 28 37.76 14.96 1.3 21 245 10 340 24

16 1991 4 21 1 42 37.76 14.98 1.9 26 50 3 319 17

17 1991 4 21 1 51 37.77 14.94 1.8 23 227 3 319 25

18 1991 4 21 3 12 37.76 14.94 1.6 25 237 3 329 25

19 1991 5 15 17 19 37.75 14.97 1.9 27 57 2 324 60

20 1991 5 15 17 57 37.76 14.94 1.2 20 71 13 339 13

21 1991 5 15 18 42 37.74 14.95 1.5 19 238 5 332 35

22 1991 7 13 15 30 37.73 14.99 1.0 26 36 25 128 3

23 1991 7 16 13 20 37.74 14.98 2.8 27 67 6 331 45

24 1991 7 16 15 39 37.75 14.97 2.7 28 63 6 327 44

25 1991 9 24 0 4 37.68 14.97 1.5 28 294 38 203 1

been explored. These directions have been selected by following
the procedure in Appendix C in order to ensure a uniform
coverage of the equi-area stereonet with an average density of

about 5°. For each run, the presence of at least one ‘stress-
field solution’ (see eq. 2) has been checked. The relative fre-
quency of such cases as a function of the number of samples

considered is reported in Fig. 3 (pattern A). This frequency
tends to stabilize around a value of 0.26 (2632 out of 104 trials)
after a few thousand iterations.

By using eqs (6) and (7) with N=25, M=253, L =104 and
Q=2632, the hypothesis of maximum heterogeneity can be

excluded at a high confidence level (P<10−6). However, a
low level of heterogeneity cannot be excluded with the same
high confidence level. This can be seen by assuming that only

two stress subdomains exist, and that one of them is responsible
for one fault geometry only ( least-stress heterogeneity). In this
case, eqs (5) and (7) (with N=25, M=253, K=2, n=1,

L =104 and Q=2632) indicate a probability P (H0 ) near unity.
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This result implies that stress-field heterogeneity of the lowest
Figure 3. Results of the test for stress-field uniformity performedlevel cannot be excluded. Further applications of eqs (5) and
using the data in Table 1. In the plot, the relative frequency of(7) allow intermediate levels of stress heterogeneity to be
bootstrap iterations that allowed at least one stress solution compatible

excluded in the crustal volume under study.
with the relevant resampled data set to be found is reported as a

In the hypothesis that stress heterogeneity is not an artefact
function of the number of bootstrap runs. (A) Results obtained using

resulting from wrong data, a different data selection can be the data set in Table 1; (B) results obtained using the same data set
performed in order to identify the subvolumes characterized with the exclusion of the event that occurred on 1991/7/13. For each
by a ‘uniform’ stress field. Such a subvolume could be the one bootstrap iteration, 253 directions were explored with an average grid

density of about 5°.below 11 km depth. In this case, the bootstrap procedure
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(pattern B in Fig. 3) suggests a relative frequency of samples
characterized by at least one stress solution higher than 0.5.
By using eqs (5) and (7), it can be easily shown that, in this

case, stress-field heterogeneity can be safely excluded also in
the case of the lowest level of stress-field complexity.

Since the stress field can be now assumed to be uniform, the

bootstrap procedure can be used (eq. 8) to approximate 95 per
cent confidence intervals for principal stress directions. Results
of this analysis after 104 bootstrap trials are given in Fig. 4.

Confidence intervals appear to be larger than the ones obtained
by Cocina et al. (1997) (Fig. 4), and include the ‘best-fitting’
solutions obtained by these authors.

CONCLUSIONS

A distribution-free approach for testing stress-field uniformity
with regard to fault geometry (plane orientation and slip
direction) has been proposed. The test is based on a numerical

resampling procedure (bootstrap), which is computationally
simple and can easily be implemented in an efficient computer

code. Since only fault geometries are considered, the test can
be used for both structural and seismic data.

The basic assumption underlying the proposed approach is

that fault slip occurs in the direction of shear stress resolved
on the fault plane. No detailed knowledge of the uncertainties
that affect fault geometries is required, but the data set must be

known to be representative of the unknown parent population.
All other assumptions, both concerning conventional ‘best-
fitting’ criteria or statistical properties of parent populations

of fault parameters, are unnecessary.
The test proposed here tends to be more conservative than

other parametric tests (see, for example, Yin & Ranalli 1993),

since it assumes stress heterogeneity as the hypothesis to be
rejected by testing data: in practice, the stress field is supposed
to be heterogeneous and data are used to falsify this hypothesis.

This position seems to be more in line with geological infor-
mation, which suggests strong variations in the crustal stress
field as a result of strength heterogeneities at several scales

(see, for example, Rebai et al. 1992). Thus, in cases in which
insufficient information is available, stress heterogeneity is not
excluded a priori, and possible misleading conclusions resulting
by faulty assumptions of stress uniformity are avoided.

Figure 4. Comparison of confidence intervals for the maximum andAnother advantage of the test described here is that several
minimum principal stress directions obtained using the bootstraplevels of stress-field heterogeneities can be explored and, possibly,
approach proposed here (a) and those obtained by Cocina et al.rejected. This could provide useful information about local
(1997) (b). (a) Dark and white circles in the stereonet indicatestress-field features and drive the search for uniform-stress
approximate 95 per cent confidence intervals for s3 and s1, respectively,

crustal subvolumes.
after 104 bootstrap iterations, using for each iteration a grid search

The approach does not allow an ‘optimal’ stress-field performed over 253 directions (which corresponds to an average grid
solution to be found from the available data. This is the result density of about 5°), and the data shown in Table 1, with the exception
of the choice not to take into account conventional ‘best-fit’ of the event that occurred on 1991/7/13. (b) Crosses and small squares,
criteria. It is not a limitation of the proposed procedure, which respectively, indicate 95 per cent confidence intervals for s3 and s1

proposed by Cocina et al. (1997). Circles indicate the positions of theaims to check stress-field uniformity only: other more efficient
‘best-fitting’ directions of the principal stress axes (after Cocina et al.and complete approaches (e.g. Yin & Ranalli 1993) can be
1997). An equal area lower emisphere projection is used. North isused to assess best-fitting solutions and stress ratios when stress
upwards and east is to the right.uniformity has been safely assessed. Furthermore, since approxi-

mate confidence intervals for the principal stress directions can
be obtained by the present approach, these can be used to
select the initial positions required for non-linear inversion proposed by Wyss et al. (1992) for detecting stress-field hetero-

geneities. Furthermore, it has been shown how the presentprocedures (for example Gephart & Forsyth 1984).
An application of the present approach to real data has approach allows the level of stress complexity in the volume

under study to be determined, and how this information canbeen given. It has been shown that, at least in the case

considered here, this approach is more sensitive than the one be used to identify uniform-stress subvolumes. A comparison
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Pollard, D.D., Salzer, S.D. & Rubin, A.M., 1993. Stress inversionof approximate confidence intervals for principal stress axes
methods: are they based on faulty assumptions? J. struct. Geol., 15,obtained by the proposed procedure with those obtained by
1045–1054.a ‘standard’ methodology suggests that the latter, at least for

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P.,the case considered here, tends to seriously underestimate the
1992. Numerical Recipes, 2nd edn, Cambridge University Press,

actual uncertainty of the principal stress directions.
Cambridge.
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filed in the Mediterranean region: evidence for variations in stress
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that M possible dihedra are explored, the probability that, due end, the grid has been defined over the equi-area stereonet
projection (Wulff net) of the hemisphere. A unitary Wulffto random fluctuations, at least one of them can collect all

P (or T) axes can be estimated by stereonet can be obtained by using the relationships

x
i
=sin[(p/4)− (l

i
/2)] cos (w

i
) ,1− (1−0.5N )M , (B1)

y
i
=sin[(p/4)− (l

i
/2)] sin (w

i
) (C2)which becomes rapidly small as N increases. As an example,

for M=200 and N=15, the probability that ‘apparent’ (see, for example, Aki & Richards 1980) which reproduces the
uniformity is induced by random errors is 0.6 per cent. hemisphere on a plane circular surface of unitary radius: values

x
i
and yi represent coordinates on the plane corresponding to

the ith direction defined by the couple (w
i
, l
i
). A uniform

APPENDIX C: GRID FOR THE SEARCH OF
coverage of the hemisphere can thus be obtained if x and y

POSSIBLE STRESS-FIELD SOLUTIONS
are allowed to vary in the intervals

It is clear that a grid search performed over the lower
x
i
µ[−1, +1] ,

hemisphere, allowing the trend (w) and plunge (l) angles to
y
i
µ[−1, +1] ,vary in the intervals

(x2
i
+y2

i
)1/2≤1 (C3)wµ[−p, +p] ,

with uniform step D along both the x and y axes. Directions1µ[0, p/2] (C1)
for the grid search can be easily obtained by converting these
positions in space directions using the inverse of eqs (C2),with a uniform angular step d for both w and l does not result

in a uniform grid. In fact, the grid elements tend to concen- which is given by

trate around the direction normal to the horizontal plane.
w
i
=tan−1(x

i
/y
i
) ,

In order to obtain an effective search for stress direction,
the areal density of grid elements should be uniform. To this l

i
=p/2−2 sin−1[y

i
/cos (w

i
)] . (C4)
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