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HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment.
HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid
simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation
Algorithm (HRSSA). HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring
the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often
considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for
modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom
applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA).

1. Introduction

Computational systems biology is becoming a fundamental
tool of life-science research, which aims at developingmodels
representing biological phenomena and reliable computa-
tional techniques for their simulation [1–7].

We introduce HSimulator, a Java hybrid stochastic/
deterministic simulator formass-action biochemical reaction
systems placed in a well-mixed environment, where position
and speed of molecular species are randomized and therefore
they do not affect reaction executions. Species 𝑆1, . . . , 𝑆𝑛 are
represented in terms of abundances (number of molecules)
and reactions 𝑅1, . . . , 𝑅𝑚 are defined as

𝑅𝑗 : V1𝑗𝑆1 + ⋅ ⋅ ⋅ + V𝑛𝑗𝑆𝑛 󳨀→ V󸀠1𝑗𝑆1 + ⋅ ⋅ ⋅ + V󸀠𝑛𝑗𝑆𝑛, 𝑐𝑗, (1)

where the species on the left of the arrow are reactants and the
ones on the right are products.The stoichiometric coefficients
V𝑖𝑗 and V󸀠𝑖𝑗 indicate how many molecules of reactant are
consumed and howmanymolecules of product are produced,
respectively. The constant 𝑐𝑗 at the end of the reaction is the
stochastic reaction constant introduced by Gillespie [8] for

computing reaction firing according to the definition ofmass-
action propensities.

From themilestonework ofGillespie [8], where theDirect
Method (DM) has been defined, exact stochastic simulation
is the most accurate simulation approach. Its drawback is
the high computational complexity arising from the need of
separately simulating each reaction firing. Several algorithms
have been introduced to decrease simulation runtime, such as
theNext ReactionMethod (NRM, [9]) and later the Rejection-
based Stochastic Simulation Algorithm (RSSA, [10]).The latter
is tailored for complex biochemical reactions with time-
consuming propensity functions and it constitutes the state
of the art of exact stochastic simulation.

Despite the improvements, the problem of simulation
complexity remains. In fact, the investigation of complex
diseases or disorders is often concerned with extended
biomolecular networks involving genes, proteins, metabo-
lites, and signal transduction cascades.This justifies the intro-
duction of approximate simulation strategies, which sacrifice
accuracy to decrease runtime. Such strategies progressively
reduce the stochasticity of the dynamics [11, 12] until reaching
a deterministic simulation, where the model is translated to a
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system of ordinary differential equations (ODEs, [7, 13]) and
the dynamics provides an averaged behavior.

A drawback of an approximate simulation is that all
reactions in the model are simulated according to the same
approximate strategy. This is an issue when exact simulation
is required at least for a small part of the reaction network, for
example, when slow reactions are considered to model rare
stochastic events. In such a case, a hybrid simulation strategy
is able to partition reactions into subsets that are simulated by
different algorithms [7, 14, 15]. Hybrid simulation therefore
needs to synchronize the progress of different simulation
strategies in order to guarantee the exactness of the simula-
tion of slow reactions.This requires considering time-varying
transition propensities, which in turn require the computation
of integrals to calculate the exact firing time of slow reactions
[7, 14, 16–20] (see also Section 2.5 and (19)). This step is com-
putationally demanding and practical implementation neces-
sarily approximates the integral computation by a numerical
method that affects the accuracy of the simulation of slow
reactions.

The Hybrid Rejection-based Stochastic Simulation Algo-
rithm (HRSSA) has been recently introduced in [21] to
avoid approximations in simulating slow reactions. HRSSA
exploits some computational advantages introduced in RSSA
to exactly simulate slow reactions and to apply an efficient and
accurate dynamic partitioning of reactions, which constitute
the two most significant bottlenecks of hybrid simulation.

HSimulator herein presented fills a gap in the current
literature of stochastic and hybrid simulation by providing
a suite of published state-of-the-art simulation algorithms
including, in the same package, the exact algorithm RSSA
and the first publicly available implementation of its hybrid
version HRSSA. The benchmarks in the paper show that the
HSimulator implementation is often faster than the state-of-
the-art simulator COPASI [22]. HSimulator is released under
the COSBI Shared Source license agreement (COSBI-SSLA)
and it is available for download at the COSBI website at
http://www.cosbi.eu/research/prototypes/hsimulator.

2. Materials and Methods

HSimulator provides an implementation of five state-of-the-
art simulation strategies covering exact stochastic simulation
(DM and RSSA), deterministic simulation (Forward Euler
and the Runge-Kutta-Fehlberg RK45 adaptive algorithm),
and hybrid simulation (HRSSA). For deterministic and
hybrid simulations, the simulator automatically translates the
mass-action reaction network into a set of ordinary differ-
ential equations (ODEs, see Section 2.3). In the following
some insights about the implemented simulation algorithms
are provided as well as their pseudocodes, which can be used
as a reference to better understand the functionalities imple-
mented in the simulator (for additional details, the reader is
invited to refer to the user guide of HSimulator available at
http://www.cosbi.eu/research/prototypes/hsimulator). Read-
ers already familiar with the topic can skip this section and
going directly to Section 3.

2.1. Direct Method (DM). The Direct Method constitutes the
first practical implementation of an exact stochastic simulator
[8]. The simulation of an exact algorithm is based on the
concept of reaction probability density function (pdf):

𝑃 (𝜏, 𝑗 | x, 𝑡) = 𝑎𝑗 (x) 𝑒−𝑎0(x)𝜏, (2)

which provides the probability 𝑃(𝜏, 𝑗 | x, 𝑡)𝑑𝜏 that the next
reaction to apply will be 𝑅𝑗 in the infinitesimal time interval[𝑡 + 𝜏; 𝑡 + 𝜏 + 𝑑𝜏], given the system state x at time 𝑡.

The state of the system at time 𝑡 is represented by the
column vector

X (𝑡) = (𝑋1 (𝑡) , . . . , 𝑋𝑛 (𝑡))𝑇 , (3)

where 𝑋𝑖(𝑡) is the number of molecules of species 𝑆𝑖 in the
system at time 𝑡. In the following we will often write x for
X(𝑡) and 𝑥𝑖 for𝑋𝑖(𝑡) to improve the readability of formulas.

The term 𝑎𝑗(x) in (2) is the propensity of 𝑅𝑗 in the state x,
while the total propensity 𝑎0(x) is the sum of the propensities
of all reactions:

𝑎0 (x) = 𝑚∑
𝑗=1

𝑎𝑗 (x) . (4)

The reaction propensities 𝑎𝑗(x) are computed from the
stochastic reaction rate 𝑐𝑗:

𝑎𝑗 (x) = {{{
𝑐𝑗, if ℎ𝑗 (x) = 0
ℎ𝑗 (x) 𝑐𝑗, otherwise, (5)

where ℎ𝑗(x) is the number of distinct reactant combinations
for 𝑅𝑗 in the state x [8]. For standard mass-action kinetics, as
considered here, it is

ℎ𝑗 (x) = ∏
𝑖
(𝑥𝑖
V𝑖𝑗
) = ∏

𝑖

𝑥𝑖!
V𝑖𝑗! (𝑥𝑖 − V𝑖𝑗)! , (6)

where V𝑖𝑗 are the stoichiometric coefficients of 𝑅𝑗 according
to (1).

Equation (2) shows that the next reaction 𝑅𝑗 fires with a
discrete probability 𝑎𝑗(x)/𝑎0(x) and its firing time 𝜏 has an
exponential distribution with rate 𝑎0(x). Gillespie introduced
the Direct Method (DM) for exactly sampling the pdf 𝑃(𝜏, 𝑗 |
x, 𝑡) by applying the inverse transformation:

𝜏 = − ln (𝑟1)𝑎0 (x) ,

𝑗 = the smallest index s.t.
𝑗∑
𝑖=1

𝑎𝑖 (x)𝑎0 (x) ≥ 𝑟2,
(7)

where 𝑟1 and 𝑟2 are random numbers drawn from a uniform
distribution 𝑈(0, 1). The pseudocode of the DM algorithm is
in Algorithm 1.

http://www.cosbi.eu/research/prototypes/hsimulator
http://www.cosbi.eu/research/prototypes/hsimulator
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Input: a reaction system with 𝑛 species and𝑚 reactions as the one in (1), with a stochastic
reaction constant 𝑐𝑗 associated with each reaction 𝑅𝑗; an initial state X(𝑡0) defining molecule
abundances at time 𝑡0; the last time instant 𝑡end to be simulated.
Output: a time series of states X(𝑡), 𝑡 ∈ [𝑡0; 𝑡end], providing the dynamics of the system.
Pseudocode:(0) 𝑡 fl 𝑡0;(1) while 𝑡 < 𝑡end do(2) For each reaction 𝑅𝑖, 𝑖 = 1, . . . , 𝑚, compute reaction propensities 𝑎𝑖(x) according

to (5);(3) Compute 𝑎0(x) according to (4);(4) Generate two random numbers 𝑟1, 𝑟2 in 𝑈(0, 1);(5) 𝜏 fl − ln(𝑟1)/𝑎0(x);(6) Select 𝑅𝑗 such that 𝑗 satisfies
𝑗−1∑
𝑖=1

𝑎𝑖(x)𝑎0(x) < 𝑟2 ≤
𝑗∑
𝑖=1

𝑎𝑖(x)𝑎0(x) ;(7) Compute X(𝑡 + 𝜏) by applying 𝑅𝑗 to x;(8) 𝑡 fl 𝑡 + 𝜏;(9) end while

Algorithm 1: Gillespie’s Direct Method (DM).

Input: The same as DM (Algorithm 1) together with a simulation parameter 0 < 𝛿 < 1 for
calculating the fluctuation interval of the system state.
Output: a time series of states X(𝑡), 𝑡 ∈ [𝑡0; 𝑡end], providing the dynamics of the system.
Pseudocode:(0) 𝑡 fl 𝑡0;(1) while 𝑡 < 𝑡end do(2) Define the fluctuation intervalX = [x; x] according to (8);(3) For each reaction 𝑅𝑖, 𝑖 = 1, . . . , 𝑚, compute propensity bounds 𝑎𝑖(x), 𝑎𝑖(x) and

the total propensity 𝑎0(x);(4) while (𝑡 < 𝑡end ∧ x ∈ X) do(5) Generate three random numbers 𝑟1, 𝑟2, 𝑟3 in 𝑈(0, 1);(6) 𝜏 := − ln(𝑟1)/𝑎0(x);(7) Select 𝑅𝑗 such that 𝑗 satisfies
𝑗−1∑
𝑖=1

𝑎𝑖(x)𝑎0(x) < 𝑟2 ≤
𝑗∑
𝑖=1

𝑎𝑖(x)𝑎0(x) ;(8) accepted fl false;(9) if (𝑟3 ≤ 𝑎𝑗(x)/𝑎𝑗(x)) then(10) accepted fl true;(11) else(12) Compute 𝑎𝑗(x) according to (5);(13) if 𝑟3 ≤ 𝑎𝑗(x)/𝑎𝑗(x) then accepted fl true;(14) end if(15) if (accepted) then(16) Compute X(𝑡 + 𝜏) by applying 𝑅𝑗 to x;(17) end if(18) 𝑡 fl 𝑡 + 𝜏;(19) end while(20) end while

Algorithm 2: Rejection-based Stochastic Simulation Algorithm (RSSA).

2.2. The Rejection-Based Stochastic Simulation Algorithm
(RSSA). The Rejection-based Stochastic Simulation Algo-
rithm (RSSA) is a novel exact stochastic simulation algorithm
introduced in [10] and further improved in [7, 24–26].
RSSA constitutes the state of the art of exact stochastic

simulation tailored for complex biochemical reactions with
time-consuming propensity functions. The pseudocode of
RSSA is provided in Algorithm 2.

RSSA computes for each reaction a lower bound and an
upper bound of the propensity, which encompass all possible
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values of reaction propensities over the fluctuation interval.
Such bounds are derived by defining a fluctuation interval
X = [x; x] for the system state x (step (2)), where

x = ⌊x − 𝛿x⌋ ,
x = ⌈x + 𝛿x⌉ (8)

and 0 < 𝛿 < 1 is a simulation parameter whose value is usu-
ally between 0.1 and 0.2 (10–20%of the system state). Because
reaction propensities with mass-action kinetics are mono-
tonic functions, the propensity bounds of reaction 𝑅𝑖, for 𝑖 =1, . . . , 𝑚, correspond to the interval [𝑎𝑖(x), 𝑎𝑖(x)] (step (3)).
These propensity bounds are recomputed only when the cur-
rent system state is not anymore inside its fluctuation interval
(x ∉ X).

The selection of reaction firing in RSSA is composed of
two steps. First, it selects a candidate reaction 𝑅𝑗 with prob-
ability 𝑎𝑗(x)/𝑎0(x) (step (7)), where 𝑎0(x) = ∑𝑚𝑗=1 𝑎𝑗(x). The
candidate reaction is then validated according to a rejection-
based procedure that implements the toss of a biased coin
with success probability 𝑎𝑗(x)/𝑎𝑗(x) (steps (8)–(14)). To do
this, the algorithm generates a random number 𝑟 in 𝑈(0, 1)
and moves in one of the following three cases:

(1) If 𝑟 ≤ 𝑎𝑗(x)/𝑎𝑗(x), then 𝑅𝑗 is accepted without
computing its propensity 𝑎𝑗(x) because 𝑎𝑗(x)/𝑎𝑗(x) ≤𝑎𝑗(x)/𝑎𝑗(x) (quick accept);

(2) If 𝑟 > 𝑎𝑗(x)/𝑎𝑗(x), then reaction propensity 𝑎𝑗(x) is
computed and 𝑅𝑗 is accepted if 𝑟 ≤ 𝑎𝑗(x)/𝑎𝑗(x) (slow
accept);

(3) If 𝑟 > 𝑎𝑗(x)/𝑎𝑗(x), then 𝑅𝑗 is rejected (rejection).

After a reaction is accepted to fire, the state is updated and
the algorithmmoves to the next simulation iteration without
updating the propensity bounds. Only for uncommon cases
when state x moves out of its fluctuation interval does
RSSA have to define a new fluctuation interval and update
the propensity bounds. Numerical experiments show that
propensity updates in RSSA are infrequent; hence their
impact is very low during the computation [10]. This advan-
tage is mitigated by the penalty paid to prepare a potential
advancement of the system for a candidate reaction that is
finally rejected to fire, but the overall performance is still
considerably better than DM and other stochastic simulation
algorithms.

2.3. The Forward Euler Algorithm. The forward Euler algo-
rithm is the simplest example of deterministic simulation
algorithm. Here the mass-action model is translated to a
system of ordinary differential equations (ODEs, [7, 13]) and
the dynamics provides an averaged behavior of the system.

Consider a biochemical reaction system with 𝑆1, . . . , 𝑆𝑁
species, 𝑅1, . . . , 𝑅𝑀 reactions defined according to (1). The
mass-action deterministic rate constant 𝑘𝑗 of 𝑅𝑗 can be
obtained from the stochastic one 𝑐𝑗 as

𝑘𝑗 = 𝑐𝑗 (𝑁𝐴𝑉)Order𝑗−1
∏𝑁𝑖=1V𝑖𝑗! , (9)

where 𝑁𝐴 indicates Avogadro’s number, 𝑉 is the volume
where the reaction is taking place, and Order𝑗 is the overall
order of reaction 𝑅𝑗, which in mass-action is defined as the
sum of the stoichiometric coefficients of reaction reactants.
Finally, the ODE describing the evolution in terms of molar
concentrations of species 𝑆𝑖, 𝑖 = 1, . . . , 𝑁, is

𝑑 [𝑆𝑖]𝑑𝑡 = 𝑀∑
𝑗=1

(𝑘𝑗 (V󸀠𝑖𝑗 − V𝑖𝑗) 𝑁∏
𝑙=1

[𝑆𝑙]V𝑙𝑗) ,
𝑖 = 1, . . . , 𝑁,

(10)

where squared brackets are used to indicate molar concen-
tration of species ([𝑆𝑖] = 𝑆𝑖/(𝑁𝐴𝑉), 𝑖 = 1, . . . , 𝑁). Once the
model has been translated to a system of ODEs

𝑑 [X]𝑑𝑡 = F (𝑡, [X]) , (11)

a first-order approximation of the next system state can be
computed by

[X𝑛+1] = [X𝑛] + ℎ ⋅ F (𝑡𝑛, [X𝑛]) , (12)

where ℎ is a user-defined discretization stepsize. The pseu-
docode of the Forward Euler algorithm is provided in
Algorithm 3.

2.4. Runge-Kutta-Fehlberg Algorithm (RK45). The forward
Euler algorithm introduced in the previous section is a first-
order numerical method provided for didactic purposes.
Several numerical methods have been introduced to increase
the accuracy of deterministic simulations and to decrease
simulation runtime. A popular algorithm is the Runge-Kutta-
Fehlberg algorithm (RK45). This algorithm represents the
standard choice of several numerical integrators when the
model does not exhibit stiffness. It is also often used in hybrid
simulation strategies for the simulation of the fast part of
the network. The reader can find a comprehensive guide to
numerical methods of ODEs in [7, 13].

The Runge-Kutta Fehlberg method of fourth-order, also
known as the RK45 method, updates the system state by

[X𝑛+1] = [X𝑛] + 25216𝐾1 + 14082565𝐾3 + 21974104𝐾4 − 15𝐾5 (13)

coupled with a fifth-order RK method

[X̃𝑛+1] = [X𝑛] + 16135𝐾1 + 665612825𝐾3 + 2856156430𝐾4
− 950𝐾5 + 255𝐾6.

(14)
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Input: a system of ODEs 𝑑[X]/𝑑𝑡 = F(𝑡, [X]) corresponding to a biochemical reaction
system, the initial state [X(𝑡0)] of the system with species concentrations at time 0, the last
time instant 𝑡end to be simulated and the discretization stepsize ℎ.
Output: a time series of states [X(𝑡)], 𝑡 ∈ [𝑡0; 𝑡end], providing the dynamics of the system in
terms of molar concentrations with discretization stepsize ℎ.
Pseudocode:(0) initialize time 𝑡 = 0 and state [X] = [X(𝑡0)];(1) while 𝑡 < 𝑡end do(2) update [X] = [X] + ℎ ⋅ F(𝑡, [X]);(3) update 𝑡 = 𝑡 + ℎ;(4) end while

Algorithm 3: Forward Euler method.

Given a system ofODEs as in (11) and a discretization stepsizeℎ, the values of 𝐾1, . . . , 𝐾6 are shared between (13) and (14)
and they can be computed as

𝐾1 = ℎ ⋅ F (𝑡𝑛, [X𝑛])
𝐾2 = ℎ ⋅ F(𝑡𝑛 + ℎ4 , [X𝑛] + 14𝐾1)
𝐾3 = ℎ ⋅ F(𝑡𝑛 + 3ℎ8 , [X𝑛] + 332𝐾1 + 932𝐾2)
𝐾4 = ℎ ⋅ F(𝑡𝑛 + 12ℎ13 , [X𝑛] + 19322197𝐾1 − 72002197𝐾2

+ 72962197𝐾3)
𝐾5 = ℎ ⋅ F(𝑡𝑛 + ℎ, [X𝑛] + 439216𝐾1 − 8𝐾2 + 3680513 𝐾3

− 8454104𝐾4)
𝐾6 = ℎ ⋅ F(𝑡𝑛 + ℎ2 , [X𝑛] − 827𝐾1 + 2𝐾2 − 35442565𝐾3

+ 18594104𝐾4 − 1140𝐾5) .

(15)

The fourth-order version of the algorithm provided in (13) is
used to compute the dynamics of the system. The fifth-order
scheme of (14), instead, is used to estimate themaximum local
truncation error introduced in the simulated step:

Δ 𝑛+1 = max(
󵄨󵄨󵄨󵄨󵄨[X̃𝑛+1] − [X𝑛+1]󵄨󵄨󵄨󵄨󵄨ℎ ) , (16)

where max provides the maximum value along the vector of
truncation errors. The error estimate Δ 𝑛+1 is then compared
to the error threshold 𝜖𝑡 specified by the user. When Δ 𝑛+1 ≤𝜖𝑡, the local truncation error is assumed to be smaller than
the threshold, the state [X𝑛+1] is accepted, and the algorithm
moves one step forward. Otherwise, the new state is not
accepted and the next state is evaluated again using a different

(smaller) value of ℎ. In both cases, the value of ℎ is updated
as

ℎ𝑛+1 = ℎ𝑛𝜎 (17)

𝜎 = ( 𝜖𝑡2Δ 𝑛+1)
1/4 ≈ 0.84 ( 𝜖𝑡Δ 𝑛+1)

1/4 . (18)

When the estimations [X𝑛+1] and [X̃𝑛+1] agree tomore signif-
icant digits than required, then 𝜎 becomes greater than 1 andℎ is increased. Equation (18) is derived from the general for-
mula 𝜎 = (𝜖𝑡/Δ 𝑛+1)1/𝑝, which defines how to update the value
of ℎ of an adaptive one-step numerical method of order 𝑝,
by considering the error estimate Δ 𝑛+1 and the user-defined
threshold 𝜖𝑡. The additional multiplicative factor of 0.84 is an
empirical number commonly added inRK45 implementation
to reduce the variability of ℎ, because very high values of
the stepsize increase the probability of repeating the next
computed step.

The implementation of the algorithm is in Algorithm 4.
The value of ℎ is updated at each step starting from an user-
provided initial value ℎ0. The next computed state of the sys-
tem is accepted only when the estimate of the local truncation
error Δ remains below the user-provided threshold 𝜖𝑡. Steps(16)–(21) are additional steps added to the implementation
in order to avoid very large modifications of ℎ in a single
step.

Even if the computation of a simulation iteration of
the RK45 algorithm is more computational demanding than
other nonadaptive Runge-Kutta implementation, the possi-
bility of changing the value of ℎ often dramatically decreases
the simulation runtime.

2.5. Hybrid Rejection-Based Stochastic Simulation Algorithm
(HRSSA). A drawback of approximate simulation is that all
the model reactions are simulated according to the same
approximate strategy.This is an issuewhen exact simulation is
required at least for a small part of the reaction network, for
example, when slow reactions are considered to model rare
stochastic events. In such a case, a hybrid simulation strategy
can be applied, which divides reactions into subsets that are
simulated by different strategies at the same time [7, 14, 15].

An issue of this approach is the synchronization between
the employed simulation strategies in order to guarantee the
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Input: a system of ODEs 𝑑[X]/𝑑𝑡 = F(𝑡, [X]) corresponding to a biochemical reaction
system, the initial state [X(𝑡0)] of the system with species concentrations at time 0, the last
time instant 𝑡end to be simulated, an initial value for the discretization stepsize ℎ0 and a
threshold for the maximum local truncation error 𝜖𝑡.
Output: a time series of states [X(𝑡)], 𝑡 ∈ [𝑡0; 𝑡end], providing the dynamics of the system in
terms of molar concentrations.
Pseudocode:(0) initialize time 𝑡 = 0, state [X] = [X(𝑡0)] and discretization stepsize ℎ = ℎ0;(1) while 𝑡 < 𝑡end do(2) compute 𝐾1 = ℎ ⋅ F(𝑡, [X]);(3) compute 𝐾2 = ℎ ⋅ F(𝑡 + ℎ/4, [X] + (1/4)𝐾1);(4) compute 𝐾3 = ℎ ⋅ F(𝑡 + 3ℎ/8, [X] + (3/32)𝐾1 + (9/32)𝐾2);(5) compute 𝐾4 = ℎ ⋅ F(𝑡 + 12ℎ/13, [X] + (1932/2197)𝐾1 − (7200/2197)𝐾2 + (7296/2197)𝐾3);(6) compute 𝐾5 = ℎ ⋅ F(𝑡 + ℎ, [X] + (439/216)𝐾1 − 8𝐾2 + (3680/513)𝐾3 − (845/4104)𝐾4);(7) compute 𝐾6 = ℎ ⋅ F(𝑡 + ℎ/2, [X] − (8/27)K1 + 2𝐾2 − (3544/2565)𝐾3 + (1859/4104)𝐾4 − (11/40)𝐾5);(8) compute [Xnew] = [X] + (25/216)𝐾1 + (1408/2565)𝐾3 + (2197/4104)𝐾4 − (1/5)𝐾5;(9) compute [X̃new] = [X] + (16/135)𝐾1 + (6656/12825)𝐾3 + (28561/56430)𝐾4 − (9/50)𝐾5 + (2/55)𝐾6;(10) compute Δ = max(|[X̃new] − [Xnew]|/ℎ) according to (16);(11) if (Δ ≤ 𝜖𝑡) then(12) update [X] = [Xnew];(13) update 𝑡 = 𝑡 + ℎ;(14) end if(15) compute 𝜎 = 0.84(𝜖𝑡/Δ)1/4;(16) if (𝜎 < 0.1) then(17) update 𝜎 = 0.1;(18) end if(19) if (𝜎 > 4) then(20) update 𝜎 = 4;(21) end if(22) update ℎ = ℎ ⋅ 𝜎;(23) end while

Algorithm 4: The Runge-Kutta Fehlberg (RK45) algorithm.

exactness of the simulation of slow reactions.This is a funda-
mental aspect of hybrid simulation relying on the definition
of the probability density function (pdf) of slow reactions.
In fact, even though fast reactions can be safely simulated
across slow reaction events, it is not always the case that slow
reactions can be simulated regardless of what fast reactions
are changing in the system. Actually the reaction propensity𝑎𝑗 of a slow reaction𝑅𝑗 ∈ Rslow may depend on species whose
quantities are changed by fast reactions. For this reason, the
reaction probability density function of (2) is not suitable
to simulate the reaction subnetwork made of only the slow
reactions of the system and it has to be extended to consider
time-varying transition propensities [7, 14], which account
for the fact that reaction propensities of slow reactions
may change over time by the simulation of fast reactions.

According to [7, 14, 16–20], the pdf of the next firing of a
slow reaction 𝑅𝑗 ∈ Rslow finally becomes

𝑃slow (𝜏, 𝑗 | x, 𝑡) = 𝑎𝑗 (X (𝑡 + 𝜏)) 𝑒−∫𝑡+𝜏𝑡 𝑎slow0 (X(𝑡󸀠))𝑑𝑡󸀠 , (19)

where

𝑎slow0 (x) = ∑
𝑅𝑗∈Rslow

𝑎𝑗 (x) . (20)

The firing time 𝜏 of the next slow reaction 𝑅𝑗 is thus
obtained by solving the equation

∫𝑡+𝜏
𝑡

𝑎slow0 (X (𝑡󸀠)) 𝑑𝑡󸀠 = − ln (𝑟) , (21)

where 𝑟 is a random number from 𝑈(0, 1). Solving (21)
is computationally challenging because the state 𝑋(𝑡) is
changed by fast reactions during time interval [𝑡, 𝑡 + 𝜏].
Therefore, the hybrid simulation has to evaluate the integral
simultaneously with the simulation of fast reactions in order
to correctly generate the next slow reaction event. Moreover,
in practical implementation this step has to be necessarily
approximated by a numerical method relying on an error
threshold that introduces an additional approximation in the
simulation of slow reactions. This step is so critical that the
standard choice of several implementation available in litera-
ture, such as the hybrid algorithms implemented in COPASI
[22], intentionally avoids the computation of the integral
during the simulation by accepting some approximation also
in the simulation of slow reactions.

The hybrid algorithmHRSSA is a novel hybrid simulation
algorithm introduced in [21] to solve this problem. HRSSA is
built on top of RSSA introduced in Section 2.2. In particular,
the RSSA concept of fluctuation interval of the system
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Input: The same as RSSA (Algorithm 2) together with the time granularity 𝜏fast used for the
(approximate) simulation of fast reactions; the minimum amount 𝛾 ∈ N of molecules that
has to be available for fast reactions; the minimum number of times 𝜃 ∈ N that a fast
reaction has to be applied, in average, within the time range of size 𝜏fast.
Output: the setsRslow andRfast of slow and fast reactions, respectively.
Pseudocode:(0) Rslow fl 0;Rfast fl 0;(1) for each reaction 𝑅𝑗(2) if (𝑎𝑗(x)𝜏fast < 𝜃) then(3) Put reaction 𝑅𝑗 in the setRslow;(4) else if (∃𝑆𝑖, modified by 𝑅𝑗 with stoichiometric coefficient V𝑖𝑗, such that𝑥 𝑖 < 𝛾 ⋅ V𝑖𝑗) then(5) Put reaction 𝑅𝑗 in the setRslow;(6) else(7) Put reaction 𝑅𝑗 in the setRfast;(8) end if(9) end for

Algorithm 5: The dynamic reaction partitioning of HRSSA (please refer to [21] for details).

state is widely used to provide an important computational
advantage. HRSSA synchronizes the simulation of slow and
fast reactions by avoiding the computation of the integral of
(21) and applies an accurate dynamic partitioning of reactions
without updating reaction classification at each simulation
step.

HRSSA updates reaction partitioning only when the
current system state does not fit anymore in its fluctuation
interval (see (8)). This permits reducing the computational
overhead without losing the accuracy of the classification.
HRSSA considers both reaction propensities and the num-
ber of transformed molecules for reaction partitioning, by
replacing real propensities with their lower bounds. The
adoption of bounds instead of real propensities does not affect
the accuracy of the classification. Conversely, the usage of
lower bounds imposes more stringent constraints that tend
to increase the number of reactions that are classified as
slow (and therefore simulated without approximations). The
pseudocode of the dynamic reaction partitioning ofHRSSA is
in Algorithm 5. The if clauses of steps (2) and (4) implement
the two conditions on reaction propensities and number of
transformed molecules, respectively.

After reaction partitioning in the two sets of slow and
fast reactions, HRSSA computes the sum of upper propensity
bounds 𝑎slow0 (x) of slow reactions as defined in (20).The firing
time of a candidate slow reaction is then computed as

𝜏 = − ln (𝑟)
𝑎slow0 (x) , (22)

where 𝑟 is a random number in 𝑈(0, 1).
Under the hypothesis that the system state will remain

inside its fluctuation interval in [𝑡, 𝑡 + 𝜏], we can consider𝑎slow0 (x)not dependent on time over [𝑡, 𝑡+𝜏] and this allows us
to simulate fast reactions over this interval without taking any
side effect on the application of slow reactions into account.
This is because (22) remains valid, regardless of the action of

fast reactions, as long as the current system state respects its
bounds.

After the simulation of fast reactions for the time interval[𝑡, 𝑡 + 𝜏], a slow reaction is chosen and validated to fire by a
rejection test, according to the RSSA simulation strategy. To
guarantee the exact simulation of slow reactions (the proof is
in [21]), the simulation of fast reactions is required to happen
in a feasible system state. Therefore, every time the system
state exits from its bounds the simulation is stopped and the
fluctuation interval is updated. The pseudocode of HRSSA is
provided in Algorithm 6.

3. Results and Discussion

HSimulator is a cross-platform simulation software writ-
ten in Java, offering a suite of state-of-the-art stochastic,
deterministic, and hybrid simulation strategies for mass-
action well-stirred biochemical reaction systems. Multi-
compartmental modeling is natively supported allowing
the definition of nested reaction volumes via a custom-
ary text-based representation of reactions and compart-
ments. The multithreading implementation allows scal-
ing very well when computing averaged model dynam-
ics obtained by running multiple stochastic simulations in
parallel. The software has been designed to run in three
user-scenarios: (i) via command-line, for example, as batch
jobs or as part of wider modeling terminal scripts; (ii)
programmatically embedded via its API in custom appli-
cations [27] or within MATLAB/Octave/R/Mathematica
projects; (iii) as a self-standing simulation environment
with a graphical user interface (GUI) for biomedical
system modeling. For the three usage scenarios exten-
sive documentation is available at the software web page
(http://www.cosbi.eu/research/prototypes/hsimulator.). The
GUI assists the modeler while defining the reactions with
syntax highlighting of the typed entities and quick graphical
access to simulation parameters.The simulation environment

http://www.cosbi.eu/research/prototypes/hsimulator
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Input: The same as RSSA (Algorithm 2) together with the time granularity 𝜏fast used for the
(approximate) simulation of fast reactions; the minimum amount 𝛾 ∈ N of molecules that
has to be available for fast reactions; the minimum number of times 𝜃 ∈ N that a fast
reaction has to be applied, in average, within the time range of size 𝜏fast.
Output: a time series of states X(𝑡), 𝑡 ∈ [𝑡0; 𝑡end], providing the dynamics of the system.
Pseudocode:(0) 𝑡 fl 𝑡0;(1) while 𝑡 < 𝑡end do(2) Define the fluctuation intervalX = [x; x] according to (8);(3) For each reaction 𝑅𝑖, 𝑖 = 1, . . . , 𝑚, compute propensity bounds 𝑎𝑖(x) and 𝑎𝑖(x);(4) Update reaction partitioning (setsRslow andRfast) by applying the algorithm

in Algorithm 5 according to input parameters 𝛾, 𝜃 and 𝜏fast;(5) Compute 𝑎slow0 (x) according to (20);(6) updateNeeded fl false;(7) while (𝑡 < 𝑡end ∧ ¬updateNeeded) do(8) 𝜏 fl − ln(𝑟)/𝑎slow0 (x), where 𝑟 is a random number in 𝑈(0, 1);(9) Compute X(𝑡 + 𝜏󸀠) by simulating fast reactions (Rfast), at time steps of
maximum length 𝜏fast, according to an approximate algorithm (either
stochastic or deterministic), where 𝜏󸀠 is a value 𝜏󸀠 ≤ 𝜏 such that X(𝑡 + 𝜏󸀠) ∈ X;(10) if (𝜏󸀠 = 𝜏) then(11) Select a candidate slow reaction 𝑅𝑗 ∈ Rslow by applying RSSA steps (7)–(14)

in Algorithm 2;(12) if 𝑅𝑗 is accepted by RSSA then update X(𝑡 + 𝜏󸀠) computed at step (9) by
applying 𝑅𝑗;(13) if (X(𝑡 + 𝜏󸀠) ∉ X) then updateNeeded fl true;(14) else(15) updateNeeded fl true;(16) end if(17) 𝑡 fl 𝑡 + 𝜏󸀠;(18) end while(19) end while

Algorithm 6: The hybrid rejection-based stochastic simulation algorithm (HRSSA, please refer to [21] for details). In HSimulator, step (9)
is implemented by a deterministic Runge-Kutta numerical method.

is completed by an interactive viewport to explore and
understand the modeled system dynamics (see Figure 1)
which can be then exported as Excel spreadsheets.

To evaluate the performance of the HSimulator imple-
mentation, a set of benchmarks have been carried out con-
sidering the state-of-the-art simulator COPASI [22], version
4.19 (build 140). All the simulations have been run in the
same conditions on a 64 bit macOS SierraMacBook Pro, with
16GB of RAM. Six models have been simulated according to
6 different algorithms covering all the simulation strategies
(stochastic, deterministic, and hybrid). Namely, we consid-
ered the Direct Method (implemented in both COPASI and
HSimulator) and RSSA (only implemented in HSimulator)
for exact stochastic simulation, LSODA (implemented in
COPASI) and RK45 (implemented in HSimulator) for deter-
ministic simulation, and Hybrid Runge-Kutta (implemented
in COPASI) and HRSSA (implemented in HSimulator) for
hybrid simulation. Benchmarks have been computed by
averaging the runtime of 20 simulations. The simulation
parameters for each algorithm are in Table 1 and they have
been chosen to preserve as much as possible the reliability of
comparisons.

The Hybrid Runge-Kutta algorithm provided by COPASI
combines two fast simulation strategies available in literature
to simulate slow and fast reactions (NRM combined with the
4th order Runge-Kuttamethod [7, 13]). Reaction partitioning
is computed dynamically during the simulation according to
a threshold which provides themaximumnumber of reactant
molecules of a slow reaction. Moreover, the simulation of
slow and fast reactions is synchronized without computing
the integral of (21) by approximating reaction probabilities
of slow reactions as constant during one stochastic step.
This solution introduces an error in the simulation of slow
reactions, but makes the computation faster. HRSSA resulted
to be faster than this algorithm in all the simulation cases we
considered, even if HRSSA does not apply such approxima-
tion in simulating slow reactions.

We note that the latest version of COPASI (version 4.19
build 140) considered in our benchmarks provides other
two implementation cases of hybrid simulation algorithms
(Hybrid LSODA and Hybrid RK45). Here we considered
Hybrid Runge-Kutta because its implementation is closer
to the one of HRSSA. However, we obtained very similar
simulation runtimes also by running our benchmarks with
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Figure 1: The HSimulator graphical user interface allows easily defining, even complex, biological models in terms of customary text-based
reactions.The appropriate simulation strategy can be selected and parameterised as well according to themodel, although theHRSSAmethod
offers the best hybrid simulator. The figure shows the Oregonator model [8] simulated by the HRSSA algorithm [21]. The plot shows variable
abundances in logarithmic scale to illustrate the switch between the deterministic simulation of fast reactions (high abundances) and the
exact stochastic simulation of slow reactions (low abundances).

Table 1: Simulation parameters used for the benchmarks of the compared tools.

Algorithm Software Parameters
DM HSimulator No parameters needed
DM COPASI No parameters needed
RSSA HSimulator 𝛿 = 0.1
LSODA COPASI Relative and absolute thresholds: 10−3
RK45 HSimulator Initial stepsize: 10−2

Error threshold: 10−3
Hybrid Runge-Kutta COPASI Maximum number of reactant molecules for slow reactions: 100

RK4 stepsize: 10−2
HRSSA HSimulator 𝛿 = 0.1; 𝜏fast = 10−2; 𝛾 = 100; 𝜃 = 10

Hybrid LSODA (data not shown). Hybrid RK45 has been not
considered here, because this simulation strategy uses a static
reaction partitioning whereas HSimulator and the compared
methods use a dynamical approach allowing for a fair
benchmark between strategies. We also have to acknowledge
that COPASI is not the only simulation software available in
the literature. In the present workwe considered COPASI due
to its high popularity and to allow, as much as possible, a fair
comparisonwithHSimulator. In fact, COPASI provides a way
of specifying the biochemical system that is very close to the
one of HSimulator. Snoopy [28] is another promising simula-
tion software that provides different simulation strategies for
hybrid models, including a reinterpretation of HRSSA.

Simulation benchmarks are provided in Table 2. To allow
the reproducibility of the presented results, all the considered
models are provided with HSimulator both implemented
for HSimulator and for COPASI. Simulation benchmarks
comprehend two biological models (the MAPK cascade and

the Gemcitabine mechanism of action) to test simulation
strategies in real modeling applications plus two theoretical
models (the fully connectedmodel and themultiscalemodel)
consideredwith two different parameterisations each, to eval-
uate the performance of simulation algorithms under specific
conditions. The fully connected model has been considered
to evaluate the performance of simulation algorithms when a
mass-action biochemical reaction network of reactions that
are all slow (MCM 𝑖 = 20) or fast (MCM 𝑖 = 2000) is
simulated. Conversely, the multiscale model allowed testing
the intermediate condition, where the biochemical network
can be divided into two subnetworks working at different
time scales. This scenario has been specifically considered to
test hybrid simulation strategies. The biochemical network
of the multiscale model has been generated two times to
test the scalability of simulation algorithms (MSM (10, 50),
network of 60 species and 140 reactions; MSM (20, 100),
network of 120 species and 480 reactions, see Section 3.4
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Table 2: Simulation running times of HSimulator and of the state-of-the-art simulator COPASI. Except for the deterministic simulation,
HSimulator is demonstrated to be faster in all the considered scenarios (FCM indicates the fully connected model; MSM indicates
the multiscaled model). The considered models were simulated for 150 time units (MAPK and fully connected model), 12 time units
(Gemcitabine), and 10 time units (multiscaled model).

Algorithm MAPK Gemcitabine FCM 𝑖 = 20 FCM 𝑖 = 2000 MSM (10, 50) MSM (20, 100)
COPASI - DM 2.39 sec. 0.88 sec. 5.09 sec. 415.04 sec. 28.87 sec. 262.1 sec.
HSimulator - DM 2.23 sec. (−6%) 0.7 sec. (−12%) 1.61 sec. (−68%) 168.75 sec. (−59%) 11.0 sec. (−62%) 120.84 sec. (−54%)
HSimulator - RSSA 2.03 sec. (−15%) 0.66 sec. (−25%) 1.10 sec. (−78%) 77.46 sec. (−81%) 4.25 sec. (−85%) 37.23 sec. (−86%)
COPASI - LSODA 0.06 sec. 0.02 sec. 0.56 sec. 0.08 sec. 0.08 sec. 0.21 sec.
HSimulator - RK45 0.06 sec. (+0%) 0.04 sec. (+100%) 0.001 sec. (−99%) 0.001 sec. (−99%) 0.13 sec. (+63%) 0.52 sec. (+148%)
COPASI - Hyb. RK 0.21 sec 0.54 sec. 26.74 sec. 14.67 sec. 1.93 sec. 35.49 sec.
HSimulator - HRSSA 0.1 sec. (−52%) 0.38 sec. (−30%) 1.10 sec. (−96%) 0.8 sec. (−95%) 2.53 sec. (−31%) 5.89 sec. (−83%)

for details). The provided benchmarks seem to indicate that
HSimulator is more scalable than COPASI with respect to the
growing complexity of the model. This result is interesting,
especially from an implementer’s point of view, showing how
a recent Java-based implementation (HSimulator), in the
given conditions, may compare favourably with respect to
C++ (COPASI).

3.1. The MAPK Cascade. The Mitogen-Activated Protein
Kinase cascade (MAPK cascade) is one of the most important
and intensively studied signaling pathways [29]. The MAPK
cascade is at the heart of a molecular-signaling network
that governs the growth, proliferation, differentiation, and
survival of many cell types. Moreover, the MAPK pathway
is deregulated in various diseases, ranging from cancer to
immunological, inflammatory, and degenerative syndromes,
and thus represents also an important drug target [30].

TheMAPK cascade is a series of three protein kinases that
are responsible for cell response to growth factors. The signal𝐸1 activates MAPKKK by phosphorylation, which in turn
activatesMAPKK. Once activated,MAPKK activatesMAPK.
When 𝐸1 is added to the system, the output of activated
MAPK increases rapidly. By removing the signal 𝐸1, the
output level of activated MAPK reverts back to zero. Reverse
reactions are triggered by the signal 𝐸2 and by the MAPK
phosphatases KKpase and Kpase. The reaction-based repre-
sentation is

𝑅1 : KKK + 𝐸1 󳨀→ KKKp + 𝐸1
𝑅2 : KKKp + 𝐸2 󳨀→ KKK + 𝐸2
𝑅3 : KK + KKKp 󳨀→ KKp + KKKp

𝑅4 : KKp + KKpase 󳨀→ KK + KKpase

𝑅5 : KKp + KKKp 󳨀→ KKpp + KKKp

𝑅6 : KKpp + KKpase 󳨀→ KKp + KKpase

𝑅7 : K + KKpp 󳨀→ Kp + KKpp

𝑅8 : Kp + Kpase 󳨀→ K + Kpase

𝑅9 : Kp + KKpp 󳨀→ Kpp + KKpp

𝑅10 : Kpp + Kpase 󳨀→ Kp + Kpase,

(23)

where KKK denotes MAPKKK, KK denotes MAPKK, and K
denotes MAPK and tags 𝑝 and pp indicate phosphorylation
and double phosphorylation, respectively.

A simulation benchmark of the MAPK cascade is in
Table 2 (first column). In the computed benchmark, the
model has been simulated for 150 time units with all stochas-
tic reaction constants equal to 0.001. The initial abundances
have been set to 𝐸1 = 2000, 𝐸2 = 2000, K = 200000,
KK = 200000, and KKK = 20000. All the other species are
initialized with 0molecules.

3.2. The Gemcitabine Model. Gemcitabine is a drug for non-
small-cell lung cancer, pancreatic cancer, bladder cancer, and
breast cancer. Here we will consider a simplified model of its
mechanism of action according to [23].

Gemcitabine (dFdC, see Box 1) is transported from
plasma into the cell through the cell membrane (dFdCout →
dFdC). Gemcitabine can be deaminated by CDA in the
cytoplasm and in the extracellular environment leading to
dFdU. Both dFdC and dFdU can be phosphorylated by
dCK. Monophosphorylated Gemcitabine can be deaminated
by dCMPD, whereas dCMPD is inhibited by dFdCTP.
Alternatively, it is further phosphorylated. The Gemcitabine
triphosphates dFdCTP and dFdUTP compete with the natural
nucleoside triphosphate dCTP for incorporation into nascent
DNA chain and inhibit DNA synthesis, thus blocking cell
proliferation in the early DNA synthesis phase.

A simulation benchmark of the Gemcitabine model is in
Table 2 (second column, simulation length 12 time units). In
the computed benchmark, stochastic reaction constants are
[23]: 𝑐1 = 9.97, 𝑐2 = 2.61𝑒−4, 𝑐3 = 4.72𝑒−6, 𝑐4 = 0.05, 𝑐5 = 0,𝑐6 = 0.001, 𝑐7 = 0.087, 𝑐8 = 2.37, 𝑐9 = 0.21, 𝑐10 = 2.52,𝑐11 = 1.45, 𝑐12 = 9.68𝑒−4, 𝑐13 = 5.6𝑒−5, 𝑐14 = 0.078, 𝑐15 = 0.004,𝑐16 = 0.16, 𝑐17 = 9.05𝑒−5, 𝑐18 = 4.76𝑒−4, 𝑐19 = 4.559𝑒−6, 𝑐20 =1000, 𝑐21 = 0.05, 𝑐22 = 25.20, 𝑐23 = 1𝑒−5, 𝑐24 = 0.1, 𝑐25 = 1𝑒−5,𝑐26 = 0.1, 𝑐27 = 1𝑒−7, 𝑐28 = 0.1, 𝑐29 = 0.05, 𝑐30 = 7.37𝑒−4, and𝑐31 = 0.5. Initially all the variables have been set to 0 except for
dFdCout = 100000, dCK = 1000, RR = 1000, dCMPD =1000, and CDP = 2000.
3.3. The Fully Connected Model. The fully connected model
is a theoretical model that consists of 𝑛 species 𝑆1, 𝑆2, . . . , 𝑆𝑛
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𝑅1 : dFdCout 󳨀→ dFdC𝑅2 : dFdC 󳨀→ dFdCout𝑅3 : dFdCout 󳨀→ dFdU𝑅4 : dFdU 󳨀→ dFdUout𝑅5 : dFdC 󳨀→ dFdU𝑅6 : dFdC + dCK 󳨀→ dFdCMP + dCK𝑅7 : dFdCMP 󳨀→ dFdC𝑅8 : dFdCMP 󳨀→ dFdCDP𝑅9 : dFdCDP 󳨀→ dFdCMP𝑅10 : dFdCDP 󳨀→ dFdCTP𝑅11 : dFdCTP 󳨀→ dFdCDP𝑅12 : dFdU + dCK 󳨀→ dFdUMP + dCK𝑅13 : dFdUMP 󳨀→ dFdU𝑅14 : dFdUMP 󳨀→ dFdUDP𝑅15 : dFdUDP 󳨀→ dFdUMP𝑅16 : dFdUDP 󳨀→ dFdUTP𝑅17 : dFdUTP 󳨀→ dFdUDP𝑅18 : dFdC 󳨀→ dFdU𝑅19 : dFdCMP + dCMPD 󳨀→ dFdUMP + dCMPD𝑅20 : 0 󳨀→ CDP𝑅21 : CDP + RR 󳨀→ dCDP + RR𝑅22 : dCDP 󳨀→ dCTP𝑅23 : dFdCDP + RR 󳨀→ dFdCDP : RR𝑅24 : dFdCDP : RR 󳨀→ dFdCDP + RR𝑅25 : dCTP + dCK 󳨀→ dCTP : dCK𝑅26 : dCTP : dCK 󳨀→ dCTP + dCK𝑅27 : dFdCTP + dCMPD 󳨀→ dFdCTP : dCMPD𝑅28 : dFdCTP : dCMPD 󳨀→ dFdCTP + dCMPD𝑅29 : dFdCTP 󳨀→ dFdCTP : DNA𝑅30 : dFdUTP 󳨀→ dFdUTP : DNA𝑅31 : dCTP 󳨀→ dCTP : DNA
Box 1: Reactions of the Gemcitabine model [23].

and a set of reactions that reversibly convert each species into
each other of the form

𝑆𝑖 ←→ 𝑆𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗. (24)

The fully connected model is useful to evaluate the scalability
of algorithms (variation in runtimewith growing values of 𝑛).
Moreover, if we fix initial values of the species and stochastic
reaction constants, then we can evaluate the performance
of a simulation algorithm when it simulates a system that
remains in a steady state condition for the entire length of the
simulation.

Here we use the fully connected model starting from
two different steady state conditions to quantify simulation
runtime of a reaction network composed by only slow or
fast reactions. These benchmarks are provided in Table 2,
third and fourth columns. In both cases, the model has been
generated with 𝑛 = 20, that is, with 20 variables and 380
reactions. All stochastic reaction constants have been set to
1. In the first benchmark (MCM 𝑖 = 20), the initial state of all
model variables has been set to 20 in order to create a network
of slow reactions. In the second one (MCM 𝑖 = 2000), instead,
the initial state of all model variables has been set to 2000 in
order to create a network of fast reactions. In both conditions,
simulation algorithms implemented in HSimulator were the
fastest (simulation length 150 time units).

3.4. The Multiscaled Model. The multiscaled model is a
theoreticalmodel with a reaction network that can be divided
into two subnetworks working at different time scales. It
has been specifically considered to test hybrid simulation
strategies because it allows testing the intermediate condition
(network made of both fast and slow reactions) between the
two scenarios previously considered with the fully connected
model (networkmade of only slow or fast reactions).The first
subnetwork of the model is given by a fully connected model
of 𝑛fast species 𝑆1, . . . , 𝑆𝑛fast modified by a set of fast reactions.
The model is then extended with 𝑛slow species 𝑠1, . . . , 𝑠𝑛slow
modified by a set of 𝑛slow reactions of the form

𝑆𝑖 + 𝑠𝑗 󳨀→ 𝑠𝑘, 𝑗 = 1, 2, . . . , 𝑛slow, (25)

where 𝑆𝑖 and 𝑠𝑘 are random species such that 𝑆𝑖 ∈{𝑆1, . . . , 𝑆𝑛fast} and 𝑠𝑘 ∈ {𝑠1, . . . , 𝑠𝑛slow}. The stochastic constant
rates of fast reactions are some order of magnitude bigger
than the rates of the slow reactions to emphasize the differ-
ence of speed between the two subnetworks.

The fully connected model has been considered to evalu-
ate the performance of simulation algorithms when a mass-
action biochemical reaction network of reactions that are all
slow (MCM 𝑖 = 20) or fast (MCM 𝑖 = 2000) is simu-
lated. Conversely, the multiscale model allowed testing the
intermediate condition, where the biochemical network can
be divided into two subnetworks working at different time
scales.

In Table 2 two benchmarks related to this model are
provided.The first one (fifth column,MSM (10, 50)) is related
to a model with 𝑛fast = 10 and 𝑛slow = 50 (60 species and 140
reactions), stochastic reaction constants equal to 10.0 (fast
reactions) and 0.001 (slow reactions), initial values of fast
species set to 2000, and initial values of slow species set to20. The second benchmark (last column of the table, MSM(20, 100)) uses the same parameters of the first one except for𝑛fast = 20 and 𝑛slow = 100 (120 species and 480 reactions).
The provided benchmarks show that the gain in simulation
runtime provided by HSimulator is scalable with respect
to the complexity of the model (simulation length 10 time
units).

4. Conclusions

We presented HSimulator, a state-of-the-art multithread Java
simulator for mass-action well-stirred biochemical reaction
systems. HSimulator provides a suite of published state-of-
the-art simulation algorithms including, in the same package,
the exact algorithm RSSA and the first publicly available
implementation of its hybrid version HRSSA. The bench-
marks in the paper show that theHSimulator implementation
is often faster than the state-of-the-art simulator COPASI
[22]. This could open new perspectives in computational
systems biology, where often scientists have to balance the
accuracy of their simulations with the need of considering
large reaction networks modeling complex diseases or disor-
ders.
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