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Key Points: 

 Preferential downstream clustering of human settlements is consistent across 

continents. 

 The outlets of large river basins are preferred for human settlements compared to 

other coastal areas.  

 Hortonian scaling and power-law scaling of power spectra indicate universal fractal 

structure of human settlements.   

 Future implications include growing human pressures on downstream water quality 

and quality, coupled with exacerbated flood risks.  
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Abstract 

River networks play a key role in the spatial organization of human settlements. Both river 

networks and human settlements have been found to exhibit regular self-similar patterns, but 

little is known about the generalized spatial patterns of human settlements embedded within 

river networks. Here, based on night light data, we find a universal fractal structure at the 

global scale, with both robust Hortonian scaling relationships with the extent of human 

settlements and statistically significant power-law scaling of the power spectra of human area 

functions. Globally, we find consistent patterns of power-law preferential downstream 

clustering of human settlements across all six populated continents, typically up to 40% of 

the maximum flow length. This downstream clustering suggests an optimum distribution of 

humans in large river basins for trade, transport and natural resource utilization, but with 

attendant implications for human impacts on rivers. Recognition of such spatial patterns helps 

generalize assessments of human impacts on rivers, with direct implications for management 

of water quality and biological diversity in river networks. 

 

1. Introduction 

The spatial pattern of human settlements is influenced by landscape heterogeneity and 

natural resource availability, with river networks playing a central role in enabling access and 

mobility. Historically, humans have followed river networks during migrations in the early 

phases of settlement (Bertuzzo et al., 2007; Campos et al., 2006) and have preferentially built 

settlements close to rivers, for the purpose of navigation, water supply, and trade (Ceola et 

al., 2015; Kummu et al., 2011). Over time, these established settlements gradually developed 

into towns and cities that attracted more people, and even grew into megacities with 

unprecedented population size with accelerating urbanization (Grimm et al., 2008a). 

Quantitative regularities from empirical studies, including city size distribution (Berry, 1961; 

Decker et al., 2007; Krugman, 1996) and universal urban scaling theory (Bettencourt, 2013; 

Bettencourt et al., 2007; Bettencourt & West, 2010), have improved our understanding of 

urban growth dynamics and social organization, and also the environmental impact of 

urbanization (Fragkias et al., 2013). However, how such striking regularities are reflected in 

spatial patterns embedded within river networks remains elusive. 

River networks are characterized by bifurcating and hierarchical geometries with 

universally consistent scale-free topological features, resulting from self-organization driven 

by similar generating processes (Dodds & Rothman, 2000). One descriptor of such 

organizational structure is stream order, which describes the relative size of a stream in a tree-

like river network (Horton, 1945). Generalized Horton’s laws refer to scaling relationships of 

topologic and geometric variables (e.g., stream number, basin area, and stream length) with 

stream order (Horton, 1945; Peckham & Gupta, 1999; Rodríguez-Iturbe & Rinaldo, 2001). 

The Hortonian ordering framework can provide a basis to link the geomorphological structure 

of river networks with ecological and anthropogenic processes. Hortonian ordering and 

scaling frameworks have been applied to explain water quality (Kang et al., 2008) and 

ecological diversity, including fish (Beecher et al., 1988; Platts, 1979), diatom communities 

(Stenger-Kovacs et al., 2014), benthic macro-invertebrate communities (Crunkilton & 

Duchrow, 1991), and riparian vegetation (Dunn et al., 2011). In addition to stream order, 

another descriptor of the structure of river networks within river basins is the 

geomorphological area function (𝐴𝐺) defined as river basin drainage area as a function of 

distance along the flow path (Marani et al., 1994; Moussa, 2008). The fractal morphology of 
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river networks can be indicated by the observed scaling relationship between the Fourier 

transform-based power spectrum of 𝐴𝐺  and spatial frequency 𝑓 (Marani et al., 1994). 

In this work, we evaluate the general questions of whether human settlement patterns 

within river basins are structured according to stream order and river basin drainage area. 

Hortonian scaling relationships have been reported for human populations (Miyamoto et al., 

2011). However, a series of important questions are raised by a purported link between 

human population and stream order. 1) Is there universality of such scaling beyond specific 

landscape characteristics, socioeconomic development history, and sociopolitical governance 

frameworks of individual study regions? 2) Is the fractal structure of river networks found 

from geomorphological area functions transferable to indicate scaling relationship for 

humans? 3) Are the scaling relationships between humans and stream network topology 

sufficient to infer spatial patterns within river basins? 4) What is the underlying mechanism 

for the spatial patterns of human settlements in river networks?  

This study assessed these questions at a global scale over a broad range of climatic 

zones with large variation of vegetation types, topography, and natural resource endowments. 

We introduced the human area function (𝐴𝐻), analogous to 𝐴𝐺 , to indicate the size of human 

settlements along the hydrological flow path to the basin outlet, and evaluated the power 

spectra relationship with frequency for 𝐴𝐻 to assess the existence of scaling of human 

settlements. We compared the power spectra relationships for 𝐴𝐻 and 𝐴𝐺  to evaluate whether 

human settlement patterns within river basins are structured according to river basin drainage 

area. We employed several metrics including stream order, area functions, and the spectral 

power of area functions to assess human settlement spatial patterns within river networks 

across basins and continents. We further examined the trends of factors that influence human 

settlements to infer what the possible reasons of human settlement patterns might be and 

investigate whether clustering of human settlements in coastal areas (Small & Nicholls, 2003; 

Vitousek et al., 1997) is related to river basin outlets.  

Our study tested for commonality in the linkages between river geomorphologic 

structure and human settlement patterns despite the broad diversity of catchment features. 

Human activities have caused substantial alterations to the Earth, affecting ecosystem 

patterns and processes, altering global hydrological and biogeochemical cycles, amplifying 

resource exploitation and environmental deterioration, and contributing to climate change 

(Vitousek et al., 1997). With increasing urbanization, the environmental impacts of these 

human activities are intensively concentrated within small areas, raising significant concerns 

about sustainability (Grimm et al., 2008b). River networks can connect, and facilitate the 

transport of pollutants between, human settlements and terrestrial and marine environments 

(Schmidt et al., 2017). Investigating the spatial distribution of human settlements within river 

basins improves our generalized understanding of human-nature co-evolution, but also has 

direct implications for understanding human impacts on rivers and downstream ecosystems. 

2. Methods 

2.1. Data sources 

Nightlight data, collected by the US Air Force Weather Agency under the Defense 

Meteorological Satellite Program Operational Linescan System (National Oceanic and 

Atmospheric Administration, 2013) (https://ngdc.noaa.gov/), represent cloud-free nocturnal 

luminosity from sites with protracted lighting (i.e., cities, towns, gas flares). Nightlights are 

available as raster products at a resolution of 30 arc seconds, corresponding to nearly 1 km at 

the equator, and nightlight values are expressed as an adimensional digital number (DN) 

value, ranging from 0 to 63, corresponding to conditions characterized by absence of lights 

https://ngdc.noaa.gov/
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through pronounced luminosity, which is interpreted as proportional to the presence of 

human settlements. Nightlights have thus been widely employed for demographic, economic, 

and environmental purposes (Ceola et al., 2014). Here,  based on 2013 global nightlight data, 

we excluded sunlit and moonlit data, observations from ephemeral phenomena like fires, and 

all data associated to gas flares from the data set, to proxy human settlements, with the total 

DN values indicating the size of human settlements. 

HydroSHEDS and Hydro1K data are two major global river network databases, with 

the former (Lehner et al., 2008) (http://hydrosheds.org/) primarily derived from elevation data 

of NASA’s Shuttle Radar Topography Mission and the latter (US Geological Survey, 2000) 

(https://lta.cr.usgs.gov/HYDRO1K) from the USGS 30 arc-second digital elevation model of 

the world (GTOPO30). The threshold areas adopted to delineate river networks are 20 km2 

and 1000 km2 for HydroSHEDS and Hydro1K, respectively (Stein et al., 2014). To extract 

stream-order-based basin and sub-basin boundaries for Hortonian analysis, we applied 

HydroSHEDS river networks vector and drainage direction raster together to utilize its higher 

accuracy. For area function analyses, we used Hydro1K flow direction raster to take 

advantage of its feasibility to derive hydrological distance. We also employed the 

GEODATA 9 arc-second DEM (DEM-9s) Version 3 (Hutchinson et al., 2008) from 

Geoscience Australia (http://www.ga.gov.au/) as a supplement to Hydro1K data since the 

coverage of Australia is lacking from Hydro1K. We derived a total of 2988 river basins with 

stream order ≥ 1 from Hydro1K data, and added 148 Australian basins delineated using 

GEODATA DEM-9s data based on the same contributing area threshold as Hydro1K, 1000 

km2. Thus, in total we conducted area function analyses on 3136 river basins. The numbers of 

river basins delineated from different databases are shown in Table S1. Differences in basin 

boundaries when extracted from the two primary databases are illustrated for the St. 

Lawrence and Saskatchewan-Nelson basins (Figure S1). All data we used were at (for 

HydroSHEDS and Hydro1K data) or resized to (for GEODATA DEM-9s) 30 arc seconds, the 

same resolution as the nightlight data. 

2.2. Analyses 

Horton’s laws characterize the morphology of river networks, and the law of stream 

contributing areas is expressed (Rodríguez-Iturbe & Rinaldo, 2001), 

�̅�𝑤 = �̅�1𝑅𝐴
𝑤−1      (1) 

where 𝑤 indicates stream order, �̅�𝑤 is the mean area contributing to streams of order 𝑤, and 

the dimensionless area ratio is 𝑅𝐴 = �̅�𝑤/�̅�𝑤−1. We hypothesize that human settlement size 

(𝐻), using nightlights as a proxy, also show similar relationship with 𝑤 as follows: 

�̅�𝑤 = �̅�1𝑅𝐻
𝑤−1          (2) 

where �̅�𝑤 is the mean of the sum of nightlight DN values for each order 𝑤 in each basin, and 

𝑅𝐻 is defined here as human settlement ratio (𝑅𝐻 = �̅�𝑤/�̅�𝑤−1). A minimum of stream order 

3 is required to conduct Hortonian analysis, and here we analyzed 2705 river basins globally 

with 𝑤 ≥ 4, derived from HydroSHEDS data. We computed total areas and total nightlight 

DN values for all the embedded sub-basins. Since the logarithms of Equation (1) and (2) lead 

to equations linear in stream order, 𝑤, we linearly regressed the log mean areas and log mean 

nightlights (mean human presence) against 𝑤 (p < 0.05) and calculated 𝑅𝐴 and 𝑅𝐻 as the 

antilog value of the slope for each river basin. We tested the significant difference between 

𝑅𝐴 and 𝑅𝐻 by comparing the 95% significance intervals of the two slopes using R and 

applied the ratio 𝜃 = 𝑅𝐻/𝑅𝐴 to directly evaluate the spatial structure of human settlements 

within river basins. 

http://hydrosheds.org/
https://lta.cr.usgs.gov/HYDRO1K
http://www.ga.gov.au/
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The geomorphological area function, 𝐴𝐺 , relates the contributing area to the distance 

to the basin outlet following the hydrological path as (Rodríguez-Iturbe & Rinaldo, 2001): 

∫ 𝐴𝐺(𝑥)
𝐷𝑚𝑎𝑥

0
𝑑𝑥 = 𝐴      (3) 

where 𝐴 is the total area of the river basin, 𝑥 is the hydrological distance, and 𝐷𝑚𝑎𝑥 is the 

longest distance to the outlet (0 ≤ 𝑥 ≤ 𝐷𝑚𝑎𝑥). Similarly, we defined 𝐴𝐻 as the total 

nightlight DN values at a distance 𝑥 from the basin outlet to represent the structural 

characteristics of human settlements in river basins: 

∫ 𝐴𝐻(𝑥)
𝐷𝑚𝑎𝑥

0
𝑑𝑥 = 𝐻     (4) 

where 𝐻 is the total nightlight DN values in the river basin. We computed 𝐴𝐺  and 𝐴𝐻 for 

3136 global river basins, using hydrological distance calculated based on the GEODATA (for 

Australia) and Hydro1K (for the rest of world) databases. Hydrological distance was 

computed for each cell in each basin as the distance from the cell to the closest river segment 

plus the distance from the river segment to the final river basin outlet (46 km ≤ 𝐷𝑚𝑎𝑥 ≤ 6488 

km). Note that hydrological distance was not supported by the HydroSHEDS database used 

above for the Hortonian analyses.  

To better compare geomorphological and human area functions among river basins, 

we normalized all variables in equations (3) and (4) by considering normalized distance, �̂� =
𝑥/𝐷𝑚𝑎𝑥, normalized geomorphological area, �̂�𝐺 = 𝐴𝐺/𝐴, and normalized human area, �̂�𝐻 =
𝐴𝐻/𝐻. The ratio, 𝜌𝐻 = �̂�𝐻/�̂�𝐺, represents the normalized human settlement density. The 

normalized values, �̂�, �̂�𝐺 , and �̂�𝐻, range between 0 and 1, and the integrals (normalized 

forms of equations (3) and (4)) equal unity: 

∫ �̂�𝐺
1

0
(�̂�)𝑑�̂� = 1         (5) 

∫ �̂�𝐻
1

0
(�̂�)𝑑�̂� = 1     (6) 

Spectral analysis can measure the strength of periodic components of a signal at 

different frequencies and was conducted here using the “spei” function in R through Fourier 

transform of the two area functions, 𝐴𝐺  and 𝐴𝐻, from spatial dimensions into power spectrum 

as functions of frequency. The spectra, 𝑆𝐺 and 𝑆𝐻, are frequency-domain representation of 𝐴𝐺  

and 𝐴𝐻 and describe their variance structure, and the frequency, 𝑓 (km-1), indicates how often 

the signal occurs per unit of distance. The power spectrum, 𝑆𝐺, is expected to follow a power-

law scaling relationship with the spatial frequency, 𝑓(Marani et al., 1994): 

𝑆𝐺 = 𝛼𝑓−𝛽𝐺     (7) 

Here, we also tested whether a similar scaling relationship exists between 𝑆𝐻 and 𝑓. 

The values of the associated spectral slopes, 𝛽𝐺 and 𝛽𝐻, indicate how fast the variance of 𝐴𝐺  

and 𝐴𝐻 change across hydrological distance, and we thus compared the range of the two 

spectral slopes (𝛽𝐺 and 𝛽𝐻) to explore the spatial pattern of human settlements. Again, the 

difference between 𝛽𝐺 and 𝛽𝐻 was tested through comparison of the 95% significance 

intervals of the two slopes using R. In order to provide sufficient flow path distance for 

spectral analysis, our analysis was restricted to 𝑤 ≥  3, which resulted in a global set of 563 

river basins. Regressions were restricted to frequencies > 10-3 km-1 to minimize artifacts 

associated with approaching the finite basin boundaries, and only river basins with R2 > 0.5 

were included for analyses. 

Continental-average patterns in average human settlement density, �̅�𝑯, were 

computed across all river basins on each continent at 40 equal-length intervals along �̂�. The 
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number of river basins in each continent is shown in Table S1. Hydrological distance was not 

available for smaller coastal basins (SCBs) with area < 1000 km2. Therefore to compare 

human settlement density with distance in coastal areas, we used Euclidean distance to the 

coast, d, for both large river basins (LRBs) and SCBs for d < 50 km. This threshold was 

selected because the area of SCBs diminishes to near zero, while the area of LRBs increases 

to maximum when d approaches 50 km from the coast for all six continents (Figure S2). 

Additionally, we examined the average trends of slope and upstream contributing areas for 

each continent in order to provide insight to the drivers of the human settlement patterns.  

3. Hypothesized human settlement archetypes 

Considering the regularities found both in the structure of river networks (Horton’s 

laws and geomorphological area function) and city organization (city size distribution and 

scaling theory), we postulate the existence of a direct relationship between the spatial patterns 

of human population distributions within river basins and the geomorphological structure of 

river networks. We hypothesize a structured downstream clustering of human settlements 

along river networks, and employ several metrics including stream order, area functions, and 

the spectral power of area functions to assess spatial patterns. We illustrate in Figure 1 

archetypal patterns of unstructured and structured clustering along the river network, and how 

these would manifest for the applied metrics. While it is well known that human populations 

are not uniformly distributed (Small & Cohen, 2004; Fang & Jawitz, 2018), we also illustrate 

the homogeneous case as a reference.  

We hypothesize log-linear Hortonian relationships between average human presence 

and stream order (Figure 1a, red lines), similar to the underlying basin area distribution (blue 

lines) (Rodríguez-Iturbe & Rinaldo, 2001). The Horton ratios, 𝑅𝐻 and 𝑅𝐴, are calculated from 

the slopes of these log-linear plots. The ratio 𝜃 = 𝑅𝐻/𝑅𝐴 indicates the attractiveness for 

human settlement by basin order: 𝜃~1 indicates neutral attractiveness (i and ii), and 𝜃 > 1 

indicates a larger attractiveness for human settlement in larger order basins (iii). The 

hypothesized log-linear Hortonian relationship between average human presence and stream 

order described in Figure 1a should also manifest in power-law scaling of the power spectrum 

of 𝐴𝐻 (Figure 1b, red lines), as is observed for 𝐴𝐺  (blue lines) (Marani et al., 1994). For 

homogeneous organization, we expect the spectral slopes to be similar (𝛽𝐻/𝛽𝐺~1) (i), while 

greater spatial autocorrelation for clustered human settlements (ii and iii) should produce 

larger spectral slopes for 𝐴𝐻 (𝛽𝐻/𝛽𝐺 > 1). We also hypothesize 𝐴𝐻 to be diagnostic of the 

spatial organization of human settlements, with different patterns illustrated for the three 

archetypes (Figure 1c, red lines): no distinct peaks are observed for the low-variability 

homogeneous case (i), while in cases with a wider distribution of settlement sizes, the largest 

settlements (cities) appear as distinct peaks – either independent of location along the stream 

main channel for the unstructured case (ii), or with a pronounced right skew for the 

downstream clustered case (iii). Finally, note that the peaks in 𝐴𝐻 observed in Figure 1c may 

be driven by the variability in catchment area as a function of hydrological distance (Figure 

1c blue lines). Therefore, we introduce a human settlement density function 𝜌𝐻 describing the 

preference of human settlements in relation to the available area of catchment at a given 

hydrological distance from the basin outlet, which is expected to clearly outline differences 

among the proposed archetypes (Figure 1d).  
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4. Results 

4.1. Horton relationship for human settlements 

The 2705 global river basins with 𝑤 ≥ 4 accounted for 77% of total human 

settlements. Horton’s law of stream areas was supported, at a significance level p < 0.05, for 

2702 river basins, with R2 = 0.99 ± 0.01 (mean ± standard deviation), and the remaining three 

basins also conformed to Horton’s law of areas at 0.1 level of significance. Significant 

relationships (p < 0.05) were found between log-scaled average human presence and stream 

order for 2473 river basins, 91% of the river basins studied, with R2 = 0.98 ± 0.03 (Figures 

S3a-S3c). Example Horton relationships for area and human presence are shown for the St. 

Lawrence and Saskatchewan-Nelson basins in North America (Figures 2a and 2b). These 

results demonstrate a globally robust fractal structure of human settlements in river basins, 

despite diverse heterogeneous landscapes and varied human-environment interactions. 

However, such scaling is itself insufficient to describe the spatial pattern of human 

settlements within river basins and in the worst case could still occur had human settlements 

been homogeneously distributed, as illustrated in Figure 1a. A Hortonian law for human 

settlements is thus expected for each of the proposed archetypes since the distribution of 

human settlements is related with the available basin area, which increases regularly with 

stream order (Carrara et al., 2012).  

 

As shown in Figure 1a, a difference between the area and human settlement Horton 

ratios is required in order to discern a stream order-based pattern of human settlement. Our 

global analysis found 𝑅𝐴 values between 2.2 and 8.9, with mean 4.2, similar to the relatively 

narrow range of 3 to 6 suggested based on statistical considerations (Kirchner, 1993). While 

𝑅𝐻 had a similar mean value of 4.5, the range (2.1 to 15.8) was much wider than for 𝑅𝐴, 

illustrating a larger variety of human settlement patterns (Figure S3d). Despite this, we found 

significantly different values for 𝑅𝐴 and 𝑅𝐻 for only 68 of the 2473 river basins, although in 

81% of these (55 of 68), the human settlement Horton ratio was greater than that for basin 

area (𝜃 > 1) (Figure S3e), indicating a human preference for larger order basins, 

corresponding to archetype (iii) in Figure 1. Nevertheless, based on the overall similarity 

between the two Horton ratios in the global set of river basins, we applied area functions to 

further investigate preferential locations of human settlements in river basins.  

 

 

4.2. Power-law scaling in power spectra for human settlements 

We found significant power-law scaling in the power spectra of 𝐴𝐺  for all of the 563 

river basins with 𝑤 ≥ 3 for which area functions could be computed, and significant power-

law scaling in the power spectra of 𝐴𝐻 for 561 basins (Figures S4a and S4b). Power spectra 

for 𝐴𝐻 and spectral slopes, 𝛽𝐻 and 𝛽𝐺 are illustrated here for the 10 largest river basins 

(Figure 3). The log-log spectral slopes are linear over approximately 3 orders of magnitude, 

from ~ 1km to up to 1000 km. The Mississippi, Nile, and Saskatchewan-Nelson basins 

presented smaller values of both 𝛽𝐺 and 𝛽𝐻 than the other basins, indicating slower changes 

of the variance of 𝐴𝐺  and 𝐴𝐻 across hydrological distance. A narrow range for 𝛽𝐺 has been 

reported (1.7-1.9 for 11 major river basins) (Marani et al., 1994), while our global analysis 

found a wider range for 𝛽𝐺 (1.23-2.06) with mean 1.53, and an even greater range for 𝛽𝐻 

(0.85-2.87) with mean 1.65. However, significant differences were found between 𝛽𝐺 and 𝛽𝐻 
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for only 84 river basins, reflecting broadly common regulation mechanisms on the 

organization of river networks and human settlements in river basins, and again 

demonstrating the effect of the underlying basin area constraining human settlements. Among 

these 84 basins, 𝛽𝐻> 𝛽𝐺 for 83% (Figure S4c), including seven of the largest basins: Amazon, 

Congo, Niger, Amur, Parana, Yangtze, and Mississippi (Figure 3). Larger 𝛽𝐻 indicates higher 

spatial auto-correlation of 𝐴𝐻 than 𝐴𝐺 , and thus clustering of human settlements into towns 

and cities along hydrological paths. The reference archetype of homogeneously distributed 

settlements was thus eliminated as a potential model for those basins with significantly larger 

𝛽𝐻 values than 𝛽𝐺. However, the power spectra do not reveal the locations of clustering, and 

thus archetypes ii and iii (Figure 1) still remained as possible patterns. To explore this issue, 

we therefore evaluated the normalized area functions and the human settlement density 

function. 

 

4.3. Human settlement patterns from transferrable area functions 

 Area functions are key indicators of the organization of human settlements linked to 

river basin structure, as shown in Figures 2c and 2d for the St. Lawrence and Saskatchewan-

Nelson basins. The ratio of 𝐴𝐻 and 𝐴𝐺 , defined here as the normalized human settlement 

density, 𝜌𝐻, plotted as a function of normalized flow length, �̂�, shows human settlements 

concentrated downstream for the St. Lawrence and upstream in the Saskatchewan-Nelson 

(Figures 2e and 2f). We classified the 3136 global basins as upstream or downstream 

clustered based on the ratio of the normalized flow lengths required to include half of the 

human settlements (�̂�𝐻,50) and half of the total basin area (�̂�𝐺,50). For example, for the St. 

Lawrence and Saskatchewan-Nelson river basins �̂�𝐻,50/�̂�𝐺,50= 0.7 and 1.2, indicating 

downstream and upstream clustering, respectively (Figure S5).  

We found downstream clustering in the majority of river basins, 70% of the global 

3136 basins, with upstream clustering in the remainder (Figure 4). The percentage of 

downstream clustered basins by continent (Figure S6) is 73% for Europe, 72% for Asia and 

Australia, 69% for North America and South America, and 63% for Africa. However, when 

taking account of human settlement size, the largest percentage of human settlements located 

in downstream clustering river basins was found for Asia (80%), while only 36% of human 

settlements in South America are located in downstream clustering river basins, due to the 

dominant effect of the two largest river basins, Amazon and Parana. In the Amazon, the 

largest basin in the world, settlements are preferentially upstream, although sparsely 

populated as a whole. Sao Paulo, the largest city in South America, is located upstream on the 

Parana.  

 

4.4. Drivers of human settlement patterns in river networks 

The natural advantages of downstream reaches, including low-slope flatlands, fertile 

soils, and deeper rivers with larger discharge facilitating navigation (Leopold & Maddock, 

1953; Rodríguez-Iturbe & Rinaldo, 2001), give rise to a convergence of human settlements 

downstream. However, multiple factors could lead to upstream clustering of human 

settlements, including climatic gradients along the hydrological flow path (e.g., Calgary and 

Winnipeg in the more-temperate southerly upstream reaches of the northward-flowing 

Saskatchewan-Nelson basin), geographic constraints (e.g., Raleigh, Fayetteville, and 

Columbia along the Piedmont fall line in the eastern US), inland transport accessibility (e.g., 
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Atlanta and Charlotte emerged as modern airport hubs from railroad origins), and political 

history (e.g., the establishment of inland capital cities, such as Delhi, Madrid, and Moscow in 

the Ganges, Tagus, and Volga basins). 

A general spatial pattern of human settlements across continents emerges from the 

area function-based continental average normalized human settlement density, �̅�𝐻, which was 

much larger than one in areas close to the basin outlet (�̂� → 0), indicating a strong human 

preference for these areas (Figure 5). Human settlement density decreased following power-

law scaling (Figure 5, inset, R2 = 0.90, p < 0.01) as the distance from the outlet increased, 

until approximately �̂� = 0.4. Beyond this distance human settlements were found to be 

approximately uniform with mean �̅�𝐻 ~ 1. This downstream clustered pattern was consistent 

in each of the six continents studied and corresponded to archetype iii (Figure 1).  

The observed commonality in human settlement patterns emerged from diversity and 

complexity, and thus may have some underlying optimality principles. The overall similarity 

found between the two Horton ratios and between the two spectral slopes for global river 

basins suggests the role of habitat availability in determining human settlement patterns. 

However, we also explored the relative effects of landscape attributes and proximity to basin 

outlets. First, the observed power law scaling of �̅�𝐻 may be related to landscape attributes. 

For example, across all six continents, with distance from basin outlets we find power law 

scaling of upstream contributing area and increasing trend of average slope (Figure S7). The 

normalized distance cutoff of �̂� ~ 0.4 thus can be considered as an indicator of the distance at 

which the advantages of the river architecture diminish for preferential human settlements.  

 

Second, we evaluated whether the observed downstream clustering is driven entirely 

by the previously observed preferential location of human settlements in coastal areas (Small 

& Nicholls, 2003; Vitousek et al., 1997). Our area function analyses included all larger river 

basins, LRBs, with upstream contributing area > 1000 km2, however, many smaller basins 

drain directly to the coast (Figure 6a). These smaller coastal basins, SCBs, accounted for 49% 

of the total global human settlements, with greater area than LRBs at the coast. Globally, we 

found the average human settlement density within 50 km of the coast to be higher in LRBs 

than in SCBs (Figure 6b). This indicates that the downstream clustering observed in Figure 5 

is not just a coastal effect, but a human settlement location preference near the outlets of large 

river basins, perhaps related to inland waterway access to continental interiors. Human 

settlement densities in LRBs and SCBs in coastal areas are compared by continent in Figure 

S8. A preference for LRBs over SCBs in coastal areas was observed for North America, 

South America, and Asia. In Europe, the same preference for LRBs was observed for d > 10 

km, while SCBs were preferred for d < 10 km, which may indicate prioritization of flood risk 

avoidance. In Africa and Australia, no preference was found between LRBs and SCBs, 

perhaps related to higher aridity in portions of the continental interiors, reducing the 

importance of inland accessibility for coastal settlement locations. 

 

5. Conclusions 

 In this study, we identified a globally consistent pattern of the spatial structure of 

human settlements along river networks. The discovery of general patterns of human 

settlements within river networks at a global scale has only recently become feasible due to 

the convergence of advanced computation capacity and improved data availability, including 

global topographic and hydrographic data, and nightlight images utilized in this study. Our 

analyses resulted in the following important findings. First, human settlements appear to 
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follow a fractal structure identified by both Hortonian scaling with stream order, similar to 

Horton’s law of areas, and power-law scaling for the power spectra of 𝐴𝐻, analogous to 𝐴𝐺 . 

Although found robustly across the globe, the topological similarity based on Horton’s ratios 

(91%) and power spectra (99%) mostly reflected the underlying relationship between human 

settlement extents and habitat availability. However, for basins with significant differences in 

scaling relationships for area and human settlements, the majority revealed human settlement 

preferences for higher-order basins (81%) and clustered structure along hydrological paths 

(83%).  

Second, we found that multiple socio-hydromorphic factors (𝐴𝐺 , 𝐴𝐻, and �̅�𝐻) 

suggested a downstream clustered structure of human settlements in river basins (Figure 1, 

archetype iii). These hydrological distance-based analyses enabled more specific 

identification of human settlement location preferences than Hortonian analyses, which may 

not differentiate between equivalent-order basins that could be located either upstream or 

downstream. We found that in 70% of global river basins, the largest cities tend to be more 

downstream than upstream (Figure 4), with this effect diminishing at normalized flow 

distance beyond approximately �̂� > 0.4 (Figure 5). Further, we found that downstream 

clustering of human settlements is preferential near the outlets of large river basins compared 

to other coastal areas (Figure 6). The global clustering of human settlements within 40% of 

river flow length is an indicator of the preferred locations of intensified human activities.   

Third, we found an emergent general pattern of downstream clustering with power-

law scaling of mean normalized human settlement density along normalized hydrological 

length across continents (Figure 5), despite diverse characteristics in climate, geology, 

topography, and vegetation, and the complex interactions between human and natural 

systems. In the absence of global historical human settlement data, our analysis is a modern 

snapshot. Nevertheless, regardless of initial conditions, continental-average human 

settlements were found to have all converged. Seeking explanations for these emergent 

human settlement patterns can contribute to making future predictions; however, such drivers 

are usually complex and not directly observable. The fractal structure of river networks has 

been suggested as a natural product of least energy dissipation (Rodríguez-Iturbe et al., 

1992), and the adaptation of the natural distribution of vegetation supported as a process of 

maximizing water use (Gao et al., 2014). Similarly, the emergent human settlement patterns 

may reflect an optimum self-organization for humans in river basins to better utilize natural 

resources, ecological assets, and geographic advantages.  

Continued preferential downstream clustering of human settlements at the outlets of 

large river basins has several important implications for the future. Downstream human 

settlements will face increasing threats, considering accelerating sea-level rise (Nicholls & 

Cazenave, 2010) and increasing flood risks (Hirabayashi et al., 2013) due to climate change. 

These pressures will necessitate broader establishment and continued maintenance of robust 

mitigation measures. This will exert especially severe financial pressure on developing 

countries where increasing and rapid urbanization are expected (Cohen, 2006). However, 

humans may make irrational decisions away from optimality (Sivapalan, 2018), and the 

socio-economic optimality may change, given dramatic shifts in the external and internal 

drivers. For example, people might shift further inland or otherwise redistribute away from 

the current spatial patterns for the sake of avoiding upcoming flood risks. Holistic 

understanding of the underlying processes that drive the emergent spatial patterns is needed 

for future prediction (Sivapalan, 2018).  

Last, the observed human settlement patterns within river networks can be used to 

generalize human impacts on rivers, improve our understanding of hydrologic and 
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biogeochemical responses, and advance integrated watershed management. Hydrologic 

science and water management are increasingly driven by future challenges including global 

climate change and rapid urbanization, and the further necessity to actively incorporate the 

dynamics of human society is demonstrated by the introduction of socio-hydrology science 

(Sivapalan et al., 2012; Sivapalan, 2018). Human settlement spatial patterns are key to the 

expansion to the interaction with human-social systems, as the preferential clustering of 

human settlements exerts extra pressure on local resources (Ellis & Ramankutty, 2007). 

Basin-wide water quality modeling mostly considers population as the major stressor and 

aggregates the total basin population loadings of pollutants without accounting for their 

spatial patterns (Schmidt et al., 2017; Van Drecht et al., 2009). However, the locations of the 

pollutant loadings, if varied within river networks, can lead to different effects on water 

quality at the river outlet, due to heterogeneous dilution and attenuation rates within river 

networks. The general downstream clustering of human settlement patterns across continents 

can imply similar effects from stressors. For example, water quality in downstream areas is 

often poor due to the accumulated impact of densely distributed population and intensified 

economic activities (UNEP, 2016; Vorosmarty et al., 2010). Meanwhile, the observed general 

patterns of human settlement in river basins can also imply similar basin-scale mitigation 

schemes. Our study could thus contribute to improved water quality modelling by 

incorporating spatial perspectives and facilitate targeted treatment of pollutants. 
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Figure 1: Archetypes of hypothesized human settlement organization in catchments, and 

associated metrics of pattern organization: (i) homogeneity, (ii) unstructured clustering along 

river networks, and (iii) downstream clustering. Solid and dashed blue lines indicate simplified 

river networks and basin boundary; red circles indicate human settlements in different patterns 

of spatial organization. The metrics applied to basin area (dashed blue lines) and human 

settlements (solid red lines) are: (a) Horton’s laws, (b) power spectra of geomorphologic area 

function (𝐴𝐺) and human area function (𝐴𝐻), (c) 𝐴𝐺  and 𝐴𝐻, and (d) human settlement density 

function (𝜌𝐻).  
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Figure 2: Hortonian analyses and area function-based analyses of human settlement patterns 

for the St. Lawrence and Saskatchewan-Nelson basins. (a-b) Hortonian analysis of mean area 

and mean human presence vs stream order. Values of the area and human settlement ratios, 𝑅𝐴 

and 𝑅𝐻 , are inset. (c-d) Normalized geomorphological area function (�̂�𝐺 ) and normalized 

human area function (�̂�𝐻) vs normalized flow length, �̂�. (e-f) normalized human settlement 

density (𝜌𝐻) vs �̂�.  
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Figure 3. Power spectra for human area function (𝐴𝐻) of the 10 largest river basins, and their 

associated spectral slopes 𝛽𝐻. Also shown are geomorphological area function power spectra 

slopes, 𝛽𝐺 . Spectra for individual basins have been arbitrarily shifted on the y-axis for 

visualization. 
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Figure 4. Downstream (blue) or upstream (orange) clustering of human settlements in 3136 

global river basins. Downstream clustering is observed in 70% of river basins.  
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Figure 5. Continent-based analysis of mean normalized human settlement density (�̅�𝐻) along 

hydrological flow paths in river basins. The dashed line (�̅�𝐻 = 1)  indicates uniformly 

distributed human settlement density. Inset shows power law scaling between �̅�𝐻  and �̂� for 

�̂� < 0.4. 
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Figure 6. Human settlements in coastal areas. (a) Large river basins (LRBs) and smaller coastal 

basins (SCBs) in coastal areas. The red arrow indicates Euclidean distance from the coast, d. 

(b) Global mean human settlement density as a function of d. Overall, densities are greater in 

LRBs than in SCBs. Note LRBs are river basins delineated based on Hydro1K dataset, while 

SCBs refer to basins along the coast with area < 1000 km2. 

 


