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Abstract

A recent fascinating development in the study ghhgrade metamorphic basements
is represented by the finding of tiny inclusiongofstallized melt (nanogranitoid
inclusions) hosted in peritectic phases of migreatdnd granulites. These inclusions
have the potential to provide the primary compositf crustal melts at the source. A
novel use of the recently-published nanogranitoithgositional database is presented
here. Using granulites from the world-renowned &Z®ne (NW Italy) on which the
original melt-reintegration approach has been jgsly applied, it is shown that
reintegrating melt inclusion compositions from theblished database into residual
rock compositions can be a further useful methagtonstruct a plausible prograde
history of melt-depleted rocks. This reconstruci®fundamental to investigate the

tectonothermal history of geological terranes.

Keywords: nanogranitoids, melt-reintegration, granulite, highmperature

metamorphism
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1. Introduction

The deep continental crust has been ubiquitou$égi@d by partial melting from
Archean to present day in different geodynamidreggt(Nehring et al., 2009; Sawyer
et al., 2011). Loss of melt is a notoriously widesl process in crustal partially-
melted rocks (Powell, 1983; White and Powell, 2&ywn, 2007; Korhonen et al.,
2010; Yakymchuk and Brown, 2014) and melt migratmupper crustal levels results
in the formation of anatectic granites, leadingh® geochemical differentiation of the
Earth’s crust (Brown and Rushmer, 2006). It folladWwat the study of melt-depleted
rocks from the deep crust (residual migmatitesgnadulites) is key to understanding
and characterizing the main processes that haveqieal the chemical evolution of
our planet (e.g. White and Powell, 2002; Guenrimé &awyer, 2003; Morfin et al.,
2013; Korhonen et al., 2015; Weinberg and Hasal20ab).

In the framework of natural crustal melts, a reéemgortant advance is the
finding of small crystallized melt inclusions (namanitoids) hosted in peritectic
phases of migmatites and granulites (Fig. 1; Ceskaé, 2009, 2015; Ferrero et al.,
2012; Bartoli et al., 2013a). When microstructyradixperimentally and
microchemically investigated following precise pedares and protocols (Bartoli et
al., 2013b; Cesare et al., 2015), these smallregiasitories can provide the primary
composition of crustal melts at the source (Acd4tstet al., 2010; Bartoli et al.,
2014, 2016a; Ferrero et al., 2016a). The studychadacterization of nanogranitods
have allowed significant advances in our understandf crustal anatexis, such as a
better comprehension of the melting mechanismsegtieme UHP-UHT conditions
(Acosta-Vigil et al., 2010, 2016; Bartoli et alQI, 2016a; Cesare et al., 2015;
Ferrero et al., 2015, 2016a; Stepanov et al., 2D&6g et al., 2017).

A geochemical database based on more than 600 r@anitogd compositions
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has been recently constructed: it comprises meliisions formed at conditions
varying from 670 to 950 °C and 4 to 27 kbar, anghfibin metapelitic, metapsammitic
and metagranitoid migmatites, and granulites (Gestal., 2015; Bartoli et al.,
2016a). This dataset has been successfully ugdeaictothe processes involved in the
chemical evolution of felsic magmas (e.g., frachloerystallization, cumulus
phenomena, entrainment of peritectic phases, @éastiixing; see Bartoli et al.,
2016b). Experimental and modeling studies oftearref nanogranitoid compositions
to complement and/or validate their inferencesitega.g., Gao et al., 2016; Garcia-
Arias and Stevens, 2017). Notably, Stepanov andnden (2013) used melt inclusion
compositions from anatectic rocks to discuss aromant and actively debated
geochemical issue in the geological community agthe “missing Nb paradox”.

In this contribution an additional and novel us¢he nanogranitoid
compositional database is presented. Using grasutiom the world-renowned Ivrea
Zone (NW ltaly) as an example, it is shown thattegrating melt inclusion
compositions from the published database into vasicbck compositions can be
considered a further useful method to reconstrytaasible prograde history (melting
conditions and reactions, and melt productivityjralt-depleted rocks by means of
phase equilibria modeling.

Bartoli (2017) has recently reviewed the differerlt-reintegration
approaches proposed in the literature. Whereasrthatiscript provides a description
and a comparative study of different procedureshismcontribution the utility of the
published nanogranitoiddatabaseis illustrated enftamework of phase equilibria
modeling of residual (melt-depleted) rocks.

Rocks from the Ivrea Zone have been chosen foetiman reasons: (i) they

represent a well-known and -studied anatecticterfeom amphibolite- to granulite-
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facies conditions (Schmid and Wood, 1976; Zing@Q Bea and Montero, 1999;
Redler et al., 2012, 2013; Ewing et al., 2015);{ere, the melt-reintegration approach
originally proposed by White et al. (2004) has bpeaviously applied (Redler et al.,
2013) and, therefore, a comparison between thaliffierent methods can be done;
and (iii) the precise protolith composition of teescks is well-knownallowing one to

validate/invalidate the obtained results (Barta017).

2. Geological setting

The Ivrea Zone (southern Alps of northwest Itab/fonsidered to represent a
complete Permian mid to lower crustal section (Sdhd093; Barboza and Bergantz,
2000). It comprises two main units: the Kinzigieration and the Mafic Complex
(Quick et al., 2003). The Kinzigite Formation catsiof a sequence of amphibolite to
granulite facies rocks. The latter are associatéld widespread anatexis, producing
highly residual rocks (Schnetger, 1994; Redlel.e2812, 2013). Metapelites are
volumetrically dominant and are interlayered witbtabasic rocks and minor
calcsilicate rocks and marbles (Schmid, 1993; Reatlal., 2012; Kunz et al., 2014).
Regional amphibolite to granulite facies metamaphhas been dated at c. 316Ma (U
—Pb ages of zircon; Ewing et al., 2013). The read®y refer to Redler et al. (2012,
2013) and Kunz et al. (2014) for a detailed petapfic description of rocks across the
entire Kinzigite Formation.

The sample selected for this study comes fronvtieStrona di Omegnawhich
represents a section through amphibolite to gremfdcies rocks (Fig. S1).Redler et al.
(2012) modeledthe stability fields for the inferqgebk phase assemblages in different
samples across the Val Strona di Omegna. Theseraudtbmonstrated that the sample

set definesa continuous increase in pressure amgetature. The
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obtainedmetamorphic gradient extends from condstimii3.5-6.5 kbar at ~650 °C to
10-12 kbar at > 900°C (Redler et al., 2012). Similkalptemperatures (90830 °C)

for the highest-grade rocks were obtained by zitgorn-rutile thermometry (Ewing

et al., 2013).

3. Phase equilibria modeling

Phase equilibria modeling represents a key metlggdb study the tectonothermal
history of geological terranes (White et al., 20BF17; Palin et al., 2016a, b). A
widespread method to reconstruct the prograderkisfanelt-depleted rocks by
means of phase equilibria modeling consists dh@)addition of a certain amount of
melt, whose composition is calculated at a givesgure and temperature, into the
residual composition and (ii) performing phase kojia modeling of the new model
composition (White et al., 2004). Bartoli (2017 )ymtnstrated that highly residual
(SiOx< 55 wt.%) compositions may affect somehow theilality of the melt-
reintegration approach. Indeed, for these bulk mmkpositions, the reintegration of a
certain amount of melt up to the appearance of@-shturated solidus at the pressure
of interest (i.e., the appearance ofwet solidushieas generally used to determine the
amount of melt to add back) does not guaranteessteration of a reliable protolith
composition, and the subsequent phase equilibridetim of this model protolith may
provide significant underestimations of melt protiity.

To avoid this drawback, the residual granulite IZ@haracterized by ~59 wt.%
of SiO, was selected for this study from the bulk rock positions previously
modeled by Redler et al. (2013). Because theseeudipplied the original melt-
reintegration method,it is possible to compareréseilts obtained by the two different

melt-reintegration procedures.Granulite 1Z070 waltected in the highest-grade zone
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of Val Strona di Omegna (Fig. S1). The peak minasgemblageis composed of
guartz, K-feldspar, garnet, sillimanite, ilmenitedarutile, and it is predicted to be
stable at >850 °C,-82 kbar (Redler et al., 2012, 2013).

Phase diagrams have been constructed using thie Pégoftware (Connolly,
2009) with the thermodynamic database of HollandiRowell (1998, as revised in
2003). The chemical system j&-CaO—-K0O-FeO-MgO-AJO—SiO—H,O-TiO,
(NCKFMASHT) was selected. Ferric iron was ignoregduse its abundance in melt
inclusions was not determined. Manganese was eadlbdcause it has little effect on
garnet-bearing equilibria at high-grade conditiRedler et al., 2013). The solution
model used are: melt from White et al. (2007), gafrom Holland and Powell (1998),
biotite from Tagmanova et al. (2009), white mica from Coggon andandd (2002),
plagioclase from Newton et al. (1980) and K-feldfean Thompson and Hovis
(1979). An ideal model was used for cordierite amenite.

The firstP—T pseudosection was calculated using the estimasadiiad bulk
composition (Fig. 2a). Therefore, this diagramn$yosalid for assessing the peak and
post-peak history (White et al., 2004). The peakditions (>900 °C, 1412 kbar)
inferred by Redler et al. (2012) correspond to adgwariant field in the higf-part of
the diagram containing the phase assemblage KfsSGB+Qtz—Rt—Liq (Fig. 2a), in
agreement with the petrography observation of sarzfl70. The absence of
ilmeniteis likely due to the chosen¥dree chemical system (Dumond et al., 2015).
Considering the proposéd-T evolution, the solidus is encountered at ~850 °€-&h
kbar.

The main stages of melt production in Ivrea Zorenglites are expected to

occur at ~6508700°C via muscovite breakdown and from ~750 to ~860via bhiotite

breakdown (Redler et al., 2013). In applying meltitegration methodology some
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approximations, such as the number of melt-reiategn steps and the amount of melt
to be added back at each step, are needed betaisgossible to retrieve the real
melt loss history of crustal rocks. In the casévoda Zone rocks, three melt-
reintegration steps (Fig. 28) were performed along a schem&erl path where an
amount of melt, sufficient to promote melt drainagel loss, is expected to have been
producedon the basis of field and petrographic masiens, and phase equilibria
constraints (Fig. 10 in Redler et al., 2013) —a¢ 5700 °C and ~ 6 kbar where
muscovite is likely to have been totally consumethese rocks (i.e., at the likely
maximum temperature at which muscovite-melting\dtimelts have been produced),
and at 800 °C (during biotite dehydration meltiagyl at 850 °C, ~&0 kbar (i.e.,

close to the Bt-out reaction). Melt inclusion comapions appropriate for these
conditions were selected from the geochemical @a&bpublished in Cesare et al.
(2015) and Bartoli et al. (2016a). TRe Tconditions of melt inclusion formation were
determined by different methods (i.e., remeltingerxments, phase equilibria
modeling, classic thermobarometry, trace elemesrhtbmetry) or by a combination

of them (Cesare et al., 2015 and references theiatause the composition of the
source rock may exert a control on the compositicanatectic melts, nanogranitoids
found in metapelitic rocks were selected for thiglg (Fig. S2).

The bulk compositions used to calculate pseudasectis well as the
compositions of reintegrated melts and their ildé®—T conditions of formation are
reported in Table 1. Melt inclusions formed at ligtemperature generally show
higher FeO, CaO and;R contents and lowerJ @ amounts (Table 1).

At each melt-reintegration step, a certain amofimielt was added back until
melt persisted to conditions appropriate for thet meintegration. For example, 27

wt.% melt formed at ~850 °C was added back toéseluum composition until
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solidus appeared at ~800 °C and ~8 kbar (Fig.2t@nT20 wt.% melt was
reintegrated at 800 °C (Fig. 1c). In agreement withmelt-reintegration modeling
performed by Redler et al. (2013) and the assuPadgath, an amount of melt
sufficient to produce a #D-saturated solidus @700 °C and aP~7kbarwas added
back during the last melt-reintegration step at 7D@Fig.2d). Once melt-reintegration
procedure has been completed, the most evidengeban the phase diagram
topology are (i) the shift of the solidus to loviemperatures, (ii) the #D-saturated
character of solidus curve R«8 kbar, and (iii) the appearance of muscoviteibgar
subsolidus and suprasolidus assemblages (Fig. 2).

The final model protolith composition (1Z070c) olagrs the composition of
amphibolite-facies rocks which are considered tiecethe composition of the
protoliths of granulite-facies rocks (Fig. 3). Tafare, the approach proposed in this

study ensures the restoration of a reliable pribtalomposition.

4. Discussion
4.1. Comparison with the original melt-reintegratiapproach

In the original melt-reintegration method propobgd/Nhite et al. (2004), melt was
added back at conditions of the original soliduswated with the observed bulk
composition until melt persisted to lower temperasu The procedure was repeated so
that the lower temperature boundary of each phesenablage field involves the
appearance of melt, until a free fluid was preseyond the solidus (Bartoli, 2017).
Redler et al. (2013) applied this method to thetvdepleted rocks 12070 and 12020
from the granulite-facies and transition zonegpeetively. Their model protolith
composition for the highest grade rock (1Z070Re}pinside the compositional field

of amphibolite-facies rocks (Fig. 3) and displayasacompositional similarities with
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respect to the protolith composition 1Z070c recangtd in this study (Fig. 3). For
instance, AIO3;, CaO, KO and HO are < 10 wt.% relative higher in IZ070Re sample,
whereas Si@is 6 wt.% relative lower. As a consequence, tipehagy of P—T
pseudosection constructed using the protolith caitipa 1Z070Re is very similar to
that obtained in this study for the bulk compositid070c (Fig. S3). Also, a number
of similarities in the first-order topology can bee in Fig. 2d and the origind-T
pseudo section calculated by Redler et al. (208B)guTHERMOCALC. In the latter
case, ilmenite is predicted to be stable at peaklitons owing to the involvement of
Fe**as chemical component (Fig. 9b in Redler et all;320

Fig. 4 shows the calculated phase amounts for thakehrprotolith compositions
1Z070c and 1Z070Re. Considering the uncertaintgsoeaiated with phase equilibria
modeling and the assumptions made to apply meitagiation approaches (Palin et
al., 2016a; Bartoli, 2017; Koblinger and Pattised17), it is clear that the phase
amounts predicted along the progr&dd path considerably match each other (Fig. 4).
On the other hand, some discrepancies seem tovexést compositional isopleths are
compared, in particular fofa,[Ca/(Ca+Na)]of plagioclase (Fig. 5). This makesssen
because the composition of feldspars is particukehsitive to the melt
composition.Despite these discrepancies overlap tvé intrinsic uncertainties related
to phase equilibria calculations (Powell and Hala2008; Angiboust et al., 2012;
Palin et al., 2012; Koblinger and Pattison, 2017¢,above results suggest that the
feldspar compositional isopleths should not be icamed toderive th€—T constraints

once the melt-reintegration approach is applied.

4.2. Reintegrating composition of natural melts
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Melt-reintegration approach has been routinelyiappbn a variety of melt-depleted
rocks. In the majority of previous studies, the possition of melt to be reintegrated
has been calculated by phase equilibria modelwgy ¢hough different ways of
reintegrating calculated melt compositions havenljgeposed in the literature
(reviewed by Bartoli, 2017). Recently, some authtage proposed to reintegrate
natural melt compositions, rather than melt compmwss calculated by thermodynamic
modeling. For example, Anderson et al. (2013) itigated the high-grade
metamorphism in the Anmatjira Range (Arunta regaamtral Australia). These
authors calculated an average crustal melt comgpoasising published S-type granite
compositions derived from melting of aluminous reckhis average leucogranite
composition was then used to constru€t,esection which was successfully
applied to reconstruct the pre-melt loss bulk cositpm of the investigate rock (cf.
Fig. 7 in Anderson et al., 2013). On the other haddng and Guo (2017) reintegrated
the average bulk composition of six leucosomesosed in residual HP granulites
from the Yinshan Block (North China Craton).

Despite the composition of leucogranites and leoices has provided
fundamental clues on the crustal melting mechanemisgeochemical differentiation
of Earth’s crust (e.g., Deniel et al., 1987; Stevenal., 2007; Villaros et al., 2009;
Zeng et al., 2005), they rarely reflect primarg.(unmodified) crustal melts. Rather
the composition of these rocks may be variablycdfe by fractional crystallization
process, accumulation of early-crystallized mireraglective entrainment of residual
and/or peritectic phases and wholesale entrainofeman-protolithlithologies
(Chappell et al., 1987; Milord et al., 2001; Stevenal., 2007; Sawyer, 2008, 2014,
Clemens and Stevens, 2012; Brown et al., 2016;dllam\et al., 2016, 2017).For these

reasons, the composition of experimental glasseb&ancommonly assumed as

10
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representative of melt composition at the sourckwsed for geochemical
considerations on anatectic terranes(e.g., Milval.e2001; Guernina and Sawyer,
2003; Carvalho et al., 2016). It is important tdic® that the aforementioned studies
adopted the same approach of this study (i.eysled experimental melt compositions
produced from starting material andPal conditions closest to the investigated rock).
Recently, the appearance of the compositional dagabf nanogranitod
inclusions has provided an additional useful geotbal tool (Bartoli et al., 2016a).
For example, both the compositions of melt inclosiand experimental glasses have
been considered to track the processes that cah#déucosome compositions in

metasedimentary granulites from the Limpopo Beadyt8 Africa (Taylor et al., 2014).

5. Future per spectives
5.1. Using the published compositional database

This study demonstrates that reintegrating the @smipn of nanogranitoid inclusions
from the published geochemical databaseinto rekhkluk rock compositions can be
considered an additional useful method to recoosthe prograde history of melt-
depleted rocks by means of phase equilibria mogefnding back natural melt
compositions may be a way to reduce the gap betwatmal systems and
modelswhich represents, instead, simplified progfasatural occurrences. In Fig. 6,
the reintegrated compositions of melt inclusionsam@pared with the melt
compositions calculated from the thermodynamic rindeat the same conditions.
Nanogranitoids generally show higher FeO, MgO amwelr ALO; and NaO. CaO and
K,O are variable. It could be argue that such diffeesare related to the use of
nanogranitoid inclusions not coming from theinvgsted rock. However, a similar

discrepancy—between calculated and measured nmefiaitions—has been already

11
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reported in other anatectic terranes (Bartoli t28113c, 2016b) andin experimental
runs (Grant, 2009), and seems to be related toutrent melt model which needs
some improvements (see White et al., 2011). Notabhé/extent of the compositional
discrepancyfound in this study recalls that presipwbserved between nanogranitoids
and calculated melts coming from the same rockanu#d at the sanmfe-T

conditions (Fig. 6).

Although the selected nanogranitoid compositionsakreflect the precise
composition of melt produced in the investigateckrivom Ivrea Zone, this study
supports the inferences by Bartoli et al. (2016aj tising the melt inclusion
compositions from the published data set for thed@tens @-T-bulk rock
composition) closest to the investigated rock valad assumption which provide
reliable results. This outcome is very importantdaese melt inclusions are not present
in all anatecticterranes worldwide. Notably, thélmhed nanogranitoid database
(Cesare et al., 2015; Bartoli et al., 2016a) igiooiously being updated. For instance,
Ferrero et al. (2018) recently recovered the comiposof hanogranitoid inclusions

from ultramafic granulites.

5.2. Some assumptions are unavoidably needed

Ivrea Zone has been intensively investigated dutiegpast four decades and
the P-T evolution of migmatites and granulites is pretgliveonstrained (see above).
However, in other anatecticterranes the progRxdepath may be rather uncertain
and, in turn, deciding the number of melt-reintéigrasteps and the-Tconditions
where melt should be added back can be not tri8@ahe hints to recover the probable
P—T evolution and, in turn, the possible melt-formnegctions may come from the

tectonic model of the investigated areas and/aogetphic constraints. For example,

12



276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

201

292

293

294

295

296

297

298

299

300

felsic granulites from the Athabasca Granulite @eer (Canada) show textural
evidence suggesting minimum peak conditions of kdar and >925 °C (Dumond et
al., 2015). In agreement with the geology of trmaaDumond et al. (2015) inferred a
P—T path corresponding to the prograde burial of sedisito a depth in excess of 50
km along which melt was reintegrated four times nglted>—T path crossed the 1
mol.% melt isopleth.

On the other hand, Korhonen et al. (2013) constthpeak conditions for
granulites from the Eastern Ghats Province (Indopbining petrographic
observations (i.e., identifying the peak phaserab$zge) and phase equilibria
calculations for the residual bulk rock compositidhen, these authors assumed a
progradeP—T path of 150 °C/kbar for the melt reintegrationqadure (Korhonen et
al., 2013). Such B—Tevolution is considered typical of regions whiclpesienced
UHT conditions (Brown, 2006, 2007; Kelsey and Hazil4).

On the basis of the reached thermal peak (i.elh didow suprasolidus
temperatures), one can decide to perform one oe mett-reintegration steps,
similarly to what done by Morrissey et al. (2016 ntodel multiple melt loss events
(which consists in the inverse approach of mehisgration method). These authors
assumed &-T path and modeled three melt loss events: on theolielus and on the

muscovite- and biotite-out curves.

5.3. Reconstruction of a plausible effective bulknposition

Residual bulk rock compositions can be inadeqioateodel the entire
prograde history not only for the previous extractof some batches of melt resulting
in a residual bulk rock composition, but also fog bccurrence of large, chemically

zoned porphyroblasts which can cause chemicaldration during their growth,
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301 changing the chemical composition of the reactouk volume (Marmo et al., 2002;
302 Evans, 2004). In such a case, different effectid& bompositions have to be

303 considered to model different steps alongRk€& path, modifying the bulk rock

304 composition according to the predicted elementnpaxation in the fractionated

305 mineral (Gaidies et al., 2006; Konrad-Schmolkele2808; Groppo et al., 2009;
306 laccarino et al., 2017). Occasionally, nanograditnclusions show a systematic
307 distribution in annuli around a melt inclusion-frgarnet core(Fig. 7a; Carosi et al.,
308 2015; Cesare et al., 2015). When this occurrerasseciated with low melting

309 temperature (<750 °C) or short duration of HT meigyhism preventing a complete
310 chemical re-equilibration of garnet prophyro blgses., a complete diffusive resetting;
311 Caddick et al., 2010), the reconstruction of a gilale effective bulk composition for
312 the melting event can take advantage of both timeggration of melt inclusion

313 composition and theremoval of elements fractionatdtle subsolidus garnet core
314 (Fig. 7a).

315

316 5.4. Modeling distinct anatectic events within ragée rock

317 High-grade metamorphic terranes often show a petsgmorphic history

318 related to one or more orogenic cycles (Korhoneal.e2010; Ewing et al., 2015;
319 Yakymchuk et al., 2015).Sometimes it is possiblértd evidence of two distinct
320 anatectic events within a single garnet crystat.es@mple, garnet from granulitic
321 migmatites of the sequence of Jubrique (Betic Qlerdi S Spain) contains granitic
322 meltinclusions associated to kyanite and rutilhencore, whereas granodioritic to
323 tonalitic melt inclusions are associated to silint@ and ilmenite at the rim of the host
324 crystal (Fig. 7b; Barich et al., 2014; Acosta-Vigilal., 2016). Clearly, this

325 nanogranitoid occurrence will allow one to pursneuaique approach: the

14
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reintegration of the right melt composition for amatectic event to be modeled.

6. Concluding remarks

Most granulitic terranes worldwide experienced losanatectic melt, resulting in
residual bulk rock compositions. Although the inigeted rock does not contain melt
inclusions, reintegrating the composition of namogpoid inclusions from the
published geochemical database, for the condi{iBABbulk rock composition)
closest to the investigated rock, can be considaneadditional useful method to
reconstruct the prograde history of melt-depletarks by means of phase equilibria

modeling.
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CAPTIONS:

Fig. 1. Schemati®—T diagram showing the formation of nanogranitoidusons in
anatectic rocks. After onset of melting, the gragvwperitectic mineral traps droplets of
melt produced by melting reaction. Along coolingipanelt inclusions partially to
totally crystallizeinto a cryptocrystalline aggrégénanogranitoid).

Fig. 2: Melt-reintegration approach for the residuagmatite 12070 (Ivrea Zone).
White dots indicat®—Tconditions where melt was reintegrated. The chabemical
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system is NCKFMASHT. Red line: solidus. Yellow limauscovite-out curve. Light
blue field: region where liquid #D is predicted. Labels referring to the bulk rock
compositions used in the modeling are reportecanemthesis (see Table P-Tpath
reconstructed from Redler et al. (2013).

Fig. 3:Harker plots (wt.%) showing the final mogebtolith compositions (anhydrous
compositions from Table 1) obtained (i) by reintgrg melt inclusion compositions
and (ii) by Redler et al. (2013) applying the amigi melt-reintegration method
proposed by White et al. (2004). Bulk rock compos# of granulite- and
amphibolite-faciesmetapelites are from Redler e{24l13).

Fig. 4: Calculated mineral and melt abundance afpograde paths of Figs. 1a and
S3.

Fig. 5: Contours for ¥4 (Mg/(Mg+Fe)) value of biotite, for X, (Ca/(Ca+Na)) of
plagioclase and for almandine component of gafaefseudosections in Figures la
and S3. Continuous and dotted lines as in Fig. 4.

Fig. 6:Bivariant diagrams (wt.%) comparinganhydroampositions of reintegrated
nanogranitoid inclusions (squares; Table 1) andswallculated at the same conditions
(ellipses). Grey arrows indicate increasigl conditions. Black lines connect
calculated composition (white star) with the cop@sding melt inclusion composition
(black star) from Ronda diatexites (data from Bladbal., 2016b). See text for details.

Fig. 7: Sketch of two different modes of occurrenteanogranitoid inclusions in
anatectic rocks. (a) Garnet from Himalaya in whicimdreds of melt inclusions (black
dots) show a systematic distribution in an annahasind a nanogranitoid-free core
(see Carosi et al., 2015; Cesare et al., 2015pR0lél., 2015). (b) Garnet from Ronda
area (Betic Cordillera, Spain) containing two diffiet types of nanogranitoid
inclusions. Inclusions corresponding to g0=poor leucogranitic melt (black dots)
coexist with rutile and kyanite at the garnet covkereas KHO-rich granodioritic to
tonalitic melt inclusions (blue dots) are presentdrds garnet rim along with
sillimanite and ilmenite (see Barich et al., 20Adpsta-Vigil et al., 2016).

Table 1: Bulk rock and melt compositions (wt.%)digethe phase equilibria
modeling.
Appendix A. Supplementary data

Fig. S1: Schematic map of Val Strona di Omegnaré&wd from Redler et al., 2012,
2013). The locality of the residual granulite 1ZQr€ed for the calculations is given.

Fig. S2: Bivariant diagrams (wt%) comparing bulkk@ompositions of migmatites
and granulites containing melt inclusions usedisa $tudy (data from Bartoli, 2017,

Bartoli et al., 2016a; Barich et al., 2014) andgitde 12070 from Val Strona di
Omegna.

Fig. S3: Phase equilibria modeling consideringkthk composition 1Z070Re obtained
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663 by Redler et al. (2013). The chosen chemical systsedCKFMASHT. Red line:
664 solidus. Yellow line: muscovite-out curve. Lighublfield: region where liquid D is
665 predicted.
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Table 1. Bulk rock and compositions (wt.%) used in the elod).

Bulk rock composition

Melt inclusion composition**

Label 1z070* 1Z070a 1Z070b IZ070c 1Z070Re*

Temp. =700 °C =800 °C =850 °C

No. analyses 240 53 79
Sio, 58.74 61.90 64.09 64.62 61.20 72.80 74.55 73.58
TiO, 1.39 1.11 0.92 0.88 1.04 0.08 0.05 0.08
Al,O, 22.13 20.35 18.93 18.56 20.27 12,51 13.30 13.78
FeO 10.58 8.67 7.49 7.12 8.10 1.21 1.47 1.59
MgO 3.49 2.78 2.31 2.23 2.64 0.14 0.14 0.15
CaO 0.30 0.41 0.36 0.34 0.38 0.26 0.35 0.82
Na,O 0.34 0.88 1.18 1.26 0.97 2.83 2.79 2.90
K,0 2.58 3.16 3.62 3.65 3.94 4.88 5.12 5.29
H,O 0.45 0.74 1.09 1.34 1.45 5.29 2.23 1.81
Tot. 100.00 100.00 100.00 100.00 99.99 100.00 100.00 100.00

* From Redler et al. (2013)
** From Cesare et al. (2015), Bartoli et al. (2016)
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Nanogranitoid inclusions have the potential to provide the primary composition of crustal
melts at the source

A novel use of the nanogranitoid compositional database is presented here
Reintegrating melt inclusion compositions from the published database into residual rock

compositions can be a further useful method to reconstruct a plausible prograde history of
melt-depleted rocks



