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Abstract 

A recent fascinating development in the study of high-grade metamorphic basements 

is represented by the finding of tiny inclusions of crystallized melt (nanogranitoid 

inclusions) hosted in peritectic phases of migmatites and granulites. These inclusions 

have the potential to provide the primary composition of crustal melts at the source. A 

novel use of the recently-published nanogranitoid compositional database is presented 

here. Using granulites from the world-renowned Ivrea Zone (NW Italy) on which the 

original melt-reintegration approach has been previously applied, it is shown that 

reintegrating melt inclusion compositions from the published database into residual 

rock compositions can be a further useful method to reconstruct a plausible prograde 

history of melt-depleted rocks. This reconstruction is fundamental to investigate the 

tectonothermal history of geological terranes. 

Keywords: nanogranitoids, melt-reintegration, granulite, high-temperature 

metamorphism
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1. Introduction 1 

The deep continental crust has been ubiquitously affected by partial melting from 2 

Archean to present day in different geodynamic settings (Nehring et al., 2009; Sawyer 3 

et al., 2011). Loss of melt is a notoriously widespread process in crustal partially-4 

melted rocks (Powell, 1983; White and Powell, 2002; Brown, 2007; Korhonen et al., 5 

2010; Yakymchuk and Brown, 2014) and melt migration to upper crustal levels results 6 

in the formation of anatectic granites, leading to the geochemical differentiation of the 7 

Earth’s crust (Brown and Rushmer, 2006). It follows that the study of melt-depleted 8 

rocks from the deep crust (residual migmatites and granulites) is key to understanding 9 

and characterizing the main processes that have promoted the chemical evolution of 10 

our planet (e.g. White and Powell, 2002; Guenrina and Sawyer, 2003; Morfin et al., 11 

2013; Korhonen et al., 2015; Weinberg and Hasalovà, 2015).   12 

In the framework of natural crustal melts, a recent important advance is the 13 

finding of small crystallized melt inclusions (nanogranitoids) hosted in peritectic 14 

phases of migmatites and granulites (Fig. 1; Cesare et al., 2009, 2015; Ferrero et al., 15 

2012; Bartoli et al., 2013a). When microstructurally, experimentally and 16 

microchemically investigated following precise procedures and protocols (Bartoli et 17 

al., 2013b;  Cesare et al., 2015), these small data repositories can provide the primary 18 

composition of crustal melts at the source (Acosta-Vigil et al., 2010; Bartoli et al., 19 

2014, 2016a; Ferrero et al., 2016a). The study and characterization of nanogranitods 20 

have allowed significant advances in our understanding of crustal anatexis, such as a 21 

better comprehension of the melting mechanismsup to extreme UHP-UHT conditions 22 

(Acosta-Vigil et al., 2010, 2016; Bartoli et al., 2014, 2016a; Cesare et al., 2015; 23 

Ferrero et al., 2015, 2016a; Stepanov et al., 2016; Deng et al., 2017). 24 

A geochemical database based on more than 600 nanogranitoid compositions 25 
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has been recently constructed: it comprises melt inclusions formed at conditions 26 

varying from 670 to 950 °C and 4 to 27 kbar, and found in metapelitic,metapsammitic 27 

and metagranitoid migmatites, and granulites (Cesare et al., 2015; Bartoli et al., 28 

2016a). This dataset has been successfully used to track the processes involved in the 29 

chemical evolution of felsic magmas (e.g., fractional crystallization, cumulus 30 

phenomena, entrainment of peritectic phases, restiteunmixing; see Bartoli et al., 31 

2016b). Experimental and modeling studies often refer to nanogranitoid compositions 32 

to complement and/or validate their inferences/results (e.g., Gao et al., 2016; Garcia-33 

Arias and Stevens, 2017). Notably, Stepanov and Hermann (2013) used melt inclusion 34 

compositions from anatectic rocks to discuss an important and actively debated 35 

geochemical issue in the geological community such as the “missing Nb paradox”.  36 

 In this contribution an additional and novel use of the nanogranitoid 37 

compositional database is presented. Using granulites from the world-renowned Ivrea 38 

Zone (NW Italy) as an example, it is shown that reintegrating melt inclusion 39 

compositions from the published database into residual rock compositions can be 40 

considered a further useful method to reconstruct a plausible prograde history (melting 41 

conditions and reactions, and melt productivity) of melt-depleted rocks by means of 42 

phase equilibria modeling.  43 

Bartoli (2017) has recently reviewed the different melt-reintegration 44 

approaches proposed in the literature. Whereas that manuscript provides a description 45 

and a comparative study of different procedures, in this contribution the utility of the 46 

published nanogranitoiddatabaseis illustrated in the framework of phase equilibria 47 

modeling of residual (melt-depleted) rocks. 48 

Rocks from the Ivrea Zone have been chosen for three main reasons: (i) they 49 

represent a well-known and -studied anatecticterrane from amphibolite- to granulite-50 
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facies conditions (Schmid and Wood, 1976; Zingg, 1980; Bea and Montero, 1999; 51 

Redler et al., 2012, 2013; Ewing et al., 2015); (ii) here, the melt-reintegration approach 52 

originally proposed by White et al. (2004) has been previously applied (Redler et al., 53 

2013) and, therefore, a comparison between the two different methods can be done; 54 

and (iii) the precise protolith composition of these rocks is well-knownallowing one to 55 

validate/invalidate the obtained results (Bartoli, 2017). 56 

 57 

2. Geological setting 58 

The Ivrea Zone (southern Alps of northwest Italy) is considered to represent a 59 

complete Permian mid to lower crustal section (Schmid, 1993; Barboza and Bergantz, 60 

2000). It comprises two main units: the Kinzigite Formation and the Mafic Complex 61 

(Quick et al., 2003). The Kinzigite Formation consists of a sequence of amphibolite to 62 

granulite facies rocks. The latter are associated with widespread anatexis, producing 63 

highly residual rocks (Schnetger, 1994; Redler et al., 2012, 2013). Metapelites are 64 

volumetrically dominant and are interlayered with metabasic rocks and minor 65 

calcsilicate rocks and marbles (Schmid, 1993; Redler et al., 2012; Kunz et al., 2014). 66 

Regional amphibolite to granulite facies metamorphism has been dated at c. 316Ma (U 67 

–Pb ages of zircon; Ewing et al., 2013). The reader may refer to Redler et al. (2012, 68 

2013) and Kunz et al. (2014) for a detailed petrographic description of rocks across the 69 

entire Kinzigite Formation. 70 

 The sample selected for this study comes from the Val Strona di Omegnawhich 71 

represents a section through amphibolite to granulite facies rocks (Fig. S1).Redler et al. 72 

(2012) modeledthe stability fields for the inferred peak phase assemblages in different 73 

samples across the Val Strona di Omegna. These authors demonstrated that the sample 74 

set definesa continuous increase in pressure and temperature. The 75 
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obtainedmetamorphic gradient extends from conditions of 3.5–6.5 kbar at ~650 °C to 76 

10–12 kbar at > 900°C (Redler et al., 2012). Similar peak temperatures (900–930 °C) 77 

for the highest-grade rocks were obtained by zirconium-in-rutile thermometry (Ewing 78 

et al., 2013).  79 

 80 

3. Phase equilibria modeling 81 

Phase equilibria modeling represents a key methodology to study the tectonothermal 82 

history of geological terranes (White et al., 2007, 2017; Palin et al., 2016a, b). A 83 

widespread method to reconstruct the prograde history of melt-depleted rocks by 84 

means of phase equilibria modeling consists of (i) the addition of a certain amount of 85 

melt, whose composition is calculated at a given pressure and temperature, into the 86 

residual composition and (ii) performing phase equilibria modeling of the new model 87 

composition (White et al., 2004). Bartoli (2017) demonstrated that highly residual 88 

(SiO2< 55 wt.%) compositions may affect somehow the feasibility of the melt-89 

reintegration approach. Indeed, for these bulk rock compositions, the reintegration of a 90 

certain amount of melt up to the appearance of a H2O-saturated solidus at the pressure 91 

of interest (i.e., the appearance ofwet solidus has been generally used to determine the 92 

amount of melt to add back) does not guarantee the restoration of a reliable protolith 93 

composition, and the subsequent phase equilibria modeling of this model protolith may 94 

provide significant underestimations of melt productivity.  95 

To avoid this drawback, the residual granulite IZ070 characterized by ~59 wt.% 96 

of SiO2 was selected for this study from the bulk rock compositions previously 97 

modeled by Redler et al. (2013). Because these authors applied the original melt-98 

reintegration method,it is possible to compare the results obtained by the two different 99 

melt-reintegration procedures.Granulite IZ070 was collected in the highest-grade zone 100 
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of Val Strona di Omegna (Fig. S1). The peak mineral assemblageis composed of 101 

quartz, K-feldspar, garnet, sillimanite, ilmenite and rutile, and it is predicted to be 102 

stable at >850 °C, 8–12 kbar (Redler et al., 2012, 2013). 103 

Phase diagrams have been constructed using the Perple_X software (Connolly, 104 

2009) with the thermodynamic database of Holland and Powell (1998, as revised in 105 

2003). The chemical system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2  106 

(NCKFMASHT) was selected. Ferric iron was ignored because its abundance in melt 107 

inclusions was not determined. Manganese was excluded because it has little effect on 108 

garnet-bearing equilibria at high-grade conditions (Redler et al., 2013). The solution 109 

model used are: melt from White et al. (2007), garnet from Holland and Powell (1998), 110 

biotite from Tajčmanová et al. (2009), white mica from Coggon and Holland (2002), 111 

plagioclase from Newton et al. (1980) and K-feldsparfrom Thompson and Hovis 112 

(1979). An ideal model was used for cordierite and ilmenite.     113 

The first P–T pseudosection was calculated using the estimated residual bulk 114 

composition (Fig. 2a). Therefore, this diagram is only valid for assessing the peak and 115 

post-peak history (White et al., 2004). The peak conditions (>900 °C, 10–12 kbar) 116 

inferred by Redler et al. (2012) correspond to a quadrivariant field in the high-T part of 117 

the diagram containing the phase assemblage Kfs–Grt–Sil–Qtz–Rt–Liq (Fig. 2a), in 118 

agreement with the petrography observation of sample IZ070. The absence of 119 

ilmeniteis likely due to the chosen Fe3+-free chemical system (Dumond et al., 2015). 120 

Considering the proposed P–T evolution, the solidus is encountered at ~850 °C and ~9 121 

kbar.  122 

The main stages of melt production in Ivrea Zone granulites are expected to 123 

occur at ~650–700°C via muscovite breakdown and from ~750 to ~850 ° C via biotite 124 

breakdown (Redler et al., 2013). In applying melt-reintegration methodology some 125 
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approximations, such as the number of melt-reintegration steps and the amount of melt 126 

to be added back at each step, are needed because it isimpossible to retrieve the real 127 

melt loss history of crustal rocks. In the case of Ivrea Zone rocks, three melt-128 

reintegration steps (Fig. 2b–d) were performed along a schematic P–T path where an 129 

amount of melt, sufficient to promote melt drainage and loss, is expected to have been 130 

producedon the basis of field and petrographic observations, and phase equilibria 131 

constraints (Fig. 10 in Redler et al., 2013) –i.e., at ~700 °C and ~ 6 kbar where 132 

muscovite is likely to have been totally consumed in these rocks (i.e., at the likely 133 

maximum temperature at which muscovite-melting derived melts have been produced), 134 

and at 800 °C (during biotite dehydration melting) and at 850 °C, ~8–10 kbar (i.e., 135 

close to the Bt-out reaction). Melt inclusion compositions appropriate for these 136 

conditions were selected from the geochemical database published in Cesare et al. 137 

(2015) and Bartoli et al. (2016a). The P–Tconditions of melt inclusion formation were 138 

determined by different methods (i.e., remelting experiments, phase equilibria 139 

modeling, classic thermobarometry, trace element thermometry) or by a combination 140 

of them (Cesare et al., 2015 and references therein). Because the composition of the 141 

source rock may exert a control on the composition of anatectic melts, nanogranitoids 142 

found in metapelitic rocks were selected for this study (Fig. S2). 143 

The bulk compositions used to calculate pseudosections as well as the 144 

compositions of reintegrated melts and their inferred P–T conditions of formation are 145 

reported in Table 1. Melt inclusions formed at higher temperature generally show 146 

higher FeO, CaO and K2O contents and lower H2O amounts (Table 1). 147 

At each melt-reintegration step, a certain amount of melt was added back until 148 

melt persisted to conditions appropriate for the next reintegration. For example, 27 149 

wt.% melt formed at ~850 °C was added back to the residuum composition until 150 
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solidus appeared at ~800 °C and ~8 kbar (Fig.2b). Then, 20 wt.% melt was 151 

reintegrated at 800 °C (Fig. 1c). In agreement with the melt-reintegration modeling 152 

performed by Redler et al. (2013) and the assumed P–Tpath, an amount of melt 153 

sufficient to produce a H2O-saturated solidus at T<700 °C and at P~7kbarwas added 154 

back during the last melt-reintegration step at 700 °C (Fig.2d). Once melt-reintegration 155 

procedure has been completed, the most evident changes in the phase diagram 156 

topology are (i) the shift of the solidus to lower temperatures, (ii) the H2O-saturated 157 

character of solidus curve at P <8 kbar, and (iii) the appearance of muscovite-bearing 158 

subsolidus and suprasolidus assemblages (Fig. 2). 159 

The final model protolith composition (IZ070c) overlaps the composition of 160 

amphibolite-facies rocks which are considered to reflect the composition of the 161 

protoliths of granulite-facies rocks (Fig. 3). Therefore, the approach proposed in this 162 

study ensures the restoration of a reliable protolith composition.  163 

 164 

4. Discussion 165 

4.1. Comparison with the original melt-reintegration approach 166 

In the original melt-reintegration method proposed by White et al. (2004), melt was 167 

added back at conditions of the original solidus calculated with the observed bulk 168 

composition until melt persisted to lower temperatures. The procedure was repeated so 169 

that the lower temperature boundary of each phase assemblage field involves the 170 

appearance of melt, until a free fluid was present beyond the solidus (Bartoli, 2017). 171 

Redler et al. (2013) applied this method to the melt-depleted rocks IZ070 and IZ020 172 

from the granulite-facies and transition zones, respectively. Their model protolith 173 

composition for the highest grade rock (IZ070Re) plots inside the compositional field 174 

of amphibolite-facies rocks (Fig. 3) and displayssome compositional similarities with 175 
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respect to the protolith composition IZ070c reconstructed in this study (Fig. 3). For 176 

instance, Al2O3, CaO, K2O and H2O are < 10 wt.% relative higher in IZ070Re sample, 177 

whereas SiO2 is 6 wt.% relative lower. As a consequence, the topology of P–T 178 

pseudosection constructed using the protolith composition IZ070Re is very similar to 179 

that obtained in this study for the bulk composition IZ070c (Fig. S3). Also, a number 180 

of similarities in the first-order topology can be see in Fig. 2d and the original P–T 181 

pseudo section calculated by Redler et al. (2013) using THERMOCALC. In the latter 182 

case, ilmenite is predicted to be stable at peak conditions owing to the involvement of 183 

Fe3+as chemical component (Fig. 9b in Redler et al., 2013). 184 

Fig. 4 shows the calculated phase amounts for the model protolith compositions 185 

IZ070c and IZ070Re. Considering the uncertainties associated with phase equilibria 186 

modeling and the assumptions made to apply melt-reintegration approaches (Palin et 187 

al., 2016a; Bartoli, 2017; Koblinger and Pattison, 2017), it is clear that the phase 188 

amounts predicted along the prograde P–T path considerably match each other (Fig. 4). 189 

On the other hand, some discrepancies seem to exist when compositional isopleths are 190 

compared, in particular for XAn[Ca/(Ca+Na)]of plagioclase (Fig. 5). This makes sense, 191 

because the composition of feldspars is particularly sensitive to the melt 192 

composition.Despite these discrepancies overlap with the intrinsic uncertainties related 193 

to phase equilibria calculations (Powell and Holland, 2008; Angiboust et al., 2012; 194 

Palin et al., 2012; Koblinger and Pattison, 2017), the above results suggest that the 195 

feldspar compositional isopleths should not be considered toderive the P–T constraints 196 

once the melt-reintegration approach is applied. 197 

 198 

 199 

4.2. Reintegrating composition of natural melts 200 
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Melt-reintegration approach has been routinely applied on a variety of melt-depleted 201 

rocks. In the majority of previous studies, the composition of melt to be reintegrated 202 

has been calculated by phase equilibria modeling, even though different ways of 203 

reintegrating calculated melt compositions have been proposed in the literature 204 

(reviewed by Bartoli, 2017). Recently, some authors have proposed to reintegrate 205 

natural melt compositions, rather than melt compositions calculated by thermodynamic 206 

modeling. For example, Anderson et al. (2013) investigated the high-grade 207 

metamorphism in the Anmatjira Range (Arunta region, central Australia). These 208 

authors calculated an average crustal melt composition using published S-type granite 209 

compositions derived from melting of aluminous rocks. This average leucogranite 210 

composition was then used to construct a T-Mmelt section which was successfully 211 

applied to reconstruct the pre-melt loss bulk composition of the investigate rock (cf. 212 

Fig. 7 in Anderson et al., 2013). On the other hand, Wang and Guo (2017) reintegrated 213 

the average bulk composition of six leucosomes enclosed in residual HP granulites 214 

from the Yinshan Block (North China Craton). 215 

Despite the composition of leucogranites and leucosomes has provided 216 

fundamental clues on the crustal melting mechanisms and geochemical differentiation 217 

of Earth’s crust (e.g., Deniel et al., 1987; Stevens et al., 2007; Villaros et al., 2009; 218 

Zeng et al., 2005), they rarely reflect primary (i.e. unmodified) crustal melts. Rather 219 

the composition of these rocks may be variably affected by fractional crystallization 220 

process, accumulation of early-crystallized minerals, selective entrainment of residual 221 

and/or peritectic phases and wholesale entrainment of non-protolithlithologies 222 

(Chappell et al., 1987; Milord et al., 2001; Stevens et al., 2007; Sawyer, 2008, 2014; 223 

Clemens and Stevens, 2012; Brown et al., 2016; Carvalho et al., 2016, 2017).For these 224 

reasons, the composition of experimental glasses has beencommonly assumed as 225 
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representative of melt composition at the source and used for geochemical 226 

considerations on anatectic terranes(e.g., Milord et al., 2001; Guernina and Sawyer, 227 

2003; Carvalho et al., 2016). It is important to notice that the aforementioned studies 228 

adopted the same approach of this study (i.e., the used experimental melt compositions 229 

produced from starting material and at P-T conditions closest to the investigated rock). 230 

Recently, the appearance of the compositional database of nanogranitod 231 

inclusions has provided an additional useful geochemical tool (Bartoli et al., 2016a). 232 

For example, both the compositions of melt inclusions and experimental glasses have 233 

been considered to track the processes that control the leucosome compositions in 234 

metasedimentary granulites from the Limpopo Belt, South Africa (Taylor et al., 2014). 235 

 236 

5. Future perspectives 237 

5.1. Using the published compositional database 238 

This study demonstrates that reintegrating the composition of nanogranitoid inclusions 239 

from the published geochemical databaseinto residual bulk rock compositions can be 240 

considered an additional useful method to reconstruct the prograde history of melt-241 

depleted rocks by means of phase equilibria modeling. Adding back natural melt 242 

compositions may be a way to reduce the gap between natural systems and 243 

modelswhich represents, instead, simplified proxies of natural occurrences. In Fig. 6, 244 

the reintegrated compositions of melt inclusionsare compared with the melt 245 

compositions calculated from the thermodynamic modeling at the same conditions. 246 

Nanogranitoids generally show higher FeO, MgO and lower Al2O3 and Na2O. CaO and 247 

K2O are variable. It could be argue that such differencesare related to the use of 248 

nanogranitoid inclusions not coming from theinvestigated rock. However, a similar 249 

discrepancy–between calculated and measured melt compositions–has been already 250 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 12

reported in other anatectic terranes (Bartoli et al., 2013c, 2016b) andin experimental 251 

runs (Grant, 2009), and seems to be related to the current melt model which needs 252 

some improvements (see White et al., 2011). Notably, the extent of the compositional 253 

discrepancyfound in this study recalls that previously observed between nanogranitoids 254 

and calculated melts coming from the same rock andformed at the same P–T 255 

conditions (Fig. 6). 256 

Although the selected nanogranitoid compositions do not reflect the precise 257 

composition of melt produced in the investigated rock from Ivrea Zone, this study 258 

supports the inferences by Bartoli et al. (2016a) that using the melt inclusion 259 

compositions from the published data set for the conditions (P-T-bulk rock 260 

composition) closest to the investigated rock is a valid assumption which provide 261 

reliable results. This outcome is very important because melt inclusions are not present 262 

in all anatecticterranes worldwide. Notably, the published nanogranitoid database 263 

(Cesare et al., 2015; Bartoli et al., 2016a) is continuously being updated. For instance, 264 

Ferrero et al. (2018) recently recovered the composition of nanogranitoid inclusions 265 

from ultramafic granulites.  266 

 267 

5.2. Some assumptions are unavoidably needed  268 

Ivrea Zone has been intensively investigated during the past four decades and 269 

the P–T evolution of migmatites and granulites is pretty well constrained (see above). 270 

However, in other anatecticterranes the prograde P–T path may be rather uncertain 271 

and, in turn, deciding the number of melt-reintegration steps and the P–Tconditions 272 

where melt should be added back can be not trivial. Some hints to recover the probable 273 

P–T evolution and, in turn, the possible melt-forming reactions may come from the 274 

tectonic model of the investigated areas and/or petrographic constraints. For example, 275 
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felsic granulites from the Athabasca Granulite Terrane (Canada) show textural 276 

evidence suggesting minimum peak conditions of >14 kbar and >925 °C (Dumond et 277 

al., 2015). In agreement with the geology of the area, Dumond et al. (2015) inferred a 278 

P–T path corresponding to the prograde burial of sediments to a depth in excess of 50 279 

km along which melt was reintegrated four times where theP–T path crossed the 1 280 

mol.% melt isopleth. 281 

On the other hand, Korhonen et al. (2013) constrained peak conditions for 282 

granulites from the Eastern Ghats Province (India) combining petrographic 283 

observations (i.e., identifying the peak phase assemblage) and phase equilibria 284 

calculations for the residual bulk rock composition. Then, these authors assumed a 285 

prograde P–T path of 150 °C/kbar for the melt reintegration procedure (Korhonen et 286 

al., 2013). Such a P–T evolution is considered typical of regions which experienced 287 

UHT conditions (Brown, 2006, 2007; Kelsey and Hand, 2014). 288 

On the basis of the reached thermal peak (i.e., high or low suprasolidus 289 

temperatures), one can decide to perform one or more melt-reintegration steps, 290 

similarly to what done by Morrissey et al. (2016) to model multiple melt loss events 291 

(which consists in the inverse approach of melt-reintegration method). These authors 292 

assumed a P–T path and modeled three melt loss events: on the wet solidus and on the 293 

muscovite- and biotite-out curves. 294 

 295 

5.3. Reconstruction of a plausible effective bulk composition 296 

 Residual bulk rock compositions can be inadequate to model the entire 297 

prograde history not only for the previous extraction of some batches of melt resulting 298 

in a residual bulk rock composition, but also for the occurrence of large, chemically 299 

zoned porphyroblasts which can cause chemical fractionation during their growth, 300 
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changing the chemical composition of the reacting rock volume (Marmo et al., 2002; 301 

Evans, 2004). In such a case, different effective bulk compositions have to be 302 

considered to model different steps along the P–T path, modifying the bulk rock 303 

composition according to the predicted element incorporation in the fractionated 304 

mineral (Gaidies et al., 2006; Konrad-Schmolke et al., 2008; Groppo et al., 2009; 305 

Iaccarino et al., 2017). Occasionally, nanogranitoid inclusions show a systematic 306 

distribution in annuli around a melt inclusion-free garnet core(Fig. 7a; Carosi et al., 307 

2015; Cesare et al., 2015). When this occurrenceis associated with low melting 308 

temperature (<750 °C) or short duration of HT metamorphism preventing a complete 309 

chemical re-equilibration of garnet prophyro blasts (i.e., a complete diffusive resetting; 310 

Caddick et al., 2010), the reconstruction of a plausible effective bulk composition for 311 

the melting event can take advantage of both the reintegration of melt inclusion 312 

composition and theremoval of elements fractionated in the subsolidus garnet core 313 

(Fig. 7a). 314 

 315 

5.4. Modeling distinct anatectic events within a single rock 316 

 High-grade metamorphic terranes often show a polymetamorphic history 317 

related to one or more orogenic cycles (Korhonen et al., 2010; Ewing et al., 2015; 318 

Yakymchuk et al., 2015).Sometimes it is possible to find evidence of two distinct 319 

anatectic events within a single garnet crystal. For example, garnet from granulitic 320 

migmatites of the sequence of Jubrique (Betic Cordillera, S Spain) contains granitic 321 

melt inclusions associated to kyanite and rutile in the core, whereas granodioritic to 322 

tonalitic melt inclusions are associated to sillimanite and ilmenite at the rim of the host 323 

crystal (Fig. 7b; Barich et al., 2014; Acosta-Vigil et al., 2016). Clearly, this 324 

nanogranitoid occurrence will allow one to pursue an unique approach: the 325 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 15

reintegration of the right melt composition for each anatectic event to be modeled.  326 

 327 

6. Concluding remarks 328 

Most granulitic terranes worldwide experienced loss of anatectic melt, resulting in 329 

residual bulk rock compositions. Although the investigated rock does not contain melt 330 

inclusions, reintegrating the composition of nanogranitoid inclusions from the 331 

published geochemical database, for the conditions (P-T-bulk rock composition) 332 

closest to the investigated rock, can be considered an additional useful method to 333 

reconstruct the prograde history of melt-depleted rocks by means of phase equilibria 334 

modeling. 335 

 336 
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 603 
CAPTIONS: 604 
 605 
Fig. 1: Schematic P–T diagram showing the formation of nanogranitoid inclusions in 606 
anatectic rocks. After onset of melting, the growing peritectic mineral traps droplets of 607 
melt produced by melting reaction. Along cooling path, melt inclusions partially to 608 
totally crystallizeinto a cryptocrystalline aggregate (nanogranitoid). 609 
 610 
Fig. 2: Melt-reintegration approach for the residual migmatite IZ070 (Ivrea Zone). 611 
White dots indicate P–Tconditions where melt was reintegrated. The chosen chemical 612 
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system is NCKFMASHT. Red line: solidus. Yellow line: muscovite-out curve. Light 613 
blue field: region where liquid H2O is predicted. Labels referring to the bulk rock 614 
compositions used in the modeling are reported in parenthesis (see Table 1). P–Tpath 615 
reconstructed from Redler et al. (2013). 616 
 617 
Fig. 3:Harker plots (wt.%) showing the final model protolith compositions (anhydrous 618 
compositions from Table 1) obtained (i) by reintegrating melt inclusion compositions 619 
and (ii) by Redler et al. (2013) applying the original melt-reintegration method 620 
proposed by White et al. (2004). Bulk rock compositions of granulite- and 621 
amphibolite-faciesmetapelites are from Redler et al. (2013). 622 
 623 
Fig. 4: Calculated mineral and melt abundance along prograde paths of Figs. 1a and 624 
S3. 625 
 626 
Fig. 5: Contours for XMg (Mg/(Mg+Fe)) value of biotite, for XAn (Ca/(Ca+Na)) of 627 
plagioclase and for almandine component of garnet, for pseudosections in Figures 1a 628 
and S3. Continuous and dotted lines as in Fig. 4. 629 
 630 
Fig. 6:Bivariant diagrams (wt.%) comparinganhydrous compositions of reintegrated 631 
nanogranitoid inclusions (squares; Table 1) and melts calculated at the same conditions 632 
(ellipses). Grey arrows indicate increasing P–T conditions. Black lines connect 633 
calculated composition (white star) with the corresponding melt inclusion composition 634 
(black star) from Ronda diatexites (data from Bartoli et al., 2016b). See text for details. 635 
 636 
Fig. 7: Sketch of two different modes of occurrence of nanogranitoid inclusions in 637 
anatectic rocks. (a) Garnet from Himalaya in which hundreds of melt inclusions (black 638 
dots) show a systematic distribution in an annulus around a nanogranitoid-free core 639 
(see Carosi et al., 2015; Cesare et al., 2015; Rolfo et al., 2015). (b) Garnet from Ronda 640 
area (Betic Cordillera, Spain) containing two different types of nanogranitoid 641 
inclusions. Inclusions corresponding to a H2O-poor leucogranitic melt (black dots) 642 
coexist with rutile and kyanite at the garnet core, whereas H2O-rich granodioritic to 643 
tonalitic melt inclusions (blue dots) are present towards garnet rim along with 644 
sillimanite and ilmenite (see Barich et al., 2014; Acosta-Vigil et al., 2016).  645 
 646 
Table 1: Bulk rock and melt compositions (wt.%) used in the phase equilibria 647 
modeling. 648 
 649 
 650 
Appendix A. Supplementary data 651 
 652 
Fig. S1: Schematic map of Val Strona di Omegna (redrawn from Redler et al., 2012, 653 
2013). The locality of the residual granulite IZ070 used for the calculations is given.  654 
 655 
Fig. S2: Bivariant diagrams (wt%) comparing bulk rock compositions of migmatites 656 
and granulites containing melt inclusions used in this study (data from Bartoli, 2017; 657 
Bartoli et al., 2016a; Barich et al., 2014) and granulite IZ070 from Val Strona di 658 
Omegna.  659 
 660 
 661 
Fig. S3: Phase equilibria modeling considering the bulk composition IZ070Re obtained 662 
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by Redler et al. (2013). The chosen chemical system is NCKFMASHT. Red line: 663 
solidus. Yellow line: muscovite-out curve. Light blue field: region where liquid H2O is 664 
predicted. 665 
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Table 1. Bulk rock and compositions (wt.%) used in the modeling.

Label IZ070* IZ070a IZ070b IZ070c IZ070Re*

Temp. ≈700 °C ≈800 °C ≈850 °C

No. analyses 240 53 79

SiO2 58.74 61.90 64.09 64.62 61.20 72.80 74.55 73.58

TiO2 1.39 1.11 0.92 0.88 1.04 0.08 0.05 0.08

Al2O3 22.13 20.35 18.93 18.56 20.27 12.51 13.30 13.78

FeO 10.58 8.67 7.49 7.12 8.10 1.21 1.47 1.59

MgO 3.49 2.78 2.31 2.23 2.64 0.14 0.14 0.15

CaO 0.30 0.41 0.36 0.34 0.38 0.26 0.35 0.82

Na2O 0.34 0.88 1.18 1.26 0.97 2.83 2.79 2.90

K2O 2.58 3.16 3.62 3.65 3.94 4.88 5.12 5.29

H2O 0.45 0.74 1.09 1.34 1.45 5.29 2.23 1.81

Tot. 100.00 100.00 100.00 100.00 99.99 100.00 100.00 100.00

* From Redler et al. (2013)
** From Cesare et al. (2015), Bartoli et al. (2016)

Bulk rock composition Melt inclusion composition**
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- Nanogranitoid inclusions have the potential to provide the primary composition of crustal 
melts at the source 
 

- A novel use of the nanogranitoid compositional database is presented here 
 

- Reintegrating melt inclusion compositions from the published database into residual rock 
compositions can be a further useful method to reconstruct a plausible prograde history of 
melt-depleted rocks 


