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Spatial variation of reef fishes and the 
relative influence of biotic and abiotic habitat 
traits
Iacopo Bertocci1,2*  , I. Sousa‑Pinto1,3 and P. Duarte1,4

Abstract 

Patterns of distribution of reef fishes were examined across three spatial scales and related to habitat traits along 
25 km of the northern Portuguese coast. Response variables included the multivariate assemblage structure, the total 
number of taxa and individuals, and the abundance of single groups categorized according to their preference for 
the benthic, proximo-benthic or pelagic environment, feeding and reproductive behaviour. Habitat traits included 
topographic elements (small and large ‘drops’ like cracks and crevices) and the extent of dominant morpho-functional 
types of macroalgae (kelp, large foliose, small erect, turf-forming filamentous, and encrusting). All fish responses were 
characterized by the largest variance at the smallest scale (among transects tens m apart), followed by that among 
reefs (hundreds m to 1 km apart) and almost null variance among sites (some km apart). Small and large ‘drops’ of 
the substratum explained, respectively, considerable variation of assemblage structure and the total abundance of 
individuals, while the extent of bare rock influenced the richness of taxa and that of benthic fishes, fishes feeding on 
sessile invertebrates and fishes laying benthic eggs or having nesting behaviour. Combinations of abiotic and biotic 
structural attributes of reefs influenced proximo-benthic fishes, the predators of mobile animals and fishes releasing 
pelagic eggs. The here reported associations between patterns of distribution of reef fishes and habitat traits have 
implications for the design of future protection schemes suitable to guarantee the conservation of reef fish communi‑
ties and of the processes responsible for their variation. Within the SLOSS (single-large vs. several-small) debate in the 
design of marine reserves, for example, effective protection to the studied reef fishes would be provided by a set of 
small reserves, rather than a single large which might be appropriate for fishes having wider home ranges.
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Background
There is evidence that patterns of variation of natural 
populations and assemblages are more evident at some 
scales than others [1–4]. This characteristic is crucial for 
a number of basic and applied ecological issues, includ-
ing the notion that, since different processes are likely 
to operate differently in space and time, the identifica-
tion of relevant scales of variation is essential to propose 
and then test their potential explanatory models [5, 6]. 
For example, such an identification may be important to 

assess and predict the effects of anthropogenic distur-
bances operating at a hierarchy of spatial scales [7] and to 
support decisions about the design and management of 
effective protected areas [8–10].

The spatial patterns of biodiversity in coastal marine, 
especially rocky intertidal and shallow subtidal, systems 
have been widely examined, although across a range of 
scales usually smaller compared to that of terrestrial 
studies [but see 3, 11–14]. However, most analyses have 
identified a common pattern of relevant small- (tens to 
hundreds of centimetres) to middle-scale (tens to hun-
dreds of metres) variation across several organisms and 
habitats [2–4, 6, 15, 16], highlighting the general prin-
ciple that small-scale processes may be as, if not more, 
important as large-scale processes in driving patterns of 
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distribution, abundance and diversity of coastal assem-
blages. As a consequence, small-scale natural variabil-
ity should not be considered a statistical inconvenience, 
but a key issue to address in order to increase ecological 
understanding [17].

Shallow subtidal rocky reefs provide essential and het-
erogeneous habitat for a large diversity of organisms, 
supporting some of the most productive communities 
in the world [18]. Physical and biological variables have 
been indicated as major direct or indirect drivers of the 
small-scale spatial variation described for various reef 
populations and assemblages [19–22]. Different rock 
types, changes in the biological coverage, including the 
dominance of habitat-forming algae and invertebrates, of 
the bottom, and topographic complexity can drastically 
affect patterns of distribution of organisms living in close 
association to the substratum [19, 23–25]. Larger-scale 
variation in the structure and dynamics of reef communi-
ties, instead, may depend on factors such as differences 
in wave exposure [26] or food and propagule supply [27, 
28]. Reef-associated fish assemblages, in particular, vary 
in abundance and diversity in response to variability in 
environmental conditions over a range of scales [29–33]. 
These may include the variability of oceanographic con-
ditions as driver of fish variation at spatial scales of hun-
dreds of kilometres or more [34, 35], and the physical 
structure of the reef as driver of fish variation at scales 
from metres to some kilometres [36].

Several studies have examined the relationships 
between reef habitat traits and associated fish assem-
blages in tropical [37–41] and temperate [31, 33, 42–44] 
systems. The physical nature of the substratum [19], the 
relative availability of vertical, horizontal or gently slop-
ing substratum [45] and the cover and physical structure 
of algal assemblages [30, 44, 46, 47], possibly affecting the 
intensity of local biological processes such as predation 
[48–50], are among the main habitat traits documented 
to determine the structure of reef fish assemblages. This 
knowledge made the direction and strength of the rela-
tionships between fish assemblages and the reef habitat 
a criterion for the implementation of management strat-
egies of fisheries and the design and assessment of the 
effectiveness of marine protected areas [30, 31]. None 
of these objectives can be achieved by focusing on fish 
assemblages without taking into account their positive 
versus negative, direct versus indirect, more or less spe-
cialized association with relevant habitat traits. Moreo-
ver, most studies aimed at assessing the effectiveness of 
marine reserves are based on comparing one protected 
area with one or more adjacent non-protected areas, 
but such an approach can provide unreliable results if 
the variability of variables intended to indicate the suc-
cess of the implemented protection is not properly taken 

into account [51, 52]. Reserve effects and their respon-
sible processes can be correctly identified and predicted 
only through sampling and monitoring designs including 
adequate replication in space and/or time [53, 54]. As a 
direct consequence, the possibility to generalise such 
issues to not yet implemented circumstances critically 
depends on identifying patterns of distribution of fishes 
and the relative influence of a range of biological and abi-
otic traits in relatively unstudied and ecologically pecu-
liar systems.

In this context, the Portuguese continental coast pro-
vides an ideal case-study due to the occurrence of several 
species at their southern or northern distributional range 
edges and the documentation of clear latitudinal shifts 
in patterns of distribution and abundance of a number 
of macroalgal, invertebrate and fish organisms [33, 55–
58]. The cooler northern region, in particular, appears 
as where kelps, once dominating the entire Portuguese 
coast, are now restricted [33, 59]. This is likely due to the 
combination of the recent reduction of the intensity of 
upwelling events and warming, which could have cause 
a northward retraction and reduction of the environmen-
tal conditions suitable for kelp species, and the reduced 
grazing intensity in the northern compared to the south-
ern regions [56, 57, 60].

This study adopted a hierarchical sampling design to 
partition the spatial variability at three spatial scales 
(tens of metres, hundreds to 1000 metres, and kilome-
tres) of reef fish assemblages from the northern Portu-
guese coast. Such variability was correlated to a range 
of potentially responsible abiotic and biological habitat 
traits. In addition to indentifying and comparing the rel-
evant scales of variation in the fish assemblage structure, 
richness of identified taxa and total number of individu-
als, the study specifically tested the following hypotheses 
regarding the spatial patterns of different fish groups 
categorized according to several life-history traits [61]: 
(1) the distribution of fishes belonging to the benthic, 
proximo-benthic and pelagic spatial guild [62] would be 
characterized, respectively, by increasingly larger rel-
evant scales of variation; (2) smaller scales of variation 
would be displayed by fishes with feeding habits focus-
ing mostly on sessile invertebrates compared to omni-
vores (those feeding on available food, including organic 
debris) and active predators of animals with larger move-
ment abilities [63]; (3) the relative greater importance of 
smaller versus larger spatial scales would vary between 
fishes having benthic eggs or nesting behaviour and 
fishes having pelagic eggs and larvae which disperse over 
long distances [64]; (4) according to such functional dif-
ferences, variation in local abiotic (type of substrate and 
topographic heterogeneity) and biotic (type and extent 
of dominant algal beds) habitat traits would explain a 
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relatively larger proportion of variation of fishes having 
living, feeding or reproductive habits relying on smaller-
scale processes. In general, by partitioning the examined 
fish assemblages into their component functional groups 
that exploit, for different purposes, different parts of the 
spatial domain, testing such hypotheses aimed at investi-
gating how local selection is related to spatial patterns of 
distribution [65, 66]. Fishes living in open habitats would 
likely rely on defences based on large numbers spread 
over large areas [67, 68], while fishes associated with 
soft and rocky bottom habitat traits would likely rely on 
relatively smaller, but more heterogeneously distributed 
numbers [62, 69].

Methods
Study area and sampling design
The study area (Fig.  1) spanned about 25  km along the 
northern Portuguese coast, where numerous rocky reefs 
occur interspersed within the predominantly sandy bot-
tom [60]. Within the whole study area, the sampling was 
conducted at each of three haphazardly selected sites 
(about 5  km long, some km apart), each one including 
five randomly chosen rocky reefs (hundreds of metres up 
to about 1 km apart, 5–12 m depth). The almost rectilin-
ear coastline, oriented from north to south, made all reefs 
comparable in terms of exposure to prevailing waves 
and wind (Fig.  1). These reefs are not subjected to any 
implemented protection status and, to our knowledge, 
are equally exposed to local fishing, typically artisanal, 
activities.

At each reef, the number of all fishes was estimated 
by a SCUBA diver by means of visual census performed 
along five, randomly chosen, transects  (25  m  ×  5  m 
belts, 20–50  m apart) [36, 70]. Most fishes were identi-
fied to the species level, in some cases lumping different 
individuals to the same genus when poor water transpar-
ency did not allow to distinguish species in a fully con-
sistent way. This was the case, for instance, of labrids of 
the genus Symphodus, especially when represented by 
juvenile individuals. The level of identification of each 
fish taxon, however, was the same for all sampled tran-
sects and reefs. The number of large (>  1  m) and small 
(<  1  m) topographic elements (hereafter indicated as 
large and small ‘drops’, including cracks, crevices, caves 
and holes) of the substratum was also counted within 
each 125 m2 transect used for the fish counts [71]. Finally, 
a second diver measured, along each transect, the rela-
tive extent of the portions which were characterised by 
different types of substratum (continuous rock, large 
boulders, cobbles/pebbles, sand) and dominated by dif-
ferent morpho-functional groups of algae, including kelp 
(e.g., Laminaria hyperborea and Sacchoriza polyschides), 
small erect (e.g., Corallina officinalis), large foliose (e.g., 

Dyctiota dichotoma), turf-forming filamentous (e.g., Pol-
ysiphonia spp.) and encrusting algae (e.g., Lithophyllum 
incrustans), plus bare rock.

The study was carried out, by the same two divers, 
between September 2010 and July 2012. During this 
period, safe and effective diving opportunities were 
critically constrained by the harsh weather and sea con-
ditions characterizing the study area [72], making the 
sampling occasions rather opportunistic. Such a logis-
tic difficulty prevented to formally test any time-related 
hypothesis. However, each set of five reefs within each 
site was sampled over a period of about 1.5  years and 
guaranteeing that at least two reefs were sampled in each 
of the ‘cool’ and the ‘warm’ period (December–May and 
June–November, respectively) of sea water in the region 
[73]. This allowed to keep the temporal variability of the 
sampling of each set of five reefs as much as possible 
comparable among sites, thus reducing, though not com-
pletely removing, the potential confounding between the 
specifically examined spatial variation and the not fully 
controlled temporal variation. In addition, the sampling 
was always done during the day and avoiding crepuscular 
periods.

Data analyses
Spatial patterns in the structure of whole fish assem-
blages were examined by a two-way permutational mul-
tivariate analysis of variance (PERMANOVA) [74], with 
‘Reef ’ nested in ‘Site’ and the five transects sampled in 
each reef providing the replicates. This analysis was based 
on Bray–Curtis dissimilarities calculated from square 
root-transformed data. The same model of analysis was 
used in analysis of variance (ANOVA) to examine vari-
ation in the total number of identified taxa (a surrogate 
measure for species richness), the total number of fish 
individuals and the abundance of each functional group 
of fishes. Before each ANOVA, homogeneity of variances 
was assessed with Cochran’s C test and data were trans-
formed when necessary to remove heterogeneity and 
avoid increased probability of type I error.

To quantify and compare the spatial variability of uni-
variate and multivariate response variables at each sam-
pled scale (among transects, reefs and sites), variance 
components were calculated from ANOVA (as well as 
pseudo-variance components from PERMANOVA) [30] 
by equating empirical and expected mean squares [75, 
76]. Obtained negative estimates of variance were inter-
preted as sample underestimates of very small to null var-
iances and set to zero [76, 77]. All variance components 
were calculated from untransformed data [e.g., 78] and 
the contribution of each scale was finally expressed as the 
percentage to the total variance of each multivariate and 
univariate response variable.
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The distance-based linear modelling (DISTLM) [79] 
routine was used to run multiple regression models to 
assess the contribution of each abiotic (small vs. large 
‘drops’ and four types of substratum) and biotic (five 
groups of dominant algae and bare rock) habitat traits 
to the total variation of each response variable. Model 

selection was performed by first calculating second order 
Akaike information criterion values (AICC), which are 
more appropriate than raw AIC values when, such as 
in the present case, the number of observations is rela-
tively small compared to the number of parameters in 
the model [80–82]. Then, for each model, the differences 
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Fig. 1  Map of the study area in northern Portugal, showing the location of the five reefs (from r 1 to r 5, interspersed within extensive areas of 
sandy bottom) sampled in each of three sites
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in AICC with respect to the AICC of the best candidate 
model were computed. Finally, second order Akaike 
weights were calculated as described in [80–82].

Results
Structure, richness and overall abundance of reef fish 
assemblage
A total of 22 fish taxa were identified during the study, 
with about 90% of the total number of individuals pro-
vided by eight most common taxa (Additional file  1: 
Supplementary material and Fig.  2). The structure of 
the whole assemblage varied significantly among reefs, 
although the smallest scale (among transects) provided 
the greatest contribution to the total (pseudo) variance. 
This was about six times and seventy-seven times greater 
than that of the reef and the site scale, respectively 
(Table  1 and Fig.  3a). Both the richness of taxa and the 
total number of individuals showed patterns of spatial 
variation very similar to those of the whole assemblage, 
with the former variable, in particular, being charac-
terized by a null variance at the scale of sites (Table  1, 
Fig. 3b, c).

Functional groups of reef fishes
Analogously, spatial patterns of each functional group of 
fishes showed the greatest variance at the transect scale, 
followed by the reef and the site scales (Fig.  3d–j). The 
largest examined scale provided a null contribution to 
the variance of the benthic guild (Fig. 3d), the omnivores 
(Fig. 3f ), the browsers of benthic invertebrates (Fig. 3g), 

and both the fishes laying benthic eggs, or showing a 
nesting behaviour (Fig.  3i), and pelagic eggs (Fig.  3j). 
The browsers of benthic invertebrates and fishes deploy-
ing benthic eggs were also the only response variables 
for which the contribution of the among-reefs variance 
reached at least 50% of that provided by the transect scale 
(Fig.  3g, i, respectively). A significant variation among 
reefs, however, was found only for the browsers of ben-
thic invertebrates and the omnivorous fishes (Table  1), 
although such effect might have been, to some extent, 
actually masked by the larger smaller-scale variability of 
all examined responses.

The planktivore and the pelagic group included, respec-
tively, only the ‘big-scale sand smelt’, Atherina boyeri (15 
individuals), and the ‘horse mackerel’, Trachurus sp. (one 
individual), which were all found along a single transect 
of one reef at site 3. Therefore, these two groups were not 
analysed individually.

Influence of habitat traits on reef fishes
The ‘best’ model explaining patterns of variation of the 
whole fish assemblage structure included only the small 
‘drops’ as a relevant habitat trait (Table  2). This habitat 
variable provided a small, but significant, contribution to 
variation of the assemblage structure. The availability of 
bare rock and the number of large ‘drops’, instead, were 
included into the best model regarding the richness of 
fish taxa and the total number of fish individuals, respec-
tively (Table  2). Both habitat traits were significantly 
related to the corresponding fish variable (Table 3).

Concerning individual fish groups, bare rock was also 
the only habitat variable included in the best model 
explaining variation of the benthic fishes, the browsers of 
benthic invertebrates and the fishes laying benthic eggs/
having nesting behaviour (Table 2), although its influence 
was significant for the last two groups only (Table 3). The 
same set of four variables (large and small ‘drops’, extent 
of turf-formers as dominant algae, and bare rock) was 
selected by the best model explaining the variation of the 
proximo-benthic fishes and of the predators of mobile 
animals (Table 2), with a cumulative contribution of 20.6 
and 23.5%, respectively (Table 3). A significant influence, 
however, was found only for the number of large drops 
on both such response variables and for the number of 
small topographic elements on active predators (Table 3). 
The variation of the abundance of omnivorous fishes was 
best explained by the model including only the large foli-
ose algae (Table  2), though the influence of this habitat 
variable was not significant (Table  3). Finally, the varia-
tion of the abundance of fishes releasing pelagic eggs was 
best explained by the model including foliose algae and 
sandy bottom as the main available habitats (Table  2). 
Such habitat variables were both significant and provided 
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Table 1  Results of  multivariate (PERMANOVA on  assemblage structure) and  univariate (ANOVA on  all other variables) 
analyses testing for the effects of ‘sites’ and ‘reefs’ on several response variables of fish assemblages

Significant effects are reported in bold. The % contribution of the variance component calculated at each spatial scale to the total variance is reported in the last 
column
a, b, c  Analysis done on square root-transformed, log(x + 1) transformed or untransformed data, respectively
d  Pseudo-F value calculated through permutations
e  Residual MS used as denominator for the Site test after elimination of the reef (site) term that was not significant at p > 0.25 [76]

Source of variation df MS F p Denominator % of total variance

Assemblage structurea

 Site 2 8553.6 1.18d 0.209 Reef (site) 1.1

 Reef (site) 12 7227.0 1.82d 0.001 Residual 14.0

 Residual 60 3966.6 84.9

Total # of fish taxaa

 Site 2 0.115 0.52 0.609 Reef (site) 0

 Reef (site) 12 0.223 2.02 0.037 Residual 19.2

 Residual 60 0.110 80.8

Total # of fish individualsb

 Site 2 0.533 0.38 0.563 Reef (site) 1.0

 Reef (site) 12 1.400 2.05 0.024 Residual 14.3

 Residual 60 0.684 84.7

Spatial guild: benthicb

 Site 2 0.002 0.00 0.997 Reef (site) 0

 Reef (site) 12 0.620 1.74 0.080 Residual 19.3

 Residual 60 0.355 80.7

Spatial guild: proximo-benthicc

 Site 2 60.093 2.12 0.163 Reef (site) 6.5

 Reef (site) 12 28.400 1.83 0.064 Residual 13.3

 Residual 60 15.547 80.2

Diet: omnivorousc

 Site 2 0.040 0.14 0.871 Reef (site) 0

 Reef (site) 12 0.287 2.05 0.035 Residual 17.3

 Residual 60 0.140 82.7

Diet: browser of benthic invertebratesb

 Site 2 0.027 0.02 0.976 Reef (site) 0

 Reef (site) 12 1.113 3.07 0.002 Residual 34.0

 Residual 60 0.363 66.0

Diet: predator of mobile animalsc

 Site 2 67.080 2.72 0.106 Reef (site) 9.2

 Reef (site) 12 24.660 1.66 0.099 Residual 10.6

 Residual 60 14.853 80.2

Eggs type: benthicb

 Site 2 0.063 0.05 0.948 Reef (site) 0

 Reef (site) 12 1.165 3.10 0.002 Residual 37.5

 Residual 60 0.376 62.5

Eggs type: pelagicc

 Site 2 2.218 1.17 0.485 Residuale 0

 Reef (site) 12 2.164 1.14 0.347 Residual 5.2

 Residual 60 1.895 94.8
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a cumulative contribution of 25.5% to the total variation 
of pelagic spawners (Table 3).

Discussion
The most evident finding of this study is the far larger 
variance of reef fish distribution at the transect com-
pared to the larger scales. Such pattern was observed 

consistently across all examined response variables, 
although a significant among-reefs variability was also 
documented for the structure and aggregate measures of 
richness and abundance (total number of taxa and total 
number of individuals) of the whole assemblage and for 
the abundance of both fish groups having omnivorous or 
browser benthic invertebrates feeding habit.
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Heterogeneity at small scale (tens of metres) is increas-
ingly emerging as an ubiquitous feature of reef fishes. 
It was documented in the last decades by studies, in 
most cases even encompassing a larger extent and more 
numerous scales than the present one, in New Zealand 
[30, see also 83 for a review], Australia [29, 37, 39, 71], 
Aleutian Archipelago [84], Mexican Caribbean coast 
[85] and the Mediterranean Sea [31, 86]. This can be 
explained considering that several tropical [87–89] and 
temperate [45, 90–92] reef fish species show home ranges 
that, though changing over their life-cycles, are within a 
few thousand m2 or even confined to less than 10 m2.

Spatial variation at the scale of tens of metres can be 
driven by variation in habitat structure [31, 42, 71, 84] 
and its possible interaction with recruitment [93] and 
post-recruitment [94] processes. In this respect, the pre-
sent finding identifying small or large drops as explain-
ing spatial variation of the whole structure and overall 
abundance of fish assemblages is consistent with their 
expected role in increasing the number and diversity 
of microhabitats. These may be associated to a greater 
small-scale heterogeneity in the distribution of reef fishes 
[31, 45, 71, 84, 85]. In principle, a larger availability of 
microhabitats might also allow relatively more species 
to coexist in the same area [e.g., 86], but both small and 
large drops, as well as each dominant algal group, did not 
explain variation of the total number of taxa. This vari-
able, however, was influenced by the availability of bare 
rock, potentially providing indirect support to analo-
gous considerations. In fact, the whole set of sampled 

Table 2  Results of  AICC analysis for  competing models 
assessing the abiotic (sd small ‘drops’, ld large ‘drops’, br 
bare rock, cr continuous rock, pc pebbles/cobbles, s sand) 
and  biotic (en encrusting algae, er erect algae, f foliose 
algae, k kelp, t turf) habitat variables (no. var. number 
of habitat variables for the model) to the variation of dif-
ferent response variables of fish assemblages

No. var. Variables AICCi Δi(AICC) wi(AICC)

Assemblage structure

 1 sd 634.8 0 0.260

 2 k + sd 635.1 0.3 0.224

 3 k + sd + ld 635.4 0.6 0.193

 4 k + s + sd + ld 636.1 1.3 0.136

 5 k + pc + s + sd + ld 637.0 2.2 0.087

Total # of fish taxa

 1 br 9.4 0 0.387

 2 br + ld 9.8 0.3 0.333

 3 k + br + ld 11.1 1.7 0.165

 4 f + k + br + ld 12.9 3.4 0.071

 5 f + k + t + br + ld 14.8 5.3 0.027

Total # of fish individuals

 1 ld 240.5 0 0.371

 2 br + ld 241.4 0.8 0.248

 3 br + sd + ld 242.4 1.8 0.151

 4 t + br + sd + ld 242.4 1.9 0.144

 5 k + t + br + sd + ld 244.4 3.8 0.056

Benthic spatial guild

 1 br 133.9 0 0.577

 2 er + br 135.5 1.6 0.259

 3 er + br + pc 137.3 3.4 0.106

 4 er + t + br + pc 139.3 5.4 0.039

 5 er + k + t + br + pc 141.4 7.5 0.014

Proximo-benthic spatial guild

 4 t + br + sd + ld 212.4 0 0.319

 3 t + sd + ld 213.3 0.8 0.214

 5 k + t + br + sd + ld 213.6 1.2 0.175

 2 sd + ld 214.8 2.4 0.096

 6 k + t + br + cr + sd + ld 214.8 2.4 0.096

Omnivorous fishes

 1 f − 135.2 0 0.433

 2 f + br − 134.6 0.7 0.305

 3 f + k + br − 133.2 2.0 0.159

 4 er + f + k + br − 131.4 3.8 0.065

 5 er + f + k + br + ld − 129.5 5.7 0.025

Browsers of benthic invertebrates

 1 br 122.7 0 0.561

 2 er + br 124.3 1.5 0.265

 3 er + t + br 126.1 3.3 0.108

 4 er + t + br + pc 127.9 5.2 0.042

 5 er + k + t + br + pc 129.8 7.1 0.016

Predators of mobile animals

 4 t + br + sd + ld 205.6 0 0.311

Δi(AICC) = [AICCi − min(AICC)]. wi(AICC) = exp[− 0.5Δi(AICC)]/Σk=1,K 
exp[− 0.5Δk(AICC)]. The number of observations entering into the calculation of 
AICC is 75

Table 2  continued

No. var. Variables AICCi Δi(AICC) wi(AICC)

 3 br + sd + ld 206.0 0.4 0.255

 5 k + t + br + sd + ld 206.8 1.2 0.171

 6 k + t + br + cr + sd + ld 208.0 2.4 0.094

 2 sd + ld 208.2 2.6 0.085

Fishes laying benthic eggs

 1 br 133.9 0 0.577

 2 er + br 135.5 1.6 0.259

 3 er + br + pc 137.3 3.4 0.106

 4 er + t + br + pc 139.3 5.4 0.039

 5 er + k + t + br + pc 141.4 7.5 0.014

Fishes laying pelagic eggs

 2 f + s 19.6 0 0.440

 3 f + k + s 20.4 0.8 0.295

 4 f + en + k + s 21.8 2.2 0.147

 5 f + en + k + s + sd 23.3 3.8 0.066

 6 f + en + k + s + sd + ld 25.4 5.8 0.024
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transects was almost evenly divided into those showing 
bare rock as the dominant habitat along more than 5% of 
the 25 m extent, and those where bare rock was less avail-
able or completely absent (36 and 39 transects, respec-
tively). On average, a single taxon characterized the first 
circumstance, while such number was almost doubled 
in the second one. Of course, such small absolute num-
bers might just depend on chance rather than any spe-
cific ecological mechanism, thus suggesting caution in 
attempting to generalise ecological mechanisms possibly 
responsible for spatial patterns of richness of reef fishes. 
However, they could provide further support to the gen-
eral importance of habitat heterogeneity in the present 
system.

Adding to the small-scale variation, previous investiga-
tions have detected a considerable proportion of variance 
in the distribution of reef fishes at scales comparable to 
that of the present sites. This was often explained with 
spatial changes of hydrodynamics [95], the relative avail-
ability of algae playing different functional roles [30, 84, 
96, 97], or a combination of biotic and abiotic processes 
[32, 98, 99]. Such differences, instead, were unlikely to 
occur in the present system, where all sampled reefs and 
sites were chosen as being comparable in terms of wave 
exposure and general occurrence of macroalgal beds and 
might have critically contributed to the smaller variation 
at these scales compared to the transect scale. The only 
response variables showing a considerable proportion of 
variance at the reef scale were the abundance of fishes 
feeding mostly on sessile invertebrates and that of fishes 
generally having a nesting behaviour. Both life-traits may 
imply patterns of variation consistent with those of fac-
tors and processes affecting the availability of suitable 
food or protection from predators and harsh environ-
mental conditions. For example, Tuya et al. [44] described 
relevant variation in the abundance of labrid fishes (the 
numerically dominant taxon in the present study, col-
lectively providing about 42% of all sampled individu-
als) as a positive function of among-reefs variation of 
physical (rock topography) and biotic (cover of red algae) 
habitat traits. Heterogeneous habitats may facilitate the 
access to invertebrate preys, at the same time providing 
enough shelter and protection from predators. Here, the 
same variables were not found to explain any amount of 
variation of such fish groups, but the influence of bare 
rock might suggest, once again, analogous underlying 
mechanisms. In fact, the three sampled reefs where the 
browsers of sessile invertebrates and the nesting fishes 
were more abundant (respectively, 17 and 18 individuals 
averaged over reef 4 at site 1, reef 4 at site 2 and reef 2 
at site 3) were characterized by a proportion of bare rock 
as dominant habitat about three times lower (10.9 vs. 
31.3%) than that of the three reefs where they were less 

abundant (in both cases, <  1 individual averaged across 
reef 3 at site 1 and reefs 3 and 4 at site 3).

Contrarily to the initial hypothesis predicting differ-
ent relevant scales of variation for fish groups with dif-
ferent spatial use of the habitat, an increasingly smaller 
variance at increasing scale was quantified for all fish 
groups. Our expectation was based on the role of fac-
tors, such as high mobility and long-distance feeding and 
reproductive behaviour, as direct drivers of patterns of 
fish distribution. Although this type of relationship can 
not be unambiguously ruled out by the present findings, 
the influence of factors potentially determining relevant 
variation of some fish groups at relatively large scale 
might be secondary compared to that of complex inter-
actions with within-reef processes. This could occur, in 
particular, in the present system, where isolated rocky 
reefs occur interspersed within extensive portions of 
sandy bottom. Under such circumstances, even species 
whose life-traits would make minimal small-scale vari-
ation expectable might find conditions that are critical 
for aspects of their life history near or within rocky reefs 
and not on the surrounding sandy bottom. This could be 
the case, for example, of the here common ‘European sea 
bass’, Dicentrarchus labrax, which has high mobility and 
releases pelagic eggs [61], but may depend on within-reef 
occurring spawning grounds [100]. In a system, such as 
the present one, lacking marked among-sites differences 
in potentially relevant factors, including wave exposure 
[95], position relatively to the coast [101] and fishing 
pressure [102], smaller-scale variation might logically 
predominate irrespectively of fish life-histories relying on 
obvious local or larger-scale processes. Nonetheless, the 
general lack of among-sites significant variation should 
be interpreted with caution since the present impossi-
bility to tease apart spatial and temporal variation likely 
increased the among-reefs variation, potentially masking, 
at least in part, among-sites differences. It is worth not-
ing, however, that the Site test remained non-significant 
also when the non-significant Reef source of variation 
was eliminated from the analyzed model (e.g., ANOVA 
on fishes deploying pelagic eggs), suggesting that such 
spatial homogeneity was due to an actual ecological fea-
ture rather than biased by sampling constraints.

Finally, a note of caution is needed when interpreting 
present findings only in terms of spatial patterns of varia-
tion and their possible underlying processes, since logis-
tic difficulties eventually led to a sampling design where 
the estimated patterns of spatial variance were, at least 
in part, likely affected by temporal variance. The avail-
ability, within each site, of replicate reefs sampled in both 
the ‘cool’ and the ‘warm’ period reported for the study 
region [73] allowed to reduce, but not to fully remove, 
such a confounding effect. Indeed, reef-associated fish 
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assemblages may respond to environmental conditions 
with changes in abundance not just at different spatial 
scales, but also at a range of temporal scales [29–32]. For 
instance, oceanographic differences can drive seasonal 
patterns of fish recruitment differing between adjacent 
islands within the same archipelago [102]. There is evi-
dence, however, that temporal variation of adult reef 
fishes is much smaller than spatial variation, at least on 
scales ranging from days and weeks to months, and as 
long as crepuscular periods are avoided [103, 104]. In 
spite of the mentioned limitations, the present discussion 
on spatial patterns of the studied fish assemblages is built 
on the notion that variability in space (from metres to 
tens up to 100 km) is often more important than variabil-
ity in time (weeks to months and even years), especially 
when response variables are examined at the assemblage 
level [29, 30, 32, 37, 71].

Conclusion
Although this study did not address any issue specifically 
related to marine protected areas, it provides basic eco-
logical knowledge that is relevant for the management 
and conservation of reef fishes. The identification of rele-
vant scales of variation of natural populations and assem-
blages is essential to design protection schemes suitable 
to guarantee the protection of their responsible processes 
[10, 31]. The implementation of local strategies intended 
to conserve reef fish assemblages, for instance, is likely 
to fail if their patterns of distribution, abundance and 
diversity are mainly shaped by larger-scale (e.g., regional) 
drivers. This kind of problem was highlighted by Bene-
detti-Cecchi et al. [8] who did not find clear evidence of 
realized protection on algal and invertebrate assemblages 
of shallow Mediterranean rocky coasts, likely due to the 
fact that the relevant scales of variation were not prop-
erly represented within the established protected area. 
At the same time, multi-scale sampling designs able to 
quantify and compare the scales of variation of ecological 
variables of interest are required to assess the positive or 
negative impacts of existing human activities, including 
already implemented protected areas and fishing [99].

The northern Portuguese coast, in particular, is sub-
jected to small-scale fishing using artisanal gears [105] 
that may negatively impact reef fishes and habitats more 
than it is normally assumed [106]. Therefore, the present 
findings are crucial firstly to assess whether such anthro-
pogenic activities have the potential to alter the relevant 
scales of variation of reef fishes through interfering with 
their likely responsible processes, secondly to optimise 
the design of planned protection schemes. In the con-
text of the well-known SLOSS dichotomy (a single-large 
vs. several-small options debated in reserve design since 
the 1970s) [see 107], effective protection to the studied 

reef fishes might be provided by a set of small reserves, 
likely preserving the important processes, rather than a 
single large one, which might be more appropriate for 
fishes having wide home ranges [e.g., 108]. Interestingly, 
the same conclusion was drawn by Hattori and Shibuno 
[109] examining reefs lacking, analogously to the present 
ones, territorial herbivore fishes. Moreover, present data 
may help to design monitoring programmes specifically 
focusing on the relevant spatial scales, thus improving 
their cost–benefit analysis in logistically challenging sys-
tems in terms of sampling conditions.

In conclusion, although further investigations, includ-
ing experimental manipulations of habitat traits and 
specific observations of fish behaviour, competition and 
predation, are needed to unambiguously reveal cause-
effect relationships, this study contributes to disclose 
the multi-scale drivers of the structure of reef fishes in 
a relatively unstudied region. This is a key goal of fish 
ecologists and provides fundamental information for the 
management and conservation of a coastal system host-
ing fishery- and ecologically important species and habi-
tats. Moreover, present data may provide a reference for 
future comparisons aimed at assessing the possibility to 
generalize the same patterns to larger scales and systems.
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