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ABSTRACT Human reaching movement is characterized by the invariant features of linearity and the
symmetrical bell-shaped velocity profile of the hand trajectory. Reaching movement has been widely
evaluated in fields such as rehabilitation and interface design; however, no standardized protocols exist
for data collection, processing, or analysis. This paper proposes a spatiotemporal parameterization method
that evaluates reaching movements with a trajectory generation model based on a time base generator. The
proposedmethod extractsmotion information as a set ofmodel parameters, such asmotion duration, distance,
and asymmetry of the bell-shaped velocity profile from the reaching data, that are estimated by fitting
the model to reaching data with a robust parameter estimation method. The reaching trajectory generation
model, for which a straight trajectory in a three-dimensional space is assumed, is also derived from the
proposed model. Experiments were conducted using simulated data and real-world three-dimensional and
one-dimensional human reaching movement datasets. The results show that the model assuming a straight
trajectory in the three-dimensional space is reasonable for evaluating reaching movements. In addition,
the model parameters were estimated with relatively greater robustness than were those of the conventional
model and were highly correlated with physical features extracted from measured datasets. The results also
showed that the parameters representing the asymmetry of the bell-shaped velocity profile differed between
individuals. Therefore, the characteristics of reaching movements can be parameterized and evaluated with
the proposed method.

INDEX TERMS Human reaching movements, time base generator (TBG), trajectory generation model,
parameter estimation, motion parameterization.

I. INTRODUCTION
A basic component of everyday human motor repertoire,
the reaching movement refers to the movement of the
hand from an initial to a target position according to a
motivation-based trajectory generated by the brain by taking
distance and direction into account. Reaching movements
have been evaluated by investigators to help improve motor
function in rehabilitation and to inform the design of user
interfaces [1]–[5].

Several indices of the reaching movement, such as reach-
ing movement duration, mean velocity, and peak velocity,
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have been used to evaluate the reaching movement [5]–[7].
However, standardized protocols (e.g., data collection, pro-
cessing, and analysis) to evaluate upper limb movements
remain lacking [5], [6]. Defining the reaching movement
time is particularly difficult, as various methods have been
used to determine reaching movement time based on the
available data, such as extracting at a rate of 5%–20%
of the peak velocity, and no one definition of this index
exists. In addition, the characteristics of reaching movement
depend more heavily on past experiences than on physi-
cal traits or age [8]. However, few studies have focused
on the analysis and evaluation of individual differences
in the shape of the velocity waveform during a reaching
movement [8]–[10].
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During a proficient reaching movement, hand trajec-
tory follows a roughly straight path with a symmetri-
cal bell-shaped velocity profile: an invariant feature of
reaching movements [11]. To elucidate the mechanisms
underlying reaching movement with this common invariant
feature, several models of human reaching trajectory gen-
eration have been developed, including feedforward models
(e.g., the minimum jerk model [12], the minimum torque
change model [13], and the minimum endpoint variance
model [14]) and feedback models (e.g., the vector integration
to endpoint [VITE] model [15]).

As an alternative approach, Morasso et al. proposed a
time base generator (TBG) to model hand trajectories during
reaching movements [16]. The TBG combines feedforward
and feedback configurations into a unified framework that
can generate a time series with a bell-shaped velocity profile.
In consideration of the distortion of the velocity profile due
to changes in task environments, Tsuji et al. later proposed
a TBG that could generate a time series with an asymmet-
ric bell-shaped velocity profile [17]. Tanaka et al. further
reported that this TBG could be represented by a network of
neurons [18].

The TBG is comprised of parameters that express the
reaching time and the shape of the velocity profile. Therefore,
if the TBG parameters could be estimated from the measure-
ment data of reaching movements, then the bell-shaped pro-
file could also be quantitatively evaluated. To date, however,
the TBG has only been applied to trajectory generation for
robots [17]–[19], and no attempt has been made to estimate
TBG parameters from human data and use them to evaluate
reaching movements.

This paper proposes a spatiotemporal parameterization
method to evaluate human reaching movements based on
the TBG [17]. The proposed method consists of a human
reaching trajectory generation model based on the TBG and
an estimation method of the model parameters. The parame-
ters of the proposed model can be estimated by minimizing
the residual between the velocity profile generated by the
model and the measured velocity profile using the nonlin-
ear least-squares method. The accuracy of the model was
evaluated using simulated data, and the relationship between
the model parameters and the physical features of the reach-
ing movement were analyzed using real-world three- and
one-dimensional reaching data. The primary contributions of
this paper are as follows:

1) The results of the simulation experiment show that
the proposed method can be used for robust parame-
ter estimation for the addition of noise and waveform
extraction.

2) The proposed method can quantitatively extract motion
information, such as motion duration, distance, and the
asymmetry of the bell-shaped velocity profile, asmodel
parameters from reaching data. This is supported by a
high correlation between the model parameters and the
physical features of the reaching movement, obtained
experimentally.

3) Individual differences in the shape of the velocity
waveform can be evaluated based on the estimated
model parameters.

The remainder of this paper is organized as follows:
Section II describes the reaching trajectory generation model
based on the TBG and its parameter estimation method;
Section III describes the experimental method for model
verification and three- and one-dimensional reaching data
analysis; Section IV presents the results of these experiments;
Section V discusses the results; and Section VI presents the
conclusions of this study.

II. SPATIOTEMPORAL PARAMETERIZATION METHOD
BASED ON TBG
This section describes the TBG, the reaching trajectory gener-
ation model based on the TBG, and the parameter estimation
method used to construct the spatiotemporal parameterization
method for human reaching movements.

A. TBG
The TBG is represented by the function ξ (t), which is an
increasing function satisfying ξ (0) = 0 and ξ (tf ) = 1. The
dynamics of ξ are defined as follows [17]:

ξ̇ = γ ξβ1 (1− ξ )β2 , (1)

where the parameter γ is a function of the end time tf ,
and βi (i.e., β1 and β2) is a positive constant under the
condition of 0 < βi < 1. The function ξ (t) represents
the time base trajectory with normalized amplitude and a
one-shot time profile. The TBG is similar to a central pat-
tern generator (CPG), but the resulting trajectory is non-
periodic. We use ξ (t) to generate the hand position during
human reaching movement. Therefore, the feedback con-
trol rule in the TBG can generate a trajectory according to
which a human hand can reach the target with a bell-shaped
velocity profile at the specified time tf by outputting a com-
mand that synchronizes the error between the current posi-
tion ξ and a normalized target position with TBG. In this
instance, the end time tf can be calculated with the following
equation:

tf =
∫ tf

0
dt =

∫ 1

0

dξ

ξ̇
=
0(1− β1)0(1− β2)
γ0(2− (β1 + β2))

, (2)

where 0(·) is the gamma function (i.e., Euler’s integral of
the second kind). Thus, the convergence time of ξ can be
freely adjusted if the parameter γ in (2) is defined as

γ =
0(1− β1)0(1− β2)
tf 0(2− (β1 + β2))

. (3)

B. REACHING TRAJECTORY GENERATION MODEL BASED
ON TBG
The TBG can generate symmetric and asymmetric
bell-shaped velocity waveforms along the time axis in the
same manner that humans actually generate velocity wave-
forms. However, in many instances, the reaching data is saved
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only during the time when the absolute value of the velocity
vector exceeds a certain threshold value. Thus, it is unclear
whether the start times of data storage and the reaching
movement actually coincide. The true starting time and travel
distance are consequently unknown, and the conventional
TBG cannot express these parameters. We therefore propose
a new reaching trajectory generation model based on the
TBG that can account for changes in starting time and travel
distance.

Assuming that the reaching trajectory generationmodel for
a one-dimensional velocity waveform is obtained during a
reaching movement, the velocity signal ẋ of hand position
x during a reaching movement with a target distance αx is
defined as follows:

ẋ = αxγxξxβ1x (1− ξx)β2x , (4)

where the parameter γx is a function of the start time ts and
end time tf , and ξx is defined as ξx = x/αx . Here, x satisfies
x(ts) = 0 and x(ts + tf ) = αx , and ξx satisfies ξx(ts) = 0
and ξx(ts + tf ) = 1. The end time tf and the parameter γx are
defined in the same manner as in (2) and (3) as follows:

tf =
∫ ts+tf

ts
dt =

∫ 1

0

dξx
ξ̇x
=
0(1− β1x)0(1− β2x)
γx0(2− (β1x + β2x))

, (5)

γx =
0(1− β1x)0(1− β2x)
tf 0(2− (β1x + β2x))

. (6)

Note that tf is defined as the reaching end time with respect
to ts. The constraints for x in terms of the start and end times,
ts and tf , are shown in Fig 1.
The acceleration signal ξ̈x of the TBG is defined as follows:

ξ̈x = γ
2ξ2β1x−1x (1− ξx)2β2x−1(β1x − (β1x + β2x)ξx). (7)

Based on this equation, the velocity signal ξ̇x has an absolute
maximum value at ξx = β1x/(β1x + β2x). From (7) and
ξx = x/αx , ẋ has an absolute maximum value at x =
αxβ1x/(β1x + β2x). Indicating the point at which the velocity
reaches its maximumwith respect to the normalized distance,
the expression β1x/(β1x + β2x) is defined as the β ratio.

When the β ratio is 0.5, the velocity profile is symmetrical
with respect to time. Therefore, the ‘‘bell-shapeness’’ of the
velocity profile can be evaluated during reaching movements
by using the β ratio.
Fig. 2 shows examples of the time history of x and ẋ

with [β1, β2] set to [0.75, 0.5], [0.75, 0.75], and [0.5, 0.75]
(Fig. 2(a)); ts set to −0.2, 0, and 0.2 (Fig. 2(b)); and αx
set to 0.2, 0.3, and 0.4 (Fig. 2(c)). The fixed parameters
were set to αx = 0.3, ts = 0, and tf = 1 (Fig. 2(a));
αx = 0.3, tf = 1, and [β1, β2] = [0.7, 0.7] (Fig. 2(b)); and
ts = 0, tf = 1, and [β1, β2] = [0.7, 0.7] (Fig. 2(c)).
As Fig. 2(a) demonstrates, the β ratio value changes to 0.4,
0.5, and 0.6 when β1 and β2 change, and the asymmetry
of the bell-shaped velocity waveform changes accordingly.
This indicates that the asymmetry of the bell-shaped velocity
waveform can be quantified with the β ratio. The start time
and final distance of a reaching movement are adjusted by

FIGURE 1. Definition of time parameters in the proposed trajectory
generation model. In this example, the time at the data starting point is
zero. Parameter ts is the reaching start time, which is defined for the data
starting point as a reference. If the reaching start time exists outside of
the data due to processes such as data extraction, ts can take a negative
value. Parameter tf is the reaching end time, which is defined for ts as a
reference. Therefore, the time required from the data starting point to the
end of the reaching movement is ts + tf .

FIGURE 2. Time histories of x and ẋ with changing parameters.
(a) Parameters [β1, β2] are set to [0.75,0.5], [0.75,0.75], and [0.5,0.75].
(b) Parameter ts is set to −0.2, 0, and 0.2. (c) Parameter αx is set to 0.2,
0.3, and 0.4.

introducing the start time parameter ts (Fig. 2(b)) and the
distance-traveled parameter αx (Fig. 2(c)).
Evaluating the velocity waveforms obtained from

the three-dimensional position coordinates is necessary
because actual reaching movements are performed in
a three-dimensional space. Thus, the one-dimensional
model, defined by (4), was applied to each axis of the
three dimensions. The trajectory generation model for the
three-dimensional hand position (x, y, z) was defined as
follows:  ẋẏ

ż

 =
αxγxξxβ1x (1− ξx)β2xαyγyξy

β1y (1− ξy)β2y

αzγzξz
β1z (1− ξz)β2z

 . (8)

Fig. 3 shows the trajectory of the three-dimensional hand
position (x, y, z) and the velocity waveform (ẋ, ẏ, ż) when β1l
and β2l are changed (for l ∈ {x, y, z}). The other parameters
are set to αl = 0.3 and tf = 1. We confirmed that adjusting
β1 and β2 in each axis changed the shape of the velocity
waveform of each axis and generated arcuate or S-shaped
trajectories.
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FIGURE 3. Trajectories of x , y , and z and the time histories of ẋ , ẏ , and ż .
(a) The trajectories generated for each set of β1l and β2l (for l ∈ {x, y, z}).
(b) The velocity waveforms of the dashed-line trajectory. (c) The velocity
waveforms of the solid-line trajectory. (d) The velocity waveforms of the
dotted-line trajectory. The other parameters are set to αl = 0.3, ts = 0,
and tf = 1.

As described above, we constructed a reaching trajectory
generation model capable of fitting to the measured data by
introducing start time and travel distance parameters into
the TBG.

C. PARAMETER ESTIMATION
This subsection describes the parameter estimation method
of the proposed trajectory generation model. First, to achieve
a robust estimation that can account for experimental data
containing noise, the loss function ρ(·) based on Tukey’s
biweight estimation method [20] was defined as follows:

ρ(e) =


k2

6

{
1−

[
1−

( e
k

)2]}
|e| ≤ k

k2

6
|e| > k.

(9)

Here, the residual e is the difference between the measured
value and the value estimated by the model, and k is an
arbitrary constant used to set the acceptable range for outliers.

Let us consider the estimation of the proposed model
parameters, given N samples of the velocity signal (ẋn, ẏn,
żn; n = 1, . . . ,N ) obtained from the time-series data of
the three-dimensional hand position. First, by using only the
x-axis data, the parameters αx , ts, tf , β1x , and β2x can be
estimated by minimizing

J =
N∑
n=1

ρ(ẋn − ˆ̇xn) (10)

for the predicted value ˆ̇xn with the proposed model. For the
y-axis and z-axis data, the parameters can be estimated by
solving the same optimization problem as for the x-axis data.
To minimize the evaluation function, the trust-region

reflective (TRF) method was adopted [21], which is a
method that can solve the nonlinear least-squares problems
with bound constraints. This algorithm iteratively solves
augmented trust-region subproblems, and the shape of the
trust-region is determined by the distance from the bounds
and the direction of the gradient. This helps to avoid direct
steps into bounds and to efficiently explore the entire param-
eter space. The upper and lower bound constraints for the
parameters can be set by applying the TRF method to avoid
impractical values [22]. Using this method therefore allows
for the more efficient and robust optimization of the nonlinear
least-squares problem relative while satisfying 0 < βi < 1
(i = 1, 2), which is the constraint of the parameters β1 and β2.
The parameters of the proposed model can thus be estimated
from the measured three-dimensional position data.

III. EXPERIMENTS
A. SIMULATION
To verify the estimation accuracy of the proposed model,
a simulation experiment was conducted using artificially
generated one-dimensional velocity waveform data. In the
observed reaching data, the waveform was extracted at a
rate of 5%–20% of the peak velocity in many instances.
The waveform also contains noise attributable to external
factors. Therefore, this simulation experiment was conducted
to verify whether the proposed method would retain robust
parameter estimation against these influences.

One-dimensional artificial data ẋ were generated using (4),
and they were regarded as the velocity waveforms observed
during the reaching movement at a sampling frequency
of 100 Hz. The parameters α, tf , β1, and β2 were esti-
mated for the generated ẋ with the proposed method. The
accuracy was verified by comparing the true parameters
used at the generation of ẋ with the estimated parame-
ters. The absolute percentage error was used as an index
of estimation accuracy and was defined as |true value −
estimated value|/(true value)× 100. Here, the arbitrary con-
stant k for the parameter estimation was set to k = 4.685σe
by using the standard deviation σe of the residual e [23].
The optimization constraint conditions are set to −0.5 < ts,
0 < tf , and 0 < βi < 1 with the TRF method.

The robustness against the partial extraction of the wave-
formwas then investigated. TheW %of the peak velocity was
set as the reference threshold; only velocity waveforms above
this threshold were used to estimate the parameters. The aver-
age absolute percentage errors were calculated by changing
the true value of the parameter 225 times (α = 0.2, 0.25, 0.3,
ts = 0, tf = 1.0, 1.3, 1.6, βi = 0.3, 0.4, . . . , 0.7). The data
cutting rate with respect to peak velocity was set toW = 0%,
5%, 10%, and 20%.

We then considered the robustness of the model against
noise. Data points corresponding to L % of the total data
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length in artificial data ẋ were selected at random, and noise
following the normal distribution with a mean of 0 and a
standard deviation of s was added to each point of L % of
the total data ẋ. Parameter estimation was then conducted
with the velocity waveform data after adding the noise. The
average absolute percentage error was calculated by changing
the true value of the parameter nine times (α = 0.3, ts = 0,
tf = 1.0, βi = 0.4, 0.5, 0.6). The noise addition rate L with
respect to the data length and the standard deviation s of the
noise were set to L = 10%, 30%, 50%, 70%, and 100%; and
s = 0.01, 0.02, . . . , 0.05; respectively.

B. THREE-DIMENSIONAL REACHING DATA ANALYSIS
Parameter estimation was conducted with three-dimensional
reaching data. In general, the trajectory of the proficient
reaching movement becomes almost linear [11]. In the pro-
posed model, the trajectory generated by (8) becomes a
straight line, if both β1x = β1y = β1z and β2x = β2y = β2z
are satisfied. Thus, assuming a straight trajectory, if a human
uses the TBG to generate a reaching trajectory in the brain,
then the common β1 and β2 could possibly be planned in
the three-dimensional space. The start and end times of the
reaching motion are also common to each axis during reach-
ing movement. Therefore, by setting the common reaching
start time ts, reaching end time tf , β1, and β2 to each axis,
the proposed model assuming a straight trajectory can be
defined as follows: ẋẏ

ż

 =
αxγxξβ1 (1− ξ )β2αyγyξ

β1 (1− ξ )β2

αzγzξ
β1 (1− ξ )β2

 . (11)

Parameter estimation was conducted with three-dimensional
reaching data by using the proposed model and the proposed
model assuming a straight trajectory. The results of the two
models were then compared. Details of the derivation of
the model assuming a straight trajectory and its parameter
estimation method are provided in the Appendix.

We used the data reported by Corbett et al. [24] in the
Database for Reaching Experiments andModels (DREAM).1

In their experiment, six individuals each performed two
reaching movements towards 18 target positions; our experi-
ment only used the data collected during the training sessions
to target the natural reaching movements. The data were
digitally filtered by a second-order Butterworth zero-phase
filter with a low-pass cutoff of 10 Hz. The arbitrary constant k
and the optimization constraint condition for parameter esti-
mation were set in the samemanner as in the first experiment.

First, the fitting accuracy of the proposed model for
three-dimensional data was evaluated. Here, the root mean
square error (RMSE) between the measured velocity wave-
forms and the estimated velocity waveforms was calculated
for each of the proposed models (i.e., the proposed model
with independent fitting for each axis and the proposedmodel
assuming a straight trajectory). When comparing RMSEs

1The datasets are available at CRCNS: https://crcns.org/
data-sets/movements/dream

between models, the paired t-test was conducted with a sig-
nificance level of 0.1%. The effect size d [25] was also calcu-
lated. The index d represents the magnitude of the difference
between two average values by normalizing the difference
between them. In general, a small effect is 0.2 ≤ d < 0.5,
a moderate effect is 0.5 ≤ d < 0.8, and a large effect is
0.8 ≤ d . To test the hypothesis that β1 and β2 would be
common to each axis when straight trajectories are assumed,
the β ratios were calculated with β1 and β2 estimated using
the model assuming a straight trajectory and with β1 and
β2 for each axis estimated using the model in which the
parameters are independent in the three dimensions. Two
one-sided t-tests (TOSTs) [26], [27] were used to test the
mean equivalency of the β ratios between models. The vari-
able ε, defined as the allowable difference in the TOSTs, was
set to 0.05: 5% of the possible range of the β ratio.

C. ONE-DIMENSIONAL REACHING DATA ANALYSIS
This experiment was conducted to compare the fitting accu-
racy of the proposed model with the conventional reaching
trajectory generation model and to analyze the relationship
between the model parameters and the physical features dur-
ing the reaching movement.

One-dimensional reaching data collected by
Vahdat et al. [28] and deposited in the DREAM were used
as data to be fitted by the models. In their experiment,
13 individuals (aged 21–44 years) participated and performed
100 reachingmovements towards a stationary target [28]. Our
experiment used reaching data collected in the absence of
an external force. These data were obtained during reaching
movements in the y-axis direction on the horizontal plane;
therefore, only data in the y-axis direction were used for
this analysis. The data were digitally filtered in the same
manner as in the second experiment. The constant k and the
optimization constraint condition for parameter estimation
were set in the same manner as in the first and second
experiments.

The support-bounded lognormal model (SBL), the most
accurate of 23 reaching trajectory models [29], was compared
with the proposed model. The velocity waveform Vσ of the
SBL was defined as follows:

Vσ =


P1

(t − P2)(P3 − t)
e
−P4

[
ln ( (t−P2)(P3−t)

)−P5
]2

T0 ≤ t ≤ T1

0 otherwise,
(12)

where T0 and T1 are defined as the movement start and end
times. Here, Pi (i = 1, 2, . . . , 5) is the parameter of the SBL.
The relationship between the SBL parameters and the reach-
ing movement features can be interpreted as follows [30]:

Distance =
P1

P3 − P2

√
π

P4
, (13)

Reaching start time = P2, (14)

Reaching end time = P3. (15)
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The SBL is an extension of lognormal distribution; there-
fore, the parameters µ and σ of lognormal distribution can
be represented with the parameters P4 and P5 of the SBL
as µ = P5 and σ =

√
1/(2P4), respectively. For the

parameter estimation of the SBL, we used the Levenberg-
Marquardt method [31]: similar to the method described by
Plamondon et al. [29], it is used to solve the problem of
nonlinear least-squares.

Parameter estimation was first conducted with one-
dimensional data. The RMSEs between the measured veloc-
ity waveforms and those estimated with the proposed model
and the SBL were calculated and compared. A paired t-test
with a significance level of 1% was used to compare the
RMSEs between models. The effect size d [25] was also cal-
culated. Moreover, the relationships between the parameters
of the proposed model and the physical features during reach-
ing movement were analyzed using linear regression analysis
between the estimated parameters α, ts + tf , β ratio, and
γ of the proposed model, and the reaching traveled distance,
data length, peak velocity time, and peak velocity obtained
from the reaching data. For the SBL, a linear regression anal-
ysis was likewise conducted to test the relationships of (13)
and (15), and between P5 corresponding to parameter µ of
the lognormal distribution and peak velocity time. The peak
velocity time was normalized using the reaching data length.
Finally, to evaluate the shape of the velocity waveform, the
β ratio of the proposed model was analyzed.

IV. RESULTS
A. PARAMETER ESTIMATION ACCURACY
Fig. 4 shows examples of the artificial velocity waveforms
and the estimated velocity waveforms obtained with the
proposed model when the data cutting rate W was set to
0%, 5%, 10%, and 20%. Fig. 5 shows the average absolute
percentage errors of parameters α, tf , β1, and β2 for each
data cutting rate W . Fig. 6 shows examples of the artificial
velocity waveforms and the estimated waveforms obtained
using the proposed model when the standard deviation s was
set to s = 0.01 (Fig. 6(a)) and s = 0.05 (Fig. 6(b)) and the
noise addition rate L was changed to 10%, 50%, and 100%
for each value of s. Fig. 7 shows themean absolute percentage
errors of the parameters α, tf , β1, and β2 for the standard
deviation s and for the noise addition rate L.

B. ANALYSIS OF THREE-DIMENSIONAL REACHING
MOVEMENT DATA
Fig. 8 shows examples of themeasured and estimated velocity
waveforms in each model fitted independently to each axis
and assuming a straight trajectory. Fig. 9(a) shows the mean
and standard deviation of the RMSEs for each model fitted
independently to each axis and assuming a straight trajectory.
The p value from the paired t-test and the effect size d
are also presented, and a significant difference is observed
(p < 0.001). Fig. 9(b) shows the mean and standard deviation
of the β ratio calculated from the estimated parameters β1 and

FIGURE 4. Examples of artificial and estimated velocity waveforms with
the data cutting rate W set to (a) 0%, (b) 5%, (c) 10%, and (d) 20%.

FIGURE 5. Average absolute percentage errors for each data cutting
rate W in the estimation of (a) α, (b) tf , (c) β1, and (d) β2. Error bars
represent 95% confidence intervals for all trials.

β2 with each model. The TOSTs results are also presented
in the figure. The β ratios obtained when fitting the model
independently for each axis and when assuming a straight
trajectory were significantly equivalent (p < 0.001).

C. ANALYSIS OF ONE-DIMENSIONAL REACHING
MOVEMENT DATA
Fig. 10 shows examples of the measured velocity waveforms
and those estimated with the proposed model and the SBL.
The estimated parameters of each model corresponding to
the reaching start and end times are also shown. The RMSEs
calculated in the examples was 0.0164 m/s for the proposed
model and 0.0031 m/s for SBL. Fig. 11 shows the RMSE
results for the proposed model and the SBL. The paired
t-test results and the effect size d are also shown. We found
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FIGURE 6. Examples of artificial velocity waveforms, artificial velocity
waveforms with noise, and estimated velocity waveforms for each noise
addition rate L. The standard deviation s for noise generation was set to
(a) s = 0.01 and (b) s = 0.05.

FIGURE 7. Average absolute percentage errors for each noise addition
rate L in the estimation of (a) α, (b) tf , (c) β1, and (d) β2. For each,
the standard deviation s for noise generation was set to
s = 0.01,0.02, . . . ,0.05. Error bars represent 95% confidence intervals
for all trials.

a significant difference between the RMSEs of the models
(p < 0.01).

The box plots in Fig. 12 show the parameters estimated
with the proposed model and the SBL. Fig. 13 shows the
relationship between the parameters estimated with the pro-
posed model and the physical features obtained from the
actual reaching data. The data in the scatter plots indicate
the relationships between the distance parameter α and the

FIGURE 8. Examples of measured and estimated velocity waveforms.
(a) The proposed models fitted independently for each axis. (b) The
proposed model assuming a straight trajectory.

FIGURE 9. Comparison of the results between the proposed model fitted
independently and the proposed model assuming a straight trajectory.
(a) Root mean square error (RMSE) for tangential velocities of each
model. Error bars represent the standard deviations for all trials. The p
value from the paired t-test and the effect size d are also shown. (b) β
ratio of each model. Error bars represent the standard deviations for all
trials. The p values from the two one-sided t-tests (TOSTs) are also
shown.

reaching traveled distance; between the reaching convergence
time ts+tf , when the time wasmatched to the actual measure-
ment data, and the reaching data length; between the β ratio
and the normalized peak velocity time; and between the γ
parameter and the peak velocity. Fig. 14 presents scatterplots
that show the relationships between the SBL distance (13)
and the reaching traveled distance, between the convergence
time parameter P3 and the reaching data length, and between
parameter P5 corresponding to µ in the lognormal distribu-
tion and the normalized peak velocity time. In each figure,

104950 VOLUME 8, 2020



M. Kittaka et al.: Spatiotemporal Parameterization of Human Reaching Movements Based on TBG

FIGURE 10. Examples of measured and estimated velocity waveforms.
The solid dark gray line represents the measured velocity waveform.
Orange and blue dotted lines represent velocity waveforms estimated
with the proposed model and the SBL, respectively. Light gray areas
represent the outer part of the measured data. The estimated parameters
of each model corresponding to the reaching start and end times are also
shown.

FIGURE 11. Root mean square errors (RMSEs) of the proposed model and
support-bounded lognormal (SBL) model. Error bars represent the
standard deviations for all trials. The p value from the paired t-test and
the effect size d are also shown.

the determination coefficient R2 and p value obtained from
linear regression analysis are also shown.

Fig. 15 shows the box plots of the β ratio calculated from
data from all participants (Fig. 15(a)) and the β ratio calcu-
lated for each participant (Fig. 15(b)). The 95% confidence
interval of the β ratio for all participants was 0.452–0.457.
Fig. 16 shows the velocity waveforms of the first 10 reaching
movements of Participant 7 and Participant 8.

V. DISCUSSION
The present investigation proposes a spatiotemporal param-
eterization method that allows for the evaluation of reaching
movements with a trajectory generation model based on the
TBG. The simulation experiment confirmed that the proposed
model fitted well to artificial data extracted at the thresh-
olds based on the peak velocity and that the outside of the
extraction range was well-extrapolated (Fig. 4). Moreover,
as shown in Fig. 5, the average absolute percentage errors
when using the total data length (W = 0%) were, at most,
approximately 5% for α, tf , β1, and β2 This finding indicates
that the proposedmethod can accurately estimate the parame-
ters. The estimation accuracy tended to gradually decrease in
accordance with the increase in the data cutting rateW to 5%,

FIGURE 12. Box plots of the estimated parameters. (a) The proposed
model. (b) The support-bounded lognormal (SBL) model. The solid
horizontal line in each box plot indicates the median value of each
parameter.

FIGURE 13. Scatter plots of the estimated parameters and physical
features extracted from the reaching data based on the proposed model.
(a) The target distance α and the traveled distance. (b) The end time plus
start time ts + tf and the data length. (c) The β ratio and the normalized
peak time. (d) The parameter γ and the peak velocity. Dashed lines
represent regression lines. The regression equations and coefficients of
determination are also shown.

10%, and 20%. Therefore, the average absolute percentage
errors were less than 10%, even in the case ofW = 20%. This
finding could be attributed to our adoption of TRF—a robust
method based on a confidence region method—as our non-
linear least-squares method. These results demonstrate that
the proposed method can be used to estimate the parameters
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FIGURE 14. Scatter plots of the estimated parameters and physical
features extracted from the reaching data with the support-bounded
lognormal (SBL) model. (a) The distance calculated with the SBL
parameters and the traveled distance. (b) The parameter P3 and the data
length. (c) The parameter P5 and the normalized peak time. Dashed lines
represent regression lines. The regression equations and coefficients of
determination are also shown.

FIGURE 15. Box plots of β ratios with data from (a) all participants and
(b) each participant. Solid horizontal lines in each box plot denote the
median value of the β ratio. Dashed horizontal lines indicate the
positions for which the β ratio is 0.5.

with high accuracy, even for velocity waveforms extracted at
thresholds based on peak velocity.

As shown in Fig. 6, the percentage error tended to increase
in accordance with the increase in the standard deviation s of
noise and the noise addition rate L; however, the percentage
error of each parameter was less than 10%. This finding
indicates the robustness of the parameter estimation of the
model, evenwith noisy data.Moreover, evenwhen large noise
was added to the rear of the velocity waveform, as shown
in Fig. 6(b), the estimated velocity waveform could capture
the characteristics of the waveform before adding the noise.
This finding may be attributed to our adoption of a loss func-
tion based on Tukey’s biweight estimationmethod, which sets
the weight according to the degree of data deviation and thus
enables robust estimation against noise.

The aforementioned findings indicate that the proposed
method achieved a high parameter estimation accuracy for the
one-dimensional artificial velocity waveform, even following
waveform extraction or noise addition.

The fitting experiment using three-dimensional reaching
data revealed a significant difference between the RMSEs

FIGURE 16. Examples of velocities of the first 10 reaching movements
during the experiment of (a) Participant 7 and (b) Participant 8.

of the proposed model fitted independently to each axis and
the proposed model assuming a straight trajectory (Fig. 9(a)).
However, the effect size d was 0.088, indicating a small dif-
ference. This finding could be attributed to much of that data
having been collected from straight reaching movements.
Therefore, the proposed model can accurately fit the velocity
waveform data, even in the model assuming a straight tra-
jectory, with respect to three-dimensional data and the use of
common parameters for each axis.

In Fig. 9(b), the estimated β ratios were smaller than the
value of 0.5, which represents asymmetry of the velocity
profile. Here, β1 and β2 are parameters controlling the shape
of the velocity waveform, and the β ratio represents the posi-
tion of the peak velocity time (see Section II. B). Therefore,
the peak velocity time of the data is closer to the reach-
ing start time than to the midpoint in velocity waveforms.
This tendency can be also seen from the velocity waveforms
in Fig. 8. In addition, the results of the TOSTs indicate
that the β ratios calculated from the proposed model fitted
independently to each axis and the proposed model assuming
a straight trajectory were significantly equivalent.

These results suggest that the shape of the velocity wave-
form becomes nearly equal on each axis in reaching move-
ments in three-dimensional space. We thus confirmed that
setting parameters common to three-dimensional space in
the proposed trajectory generation model assuming a straight
trajectory is reasonable.

The fitting experiment using one-dimensional reaching
data revealed a significant difference between the RMSEs
of the proposed model and the SBL, with a large effect size
(d = 0.998) (Fig. 11). This finding suggests that the SBL
is more accurate than the proposed model in terms of the
residuals. However, as shown in Fig. 12(b), the estimation
result of the SBL parameters featured a very large vari-
ation. In particular, P3, which represents the end time of
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the reaching movement, contained many extreme outliers.
Thus, the RMSE of the SBL is smaller than that of the
proposed model because the SBL overfitted the measured
data. By contrast, in the proposed method, the variation of
the estimated parameters was small, indicating a more robust
parameter estimation (Fig. 12(a)). The SBL model is based
on lognormal distribution, which itself is supported by a
semi-infinite interval. In the SBL, the lognormal distribution
is bounded by defining the reaching start and end times,
P2 and P3, assuming that the data contains points with zero
velocity corresponding to the reaching start and end times.
Therefore, these parameters could not be successfully esti-
mated and had taken extremely large or small values for the
extracted waveforms based on the ratio of the peak velocity.
The other parameters (i.e.,P1,P4, andP5) also exhibited large
variation due to the influence of instability in the estimation
of P2 and P3. Consequently, although the RMSE of SBL is
small, its parameters may take extreme values. By contrast,
since the proposed model based on the TBG is supported
by bounded intervals, the parameters may be estimated with
greater stability even in the case of extracted data. In addition,
the combination of TRF and Tukey’s biweight loss function
in the parameter optimization of the proposed method also
contributed to the robustness of the estimated parameters (see
Supplementary Material).

Based on the regression analysis between the estimated
parameters and physical features, the parameters of the pro-
posed model showed a higher coefficient of determination for
the reaching data length and normalized peak time than that
of the SBL, although a higher coefficient of determination
was detected for the traveled distance parameter of the SBL
than that of the proposed model (Figs. 13 and 14). The many
extreme outliers caused by overfitting to the measured data
accounts for the low coefficient of determination between
P3 and the reaching data length and between P5 and the
normalized peak time in the results of the SBL. However,
in the proposed model, the variation in the estimated param-
eters was small, and linear regression analysis revealed that
all coefficients of determination were higher than 0.7. This
finding indicates that the physical features of reaching move-
ments can be evaluated using the estimated parameters of the
proposedmodel.We can therefore conclude that the proposed
model is superior in terms of the parameterization of reaching
movement features.

As shown in Fig. 15(a), the β ratio obtained from all partic-
ipants was distributed around a value smaller than 0.5, which
means the velocity waveform is asymmetrical. In addition,
the 95% confidence interval was 0.452–0.457, suggesting
that the peak velocity time of the velocity waveform occurs,
on average, before the midpoint of the movement. This trend
was also seen in the data used in the second experiment
(as shown in Fig. 9(b)). Our results also support previous find-
ings demonstrating that the velocity waveforms of reaching
movements sometimes lose symmetry [10].

In Fig. 15(b), the distribution of the β ratio differed
between individuals. Participant 7 showed a median β ratio

of nearly 0.5, and Participant 8 exhibited β ratios that were
distributed with a smaller median value. This tendency was
also observed in the velocity waveforms of the actual mea-
surement data. The peak of the velocity waveform in Par-
ticipant 7 was close to the center (Fig. 16(a)), whereas
that of Participant 8 was closer to the left of the center
(Fig. 16(b)). While some previous works have evaluated the
features of individuals’ lower limb movement [32], [33],
upper limb reaching movements have rarely been considered.
Furthermore, analyses on reaching movements have focused
primarily on changes caused by the environment [8], [10].
Marteniuk et al. reported that knowledge based on past expe-
riences might influence reaching movements [8]. Therefore,
past experience, physical characteristics, and age manifest as
individual differences in reaching movement. However, such
individual differences have rarely been analyzed. Our exper-
imental results revealed that the tendency of the bell-shaped
velocity waveform of the reaching movement differs for each
individual. In addition, individual differences can be quan-
titatively evaluated as the difference in the β ratio, which
represents the shape of the velocity waveform. Hence, if a
human uses the TBG for trajectory generation in the brain,
the reaching movement can be performed by using a specific
β ratio optimized for an individual. By using the proposed
method, the characteristics of individual reaching movements
can be parameterized and evaluated.

The method proposed in this paper aims to parameterize
a simple reaching movement. However, some of the more
complex upper-limb movements exhibit bell-shaped velocity
waveforms, such as those seen during reaching movements.
For example, Oubre et al. showed that the segmented veloc-
ity profile during random (patternless) voluntary upper-limb
movements featured an approximately bell-shaped morphol-
ogy [34]. In addition, Miranda et al. suggested that complex
upper-limb movements can be modeled as a combination
of simple reaching movements with a bell-shaped velocity
profiles [35]. Therefore, it would be possible to achieve the
quantitative analysis of various types of upper-limb move-
ments based on the proposed method by interpreting com-
plex movements as approximate reaching movements or a
sequence of reaching movements.

VI. CONCLUSION
This study proposes a spatiotemporal parameterization
method to analyze the human reaching movements. With
the proposed method, the features of the velocity waveform
during the reaching movement can be quantitatively acquired
by fitting a reaching trajectory generation model based on the
TBG [17] to the measured reaching data and subsequently
estimating the parameters. The proposedmethod could poten-
tially benefit the clinical evaluation of a patient’s motor
function during rehabilitation and the development of user
interface designs.

By verifying the accuracy of parameter estimation using
artificially generated velocity waveform data, we confirmed
that the average absolute error rate was approximately 5% at
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most. Furthermore, parameter estimation can be conducted
with an average absolute error rate of less than 10%, even
when velocity waveform extraction and noise addition are
conducted with the generated artificial data. The parameter
estimation experiment performed with real-world
three-dimensional reaching data revealed that the measured
velocity waveforms could be fitted accurately, even when
assuming a straight trajectory in the model and using
parameters common to each axis. Regarding real-world
one-dimensional reaching data, we found that the esti-
mated parameters of the proposed model featured less
variation than that of the conventional model and could
be estimated more robustly. The present study observed
strong correlations between the estimated proposed model
parameters and the physical features extracted from the
measured data. We thus concluded that the reaching move-
ment can be quantitatively evaluated using the estimated
parameters.

In addition, based on the distribution of the β ratio cal-
culated from the estimated parameters of all participants,
the peak velocity time of the velocity waveform was, on aver-
age, situated left of center. We also identified individual dif-
ferences in the distribution of the β ratio among participants.
These findings indicated that the proposed method could be
used to parameterize the characteristics of individual reaching
movements.

The data used in this study were acquired from healthy
participants who performed straight reaching movements. To
verify the general applicability of the proposed parameteri-
zation method, further analysis of different kinds of data is
warranted. Because the parameters β1 and β2 of the proposed
model change on each axis in nonlinear reaching movements
in three-dimensional space, the nonlinearity and the shape of
the velocity waveform could potentially be evaluated con-
currently by elucidating β1 and β2 on each axis. We there-
fore plan to analyze nonlinear reaching movements using
the proposed parameterization method in future research.
In addition, we will analyze changes in the estimated parame-
ters for the separated groups according to participant charac-
teristics or measurement environments to determine the type
of factor that affects the changes in the reaching movement.
As described at the end of Section V, the proposed method
can be applied to both simple reaching movements and more
complex movements. We plan to verify the efficacy of the
proposed method by analyzing more complex movements
that can be interpreted as approximate reaching movements
in future research.

APPENDIX
Let us consider the necessary and sufficient condition
that a trajectory generated by (8) becomes straight. Based
on the reaching movement in the xy-plane, the necessary
and sufficient condition in which the model becomes a
straight trajectory at the reaching hand position (x, y) in
plane is that dy/dx is a constant and is expressed by the

following equation:

dy
dx
=
αyγyξy

β1y (1− ξy)β2y

αxγxξx
β1x (1− ξx)β2x

. (16)

Here, as indicated in (16), if ts and tf in x and y are equal, and
β1x = β1y and β2x = β2y are satisfied, then dy/dx becomes
equal to a constant αy/αx . For each set of (x, y, z), the nec-
essary and sufficient condition that the trajectory becomes
straight in (8) is that the reaching start time ts and the end
time tf are common for each axis, and β1x = β1y = β1z
and β2x = β2y = β2z are satisfied. Therefore, the trajectory
generation model for the three-dimensional hand position
when assuming a linear trajectory can be derived (11) by
setting a common reaching start time ts, the end time tf , β1,
and β2 to each axis.
Considering the case of (11), which assumes a

three-dimensional linear trajectory, each axis direction fea-
tures common parameters. Therefore, optimizing three-
dimensional velocity waveforms is necessary. Now consider
the estimation of model parameters, given N samples of
the three-dimensional hand position data (ẋn, ẏn, żn; n =
1, . . . ,N ). Let the prediction value of the proposed model be
( ˆ̇xn, ˆ̇yn, ˆ̇zn) and a loss function (9) based on Tukey’s biweight
estimation method [20] be used as the eveluation function as
follows:

J =
N∑
n=1

ρ(ẋn − ˆ̇xn)+
N∑
n=1

ρ(ẏn−ˆ̇yn)+
N∑
n=1

ρ(żn − ˆ̇zn). (17)

By minimizing J , the parameters αl (for l ∈ {x, y, z}), ts,
tf , β1, and β2 can be estimated for three-dimensional hand
position data. Capable of solving the problem of constrained
nonlinear least-squares, the trust-region reflective (TRF)
method [21] was used to minimize the evaluation function.
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