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Abstract

Modularization and component reuse are concepts that can speed up the design and implementation of
domain specific languages. Several modular development frameworks have been developed that rely on
attributes to share information among components. Unfortunately, modularization also fosters development
in isolation and attributes could be undefined or used inconsistently due to a lack of coordination. This work
presents 1) a type system that permits to trace attributes and statically validate the composition against
attributes lack or misuse and 2) a correct and complete type inference algorithm for this type system. The
type system and inference are based on the Neverlang development framework but it is also discussed how it
can be used with different frameworks.

Keywords: modularity and composition, modular language implementation, formal validation of the
composition, type inference

1 Introduction

Domain specific languages (DSLs) are getting more and more relevant nowadays
but their development is still difficult and this contains their proper spread. One
way to ease DSL development, consists in maximizing reuse by modularizing the
language and its implementation in the composition of loosely coupled language
components where a language component is any language-oriented concept that
should be part of the language shipped together with its implementation. According
to this trend several modular development frameworks have been developed such as
Lisa [9], JastAdd [5], Silver [11], Spoofax [7] and Neverlang [10].

The implementation of each language component provides a syntactic description
of the language concept itself and the code necessary to support the expected
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semantics for such a concept. Composition is typically driven by the syntactic
description of the language component that provides an interface to the other
language components. Even if loosely coupled the code realizing the semantic of the
different language components relies on data computed by the other components
and the sharing of these data is typically delegated to and relies on the presence
of attributes [8]. Being the composition syntax-driven, semantic constraints as
attributes presence are rarely considered at development/composition time.

Modular development eases the reuse of language components fostering their
separate development. Language components are developed in isolation and reused
as black boxes relying on naming conventions or similar expedients. This may
become unreliable when the language components can be separately compiled and
dynamically composed, as in Neverlang, since they rely on information that is not
part of component’s interface. Without some static check, the composition may turn
out in a real mess.

Apart from Spoofax [7] that provides a language transformation engine all the
other approaches exploit variants of the attribute grammars [8] and syntax direct
translation [1]. A typical (dangerous) situation consists of a language component’s
implementation that relies on an attribute that should be provided by the imple-
mentation of another component and the attribute is not defined, is defined with a
different name or is inconsistently used. In such a situation, even if the composition
could be done and the compiler generated, it will fail when it is used. Also when the
attributes are declared as in Lisa [9] or precomputed as in Silver [11] there is still no
assurance that they are consistently used.

In this work, we formalize the problem of attributes traceability over separate
language component implementations by providing a type system that statically
validates the composition with respect to the attributes. The validation is tailored
on the Neverlang framework but it can be easily adapted to other modular language
development frameworks as Lisa and Silver.

The paper is organized as follows. Section 2 introduces the problem of well-
definedness in attribute grammars, how this is contextualized to the framework
Neverlang and an overview of the proposed solution. Section 3 introduces the
formalization of Neverlang slice that is used in Section 4 to define a small-step
operational semantics that specifies how the semantic actions define, access and
modify the attributes of syntax-trees. Section 5 introduces a type system for a type
decorated version of slices which prevent runtime errors and states the soundness
result. Section 6 outlines the type inference algorithm and states that it is correct
and complete for the type system. In Sect. 7 some related work and the application
of the presented system to them is discussed. In Sect. 8 we draw some conclusions.

2 Overview

Well-definedness in attribute grammars. The problem of ensuring that a
grammar is well-defined has been addressed since the genesis of attribute grammars.
In the context of pure attribute grammars, the well-definedness is traditionally
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expressed in terms of closure and non-circularity properties. The closure property
states that for each attribute there is a semantic rule calculating its value. Pure
attribute grammars always associates an attribute value with a function without
side-effects; by definition of function this always grant the attribute definition. In
this context the check for the closure property only consists of verifying the definition
of the functions. Unfortunately, many tools do not adopt full-fledged attribute
grammars and although a rule exists it might not set the attribute. Among such tools
we find Yacc, ANTLR, Silver [11], Neverlang [10] and Lisa [9]. The non-circularity
property states that an attribute value must not depend on the attribute itself. In
a monolithic setting, Knuth [8] presented an algorithm for testing a grammar for
both closure and non-circularity. Vogt et al. [12] extended Knuth’s algorithm in the
context of higher-order attribute grammars. Backhouse [2] presented a definedness
test that embodies both closure and circularity checks.

Although not trivial, the well-definedness analysis in a monolithic approach
is simple when compared to the same analysis carried on a modular model, like
ours, where information hiding introduces interesting challenges. In such a setting,
Kaminski et al. [6] presented a well-definedness analysis for attribute grammars
applied to a modular system. The analysis checks that the composition of a host
language with its extension results in a complete grammar definition with no circular
dependencies in attribute equations. The proposed solution is applied to Silver, an
attribute grammar system supporting extensions through forwarding.
Neverlang. Neverlang is a framework for compositional language development. A
complete exposition of Neverlang’s features can be found in [3,4,10]. In the following
we only describe those features necessary in this work.

The basic unit in Neverlang is the slice that implements a language feature [10].
A slice defines its own syntax through some grammar rules. It also defines semantic
roles, i.e., a set of semantic actions associated with the grammar rules. Roles represent
single tree traversals and the semantic actions are executed during the traversal.
Semantic actions are written in a Java-like DSL that permits to define and work with
attributes. Roles can be defined in modules collected and/or reused by the slices.

module IfThenElse {

reference syntax {
IF: Exp� "if" Exp "then" Exp "else" Exp;

}

role ( evaluation ) {
IF: .{
eval $IF[1];

if (toBool($IF[1].val)) {
eval $IF[2]; $IF.val = $IF[2].val;

} else {
eval $IF[3]; $IF.val = $IF[3].val; }

}.
}

}

Listing 1: if-then-else implementation.

module Numbers {

reference syntax {
INT: Exp� /\d+/
DBL: Exp� /\d+\.\d+/

}

role ( evaluation ) {
INT: .{
$INT.val = new Integer(#0.text);

}.

DBL: .{
$DBL.value = new Double(#0.text);

}.
}

}

Listing 2: Numbers implementation.

Listing 1 shows a module implementing a functional version of the if-then-else
construct. The reference syntax defines the if expression syntax through a single
production. Nonterminals are capitalized by convention, while terminals are enclosed
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in quotes. Each production may be preceded by a label (e.g., IF) that can be used
in semantic actions to refer to the production nonterminals. Each role is associated
with a name, in our example evaluation. Semantic actions are written enclosed
between .{ and }. symbols. An action is associated with its production by a label
that precedes its definition. The example in Listing 1 has a single semantic action
associated with the only production in the grammar.

Given a set of modules, Neverlang builds a tree-based interpreter/compiler for
the implemented language. For a given input program the interpreter will construct
its syntax tree and will traverse it for each role in the order specified in a separate
configuration file. Whenever a node n is visited, the run-time system will execute
the semantic action associated with the production used to build a subtree rooted at
n. In our example, whenever a node representing the head nonterminal Exp is visited
the action labeled IF will be executed. During traversals a tree can be decorated
with arbitrary attributes dynamically attached to tree nodes.

The semantic action code can refer to all nonterminals of the associated production
by using the following syntax $label[offset], where label is the label identifying
the associated production. The head nonterminal has offset 0. So in the above
example, the head nonterminal can be referred by $IF[0] or simply $IF. The second
nonterminal representing the condition part of the if-then-else expression can be
referred to by $IF[1] and so on.

The semantic action, first, traverses the subtree representing the condition part
of the if-then-else construct (eval $IF[1]). This traversal may define new attributes
in the node represented by $IF[1]. These attributes may come from other modules
implementing the Exp nonterminal. Depending on the value of the $IF[1].val

attribute, we continue by traversing one of the branches of the if-then-else construct
(eval $IF[2] or eval $IF[3]). In both branches, we copy the val attribute of the
branch to the current node.
Problem Statement. Since the nature of attributes in Neverlang is dynamic, an
attribute might not be defined when needed. There are basically two reasons for
this. First, an attribute might get defined only when a specific computational path
is followed. For example, let us suppose that the else branch in Listing 1 misses the
$IF.val = $IF[3].val; statement. In that case, at the end of the semantic action
execution the attribute $IF.val might not be defined. On the other hand, attributes
with the same goal could be labeled with different name in different modules/semantic
actions due to different naming conventions or simply by distraction. Let us consider
Listing 2 where both integer and floating point numbers are defined. The two rules
define regular expressions to match integers and doubles respectively. So when the
parser matches a number it will build a subtree rooted at Exp and with a child holding
the matched value. The semantic actions simply extract the matched number (stored
by the lexer in #0.text) and put its value in an attribute. The semantic action for
double—labeled by DBL—defines an attribute named value instead of val. Thus, the
language could not guarantee that the Exp nonterminal will always have the val or
the value attribute. This last issue becomes particularly common when composing
programming features whose implementation has been developed by different teams.
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Solution Overview. To identify erroneous situations like these a formalization
of Neverlang has been provided that describes all the relevant entities involved in
the framework and their formal semantics. To prevent errors, we introduce a version
of Neverlang, in which semantic actions and nonterminals are decorated with types
specifying their definition and use of attributes. The decorations are used to assess
the result that: if the code of the semantic actions is well-typed with respect to these
decorations then computations on the syntax-tree of any string of the language correctly
proceeds. The result assumes that we have a complete language implementation,
however, since development is compositional we specify type-checking incrementally,
by associating with a slice the information about the defined/used attributes of the
nonterminals occurring in it. To type-check the composition of slices, we use this
information, i.e., the code of the semantic actions of the slice is not needed.

Returning to our example, the slice of Listing 1 is well-typed and the type
associated with this slice says that nonterminal Exp requires that the attribute val

be defined after the evaluation of any semantic action associated with a production
for Exp (since after eval $IF[1] the attribute val is required by the if condition).
Moreover, all the semantic actions of this slice (in this case there is a single one)
define the attribute val of Exp. If this was not the case, e.g., one of the two branches
of the conditional does not define the attribute val for the head nonterminal, this
slice would not be well-typed. Also the slice of Listing 2 is well-typed, and the
type associated with this slice specifies that nonterminal Exp does not require the
definition of any attribute, and that the semantic action of the slice does not define
any attribute for Exp. However, the composition of the two slices is not correct, since
slice of Listing 2 does not defines the attribute val for Exp, which is required by
the type of the other slice. If we substitute value with val in the semantic action
DBL, then the type for the slice of Listing 2 would specify that the attribute val is
defined for Exp and the composition would be correct. In this case, the type of the
composition would be equal to the type of Listing 1.

The type decoration needed for type-checking can be inferred. In Section 6, we
outline an algorithm that, given a Neverlang slice, analyzes the code of its semantic
actions and produces the information about the definition/use of attributes for the
nonterminals associated with the slice. The algorithm fails in case the slice cannot
be decorated in such a way that type-checking succeeds. Moreover, if the algorithm
succeeds from the information produced we can derive all possible decorations for
the slice. Type inference of composition of slices relies on this information, making
inference compositional.

3 Formalizing the Syntax of Neverlang

In this section we introduce the formalization of the Neverlang syntax. Some
restrictions over the Neverlang framework have been considered. Slices are the
considered modularity unit. Slices provide only one role. These simplifications do
not represent a real limitation. In Neverlang semantic actions are specified by adding
to full Java the “domain specific” constructs for accessing, defining and updating
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attributes and for forcing the visit of subtrees of nodes of the syntax-tree. In order
to focus on attribute manipulation, we choose to limit the non “domain specific”
constructs to a simple expression language.

A slice is composed of a portion of a grammar, i.e., a set of productions, and a
role definition. Now we formally describe the slice syntax. We refer to the language
we are defining as target language.
Productions and grammars. Typically, a grammar is a quadruple (Σ, N, S,Π)

where Σ is the set of terminals, N the set of nonterminals, S the start nonterminal,
and Π the set of productions. To our purposes, terminal symbols are useless, so they
will not be included in the slice formalization. A production is a pair of a nonterminal
and a sequence of nonterminals, denoted by X0 → X1 · · ·Xq, where q ≥ 0. The
empty sequence is denoted by ε. We use the metavariable X with subscripts and
superscripts to range over nonterminals. Moreover, with P we denote a subset of the
productions of the grammar (not necessarily all). Productions are uniquely identified
by labels, p, with subscript or superscript if needed.

Definition 3.1 Let p be the label for X0 → X1 · · ·Xq,
(i) p[i] with i = 0, . . . , q refers to Xi where i represents the nonterminal position in

the production p, p[0] refers to the left-side nonterminal of the production
(ii) |p| = q

(iii) NT (p, i) = Xi, for i = 0, . . . , q and
(iv) NT (p) = ∪0≤i≤q{NT (p, i)}.

Definition 3.2 Given a sequence of productions P = p1 . . . pm,
(i) LP the set of labels of the production in P ,
(ii) NT (P ) = ∪1≤k≤mNT (pk) is the set of nonterminals in P ,
(iii) Def (P ) = ∪1≤k≤m{NT (pk, 0)} is the set of nonterminals defined in P and
(iv) P �X = {pk |NT (pk, 0) = X} is the subset of P whose productions have X has

the left-side nonterminal.

In the following we give a definition of a grammar, which is slightly more restrictive,
of the standard one.

Definition 3.3 [Grammar] A sequence of productions P is a grammar, if NT (P ) =

Def (P ) and there is a start nonterminal which occurs only on the left-side of a
production, that we call the start production. We denote grammars with G.

Slices and language for semantic actions. As mentioned at the end of Sect. 2
slices are formalized with a single role and an action per production. Actions are
statements of the language defined by the following grammar.

s ::= unit | if e then s else s | s; s | p[i].a = e | eval p[i]

e ::= v | p[i].a | op(e1, . . . , en)

v ::= tr | fls | n ve ::= unit | v

A statement can be the null statement unit, a conditional, a sequence of statements,
an expression, an attribute update and/or definition, p[i].a = e, or the execution
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of a semantic action, eval p[i] where p[i] specifies the nonterminal at position i in
the production labeled p in P . Expressions can be integer or boolean constants,
the value of an attributes of instances of nonterminals (p[i].a), or the application of
some operators to expressions. In the examples, we will use operators such as + and
==. Values are the results of the evaluation of expressions and can be assigned to
attributes. Extended values ve include unit, which is the value resulting from the
execution of a statement and therefore also of an action.

Definition 3.4 [Slice and Slice Compositon]

• Given a sequence of productions P , a slice SP on P is a set of actions labelled
by the productions in P denoted by {p : .{s}. | p ∈ P}.

• Let the labels of productions in P and P ′ be disjoint. The composition of slices
SP and SP ′ , SP ◦ SP ′ , denotes the slice, SP ∪ SP ′ on P P ′.

In the definition of slice, the assumption that all productions in P are associated
with an action is not a limitation, as we can always associate to a production the
null statement unit. Composition of slices is associative and commutative and, since
in a slice productions and corresponding semantic actions could be relabeled, we can
always define the composition of two slices.

4 Operational Semantics

The semantics for the semantic actions is specified in a “small step” style, by describing
how the execution of its statements defines/modifies the attributes associated with a
syntax-tree for a string in the target language. In the formalization for the operational
semantics, we refer to a single slice on a sequence of productions specifying a full
grammar, G, as defined in Def. 3.3 (it could be a sublanguage of the target language).
Even though a language implementation may be defined by the composition of some
slices, by Def. 3.4, we know that this is equivalent to a single slice containing the
union of the semantic actions of the composing slices. During the evaluation of
semantic actions, the structure of the syntax-tree is fixed, whereas the attributes
associated with its nodes vary. Attributes are separated from the syntax-tree.
Syntax-tree and Attributes. The definition of syntax-tree formalizes the data
structure resulting from the parsing of a string in the target language. Any subtree
of a syntax-tree is associated with a production p of G and contains subtrees for
strings generated by the nonterminals on the right-hand-side of p. If p has an empty
sequence of nonterminals on the right-hand-side the node is a leaf. Unique identifiers
are associated with subtrees of syntax-trees.

Let I be a denumerable set of identifiers with id being a metavariable ranging on
elements of I.

Definition 4.1 [Syntax-tree] Let G be a grammar.
• η ≡ id : (p, η1 · · · ηq) is a syntax-tree for the production p if p : X0 → X1 · · ·Xq ∈
G and ∀i 1 ≤ i ≤ q ∃p ′ : Xi → · · · ∈ G such that ηi is a syntax-tree for p ′.
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• η is a syntax-tree for a string of G, written G |= η, if η is a syntax-tree for the
start production of G and all the ids in η are distinct.

• Given a syntax tree η,
· η(id) = η′ if ∃p, η1, . . . , ηq such that η′ = id :(p, η1 · · · ηq) occurs in η. If id

does not occur in η, η(id) is undefined.
· The domain of η, dom(η) = {id | η(id) is defined},

Example 4.2 Let us consider the productions IF, INT and DBL in Listings 1, 2 plus
the start production S: S � Exp; (S is the start symbol) which is added to transform
the productions into a grammar according to Def. 3.3. Define the slice containing
the actions specified in Listings 1, 2 plus the action:

S: .{ eval $S[1]; $S[0].val=$S[1].val; }.

The syntax-tree η for the input string "if 1 then 2 else 3" will be:

id1 : (S, id2:(IF, id3:(INT, ε) id4:(INT, ε) id5:(INT, ε)))

So dom(η) = {id i | 1 ≤ i ≤ 5}, η(id1) = η and η(id3) = id3:(INT, ε).

Mappings are used to associate attributes with nodes of syntax trees. A mapping,
m, from the set B to C is a partial function from B to C with finite domain. We
write m = [b1 �→ c1, . . . , bn �→ cn] and m(bi) = ci. The empty map is denoted by
[ ]. If m = [b1 �→ c1, . . . bn �→ cn] the domain of m, dom(m) = {b1, . . . , bn}. The
mapping m[b′ �→c′] is such that m[b′ �→c′](b′) = c′ and m[b′ �→c′](b′) = m(b) for b �= b′.

Definition 4.3 [Attribute store] Given a syntax-tree η, to represent the values of the
attributes associated with nodes of η, we define attribute stores, denoted by μ, which
are mappings from I to mappings from A to values, such that dom(η) = dom(μ).

Consider the syntax tree η of Example 4.2. The attribute store [id1 �→ [val �→
2], id2 �→ [val �→ 2], id3 �→ [val �→ 1], id4 �→ [val �→ 2], id5 �→ [ ]] says that for
the node associated with the condition of the construct (id3) the attribute val is
defined and has value 1. For the nodes associated with the start symbol (id1), the
if construct (id2) and the then condition (id4) the attribute val is defined and has
value 2. For the node id5, associated with the else condition, no attribute is defined.
This attribute store is the result of the evaluation of the action associated with the
production S starting with an attribute store in which all nodes have no defined
attributes. Note that, for id5 the attribute val is not defined since toBool(1) is true
and so the node id5 is not evaluated.
Run-time Terms and Configurations. To define the small-step execution of
the language for semantic actions, we need to refer to: a (generic) syntax-tree η, the
attribute store associated with η giving the attributes currently defined for η (and
their value) and the term t (either a statement or an expression), that is currently
evaluated. One step of evaluation produces a new term and may modify the attribute
store μ. We define the judgment of the reduction relation as follows:

η |= t |μ → t′ |μ′

We put the syntax-tree η on the left of |= since it does not change during evaluation.
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η |= op(v) |μ → v |μ if õp(˜v) = ṽ (E-OP) η |= unit; s |μ → s |μ (E-SEQ)

η |= if tr then s else s′ |μ → s |μ (E-IFTRUE) η |= if fls then s else s′ |μ → s′ |μ (E-IFFALSE)

η |= id .a |μ → μ(id)(a) |μ (E-GETA) η |= id .a=v |μ → unit |μ[id �→μ(id)[a �→v ]] (E-SETA)

η(id) = id :(p, id1:(· · ·) · · · id |p|:(· · ·)) p : .{s}. ∈ SG s′ = (s[p[0] := id ])[p[i] := id i]1≤i≤|p|
(E-EVAL)

η |= eval id |μ → s′ |μ

η |= e |μ → e′ |μ′
(EC-OP)

η |= op(v , e, e) |μ → op(v , e′, e) |μ′
η |= s1 |μ → s′1 |μ′

(EC-SEQ)
η |= s1; s2 |μ → s′1; s2 |μ′

η |= e |μ → e′ |μ′
(EC-IF)

η |= if e then s1 else s2 |μ → if e′ then s1 else s2 |μ′
η |= e |μ → e′ |μ′

(EC-SETA)
η |= id .a = e |μ → id .a = e′ |μ′

Fig. 1: Rules of operational semantics.

Run-time configurations are pairs of terms and attribute store denoted by t |μ, but
in order to understand μ we also need to refer to the specific η.

In the language for semantic actions, the nodes of syntax-trees are referenced
by using labels of nonterminal instances in productions (p[i]). In the run-time
configuration, these labels are substituted by the identifiers of the node they denote
(given the node on which the current action is executed). The run-time terms (i.e., the
terms in the run-time configuration) are defined rewriting the language for semantic
actions by substituting: p[i].a with id .a, p[i].a = e with id .a = e, and eval p[i] with
eval id .
Rules of the Operational Semantics. The rules of the operational semantics,
given in Fig. 1, specify how the execution of a construct of the language uses/modifies
a run-time configuration. In the rule (E-Op) with ṽ we mean that the integer or
boolean value corresponds to the numerals or tr and fls tokens of the language
respectively, and similarly õp denotes the function that corresponds to the symbol
op of the language. The interesting rules are those dealing with attributes. Rule
(E-GetA) returns the value of the attribute a of id . The term is “stuck” if a is not
defined for id . Rule (E-SetA) modifies the attribute store μ by defining (or overriding
the value of) the attribute a to v . The evaluation, being a statement, returns unit.
Finally, rule (E-Eval) replaces eval id with the action associated with the production,
p, generating the id node. In the action, instances of nonterminals p[i] are substituted
by the identifiers corresponding to the child node i, and p[0] is substituted by id .
This starts the visit of the node corresponding to id . The last four rules specify
the evaluation order, which is the standard evaluation of imperative/functional
programming languages.

Let idr be the root node of η and η(idr) = (pr, id1 · · · id |pr|). The initial configu-
ration of the evaluation of η in SG is sin |μin where:

sin = (sr[pr[0] := id ])[pr[i] := id i]1≤i≤|pr| and μin = [id j �→ [ ]]1≤j≤n

For instance, for the Ex. 4.2, let μin = [id j �→ [ ]]1≤j≤5 the initial configuration is:

eval id2; id1.val = id2.val | μin
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Applying the rule (EC-Seq) with the application of (E-Eval) over the line we get:

η |= eval id2; id1.val = id2.val |μin → s′; id1.val = id2.val |μin
where s′ is the action associated with the production labeled by IF in Listing 1 with
IF[i] replaced by id i+2 for i = 1, . . . 3.

5 Type system

This section introduces a type system that traces the attributes definition and
prevents the access to undefined attributes of the syntax tree nodes. In order to
do this, we assume that the actions are decorated with both the set of attributes
required by the nonterminal on the left-side of the production for its correct execution
and the set of attributes that will be defined for the same nonterminal after the
execution of the action.

Let A = {a} be a set of attributes with a fixed type. This restriction permits to
focus on the “definedness” of attributes rather than on their effective type, which is
an orthogonal problem with a wide number of solutions. Ta denotes the type of the
attribute a.

Definition 5.1 A typed slice, TSP , is a set of decorated actions which are labeled
by the productions in P denoted by {p : (R,D).{s}. | p ∈ P ∧ R,D ⊆ A}. Given a
p : (R,D).{s}. ∈ TSP

• R, called the required set of attributes, is a set of attributes of the nonterminal
p[0] that ensure the correct execution of s, and

• D , called the defined set of attributes, is the set of attributes that are surely
defined for p[0] by the execution of s.

For the type checking of semantic actions, the definedness of attributes is traced
through attribute contexts.

Definition 5.2 [Attribute context] An attribute context Ψ for p is a subset of the
pairs of nonterminals in p and their attributes. That is, Ψ ⊆ {(p[i], a) | 0 ≤ i ≤
|p| ∧ a ∈ A}.
Given Ψ, define Ψ(p[i]) = {a | (p[i], a) ∈ Ψ}. We say that Ψ refers to p if Ψ is an
attribute context for p.

Information about attributes required/defined by the execution of semantic actions
associated to production for the nonterminals in P are collected in nonterminal
environment. A nonterminal environment Γ for a set of production P is a set

{X1:(R1,D1), . . . , Xn:(Rn,Dn) | Xi ∈ NT (P ) ∧ Ri,Di ⊆ A(1 ≤ i ≤ n)}.
We assume that all the nonterminals Xi are distinct. If X:(R,D) ∈ Γ, then the
execution of any semantic action associated with a production defining the non-
terminal X relies on the definedness for the node associated with X of some of
the attributes in R. On the other side, the execution of any of these semantic
actions will assure that at the end at least all the attributes in D will be defined.
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Given a set of nonterminals M : Γ−M = {X:(R,D) | X:(R,D) ∈ Γ ∧X �∈ M} and
Γ�M = {X:(R,D) | X:(R,D) ∈ Γ ∧X ∈ M}.

The considered primitive types are:

T = Unit | Int | Bool

Unit is the type of statements whereas Int and Bool are the types for expressions.
The type judgment for terms t, representing a semantic action, is

Γ;Ψ �p t : T ; Ψ
′

where Γ is a nonterminal environment, Ψ and Ψ′ are attribute contexts and T is
a type. The judgment should be read as: in the nonterminal environment Γ and
attribute context Ψ, the term t has type T and its evaluation defines the attributes for
the occurrences of the nonterminals of p according with Ψ′. The judgment is relative
to a production p, since we have to check the correctness of instances of nonterminals.
For uniformity, we use the same judgment for statement and expressions, even though
expressions will always have Ψ′ = ∅, since their evaluation may not define attributes.

The type rules for the judgment Γ;Ψ �p t : T ; Ψ
′ are given in Fig. 2. Rule (T-Sub)

is a standard weakening of both required and defined attributes. It says that, if from
an attribute context Ψ1 we derive that t is correct, then we can derive the result
also assuming a bigger attribute context. On the other side, we derive that if the
execution of t defines the attributes in the attribute context Ψ′

1, its execution also
defines a subset of Ψ′

1. The rules for expressions, excluding access to attributes, are
obvious. Rule (T-Seq) says that, for a sequence of statements s1; s2, the attributes
defined by the execution of s1 are available during the execution of s2. Since both s1
and s2 must be statements their type must be Unit. For a conditional statement,
rule (T-If), the condition is a boolean expression, both branches are statements, so
they must have type Unit and they must define the same set of attributes. This is
not a restriction because using the rule (T-Sub) we can weaken the attribute contexts
and make them equal. For an access to an attribute, a, of a nonterminal instance p[i]

to be correct, rule (T-GetAtt), the attribute context must contain the pair (p[i], a).
This could be for i �= 0 only when the execution of the statements of the action
associated with p preceding the evaluation of the current expression has defined a

for p[i]. When i = 0, the attribute could have been in the required set of attributes
of the action associated with p, i.e., it has been defined for p[0] before the execution
of the action. In rule (T-GetAtt), the type of the expression has to be equal to the
type of the attribute to which it is assigned. Since these are statements their type is
Unit and they define the attribute a of p[i]. Finally, to check eval p[i] we have to
refer to the nonterminal environment Γ. Let X = NT (p[i]) and Γ(X) = (R,D), the
attribute in R must be defined before the execution of a semantic action associated
with a production defining X. Since eval p[i] will cause the execution of one of such
actions, the attributes in R must be defined for p[i]. The attributes in D are defined
for the head nonterminal by the execution of a semantic action associated with a
production defining X, therefore after the execution of eval p[i] the attributes in D

will be defined for p[i].
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Ψ′ ⊆ Ψ′
1 Ψ1 ⊆ Ψ Γ;Ψ1 �p t : T ; Ψ′

1
(T-SUB)

Γ;Ψ �p t : T ; Ψ′

Γ;Ψ �p tr/fls : Bool; ∅ (T-TR/FLS) Γ;Ψ �p unit : Unit; ∅ (T-UNIT) Γ;Ψ �p n : Int; ∅ (T-INT)

Γ;Ψ �p e : T ; ∅ typeOf(op) = (T , T )
(T-OP)

Γ;Ψ �p op(e) : T ; ∅
Γ;Ψ �p s : Unit; Ψ1 Γ;Ψ ∪Ψ1 �p s′ : Unit; Ψ2

(T-SEQ)
Γ;Ψ �p s; s′ : Unit; Ψ1 ∪Ψ2

Γ;Ψ �p e : Bool; ∅
Γ;Ψ �p s : Unit; Ψ′ Γ;Ψ �p s′ : Unit; Ψ′

(T-IF)
Γ;Ψ �p if e then s else s′ : Unit; Ψ′

(p[i], a) ∈ Ψ 0 ≤ i ≤ |p|
(T-GETATT)

Γ;Ψ �p p[i].a : Ta; ∅

Γ;Ψ �p e : Ta; Ψ 0 ≤ i ≤ |p|
(T-SETATT)

Γ;Ψ �p p[i].a = e : Unit; {(p[i], a)}
NT (p[i]):(R,D) ∈ Γ R ⊆ Ψ(p[i])

(T-EVAL)
Γ;Ψ �p eval p[i] : Unit; {(p[i], a) | a ∈ D}

Fig. 2: Rules of the type system for terms.

Γ; {(p [0], a) | a ∈ R} �p s : Unit; Ψ
(T-ACT)

Γ �p s : (R,Ψ(p[0]))

ΓR ∪ ΓD �pk sk : (Rk,Dk) (1 ≤ k ≤ m) dom(ΓR) ∩ dom(ΓD) = ∅
ΓD={X:(∪pk∈(P �X)Rk,∩pk∈(P �X)Dk) |X ∈ Def (P )}

(T-SLICE)
ΓR � TSP = {p1 : (R1,D1).{s1}., . . . , pm : (Rm,Dm).{sm}.} : ΓD

(ΓR∪ΓD)−Def (P ) � TSP : ΓD�Def (P ) (ΓR∪ΓD)−Def (P ′) � TSP ′ : ΓD�Def (P ′)
(T-COMP)

ΓR � TSP ◦ TSP ′ : ΓD

Fig. 3: Well typed semantic actions, slices and slice coposition.

Figure 3 shows the typing for semantic actions and typed slices. Rule (T-Act) says
that an action has the correct decoration (R,D) in the nonterminal environment Γ if
from Γ and the attribute context in which the nonterminal instance p[0] has all the
attributes in R, the execution of the action defines for p[0] all the attributes defined
for p[0] in the final attribute context Ψ. In typing a slice, rule (T-Slice) we distinguish
two disjoint sets of nonterminals, the defined nonterminals, X ∈ Def (P ) and the
required nonterminals, X ∈ NT (P )−Def (P ). The slice TSP has type ΓD from ΓR if
the domain of ΓR does not contain assumptions for nonterminals defined in P and all
the actions in the slice have the correct decoration in the nonterminal environment
ΓR,ΓD, where ΓD associates nonterminals X ∈ Def (P ) with the set of attributes
compatible with all the semantic actions associated with productions defining X

in the slice. That is, it requires the union of the set of attributes required by any
action and ensures the intersection of the set of attributes defined by an action. Rule
(T-Comp) says that the composition of slices TSP and TSP ′ has type ΓD from the
nonterminal environment ΓR if TSP can be derived from the restriction of ΓD to
the nonterminals defined in P from the nonterminal environment ΓR extended with
the assumptions on the nonterminals in ΓD which are not defined in P . Similarly
for TSP ′ . This ensures that the assumptions on nonterminals in typing the actions
of TSP and TSP ′ are consistent. Requiring exactly the same assumptions is not a
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restriction, since we have subtyping on the typing of actions. We can show that,
if P ′′ is the sequence of productions P P ′, then ΓR � TSP ◦ TSP ′ : ΓD if and only
if ΓR � TSP ′′ : ΓD where TSP ′′ = TSP ∪ TSP ′ . Note that, from definition of
composition, Def. 3.4, the labels of productions in P and P ′ are disjoint.

Finally we say that the composition of slices, TS1◦· · ·◦TSn, where TSi (1 ≤ i ≤ n)
is the slice associated with the productions Pi, is a well-typed language implementation
when P1 . . . Pn is a grammar with pr as start production and, for some Γ and D , we
have that � TS1 ◦ · · · ◦ TSn : Γ and Γ(NT (pr[0]))=(∅,D).
Soundness. Consider a grammar G = P1 . . . Pn and a well-typed language im-
plementation TS1 ◦ · · · ◦ TSn. We know that the slice TSG = ∪1≤i≤nTSi is also
a well-typed language implementation. Let η be a syntax tree derived from the
grammar G, i.e., G |= η. Soundness is stated by Theo. 5.3 where sin | μin is the
initial configuration as defined in Sect. 4 for η in TSG .

Theorem 5.3 (Soundness) If η |= sin |μin →∗ s |μ, then either s = unit or
η |= s |μ → s′ |μ′ for some s′ and μ′.

Moreover, we can prove that the syntax-tree is correctly decorated with attributes
in accord with the type system.

6 Type Inference

In this section we give an informal definition of the type inference function for slices,
TS , describing the constraints returned by this function, and showing how constraints
are checked for consistency and combined. Then, we state the results of correctness
and completeness of type inference w.r.t. the type system of Section 5.

Type inference is defined by a partial function TS from slices, SP , to the require-
ments on nonterminals that are used but not defined in the slice, NT (P )−Def (P ),
and the properties of the nonterminals defined in P derived by the analysis of the
associated semantic actions of the slice. The function TS is defined in terms of a par-
tial function Ta that does the analysis of the actions associated with the productions
of the slice.

The type inference function for slices TS if defined is such that TS(SP ) = γ,Γ

where:
• γ is a set containing the constraints on the nonterminals X, such that X ∈
NT (P ) − Def (P ), derived by the actions of the slice. In particular, γ is a
set of associations between nonterminals and triples, written X:(A1, A2, A⊥),
whose first two components are sets of attributes and the third is either a set of
attributes or ⊥ meaning that the set is undefined. The attributes in A1 and A2

are requirements on slices in which these nonterminals are defined. Namely,
· attributes in A1 must be in the required set of the actions associated with

productions defining X;
· attributes in A2 must be in the defined set of the actions associated with

productions defining X.
· attributes in A⊥ are the attributes that are defined, in actions of SP , before
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evaluating an eval of an instance of the nonterminal X. If there is no eval

of an instance of the nonterminal X then A⊥ = ⊥
• Γ has the meaning of ΓD in the type-system, i.e., associates the nonterminal
X ∈ Def (P ) with their required and provided attributes derived from the
analysis of the actions of SP .

TS is defined in terms of the type inference function for actions Ta, which takes as
input a statement s and the associated production p : X → X1 · · ·Xq and, if defined,
is such that Ta(s, p) = γ, (R,D). The set γ has the same meaning as for TS , i.e.,
the constraints on NT (p) − {X}. The sets R and D are the required and defined
attributes for X derived from the action s.

We now show, through a simple example, how type inference of slice composition
is performed. Let P contain the single production pX : X → X Y and let P ′ contain
the single production pY : Y → X Y . Therefore NT (P ) = NT (P ′) = {X,Y },
Def (P ) = {X} and Def (P ) = {Y }. Consider the slices SP and SP ′ containing
semantic actions for the corresponding productions. Assume that

• TS(SP ) = {Y :(AY
1 , A

Y
2 , A

Y
⊥)}, {X:(RX , DX)} and

• TS(SP ′) = {X:(AX
1 , AX

2 , AX
⊥ )}, {Y :(RY , DY )}.

The constraints generated by the type inference about the two given slices must be
consistent so that the two slices can be composable. That is, the requirements on the
nonterminal Y made by its use in SP , Y :(AY

1 , A
Y
2 , A

Y
⊥) and those provided by the

the semantic action associated with the production pY in SP ′ , Y :(RY , DY ). These
constraints are consistent if

• all the attributes required by an instance of the nonterminal Y in the action
associated to X are defined by the action associated Y , i.e., AY

2 ⊆ DY , and
• if there are eval of an instance of the nonterminal Y in the action associated to
X, i.e. AY

⊥ �= ⊥, then all the attributes required by Y by the action associated
Y are defined before the eval in the action associated to X, i.e. RY ⊆ AY

⊥.
(This should hold also for X, i.e., the requirement made for X in SP ′ must be satisfied
by the semantic action associated with the production pX in SP .)

If the constraints returned by TS(SP ) and TS(SP ′) are consistent, then TS(SP ◦
SP ′) = ∅, {X:(RX ∪AX

1 , DX), Y :(RY ∪AY
1 , D

Y )}.
The type inference function for slices, in addition to returning the constraints on

nonterminals produces also a typed version of the input slice, by attaching to the
actions s of the slice the pairs (R,D) such that Ta(s, p) = γ, (R,D).

Correctness of the inference is stated by the following theorem.

Theorem 6.1 (Correctness) Let TS(SP ) = γ,Γ and let TSP be the typed version
of the slice. Then {X:(A1, A2) | ∃A⊥ X:(A1, A2, A⊥) ∈ γ} � TSP : Γ

To state completeness we have to relate typed slices with their underlying untyped
version. Therefore, we introduce the erasure of a typed slice, erase(TSP ), which is
the slice obtained by erasing the decoration of actions in TSP . Note that, the typed
slice TSP returned by TS(SP ) is such that erase(TSP ) = SP .

Theorem 6.2 (Completeness) Let SP be a slice. If TS(SP ) is not defined, then
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for no typed slice TSP such that erase(TSP ) = SP there are Γ and Γ′ such that
Γ′ � TSP : Γ.

7 Related Work and Discussion

As discussed in Section 2 the tools which is more closely related to Nerverlang are
Lisa [9] and Silver [11]. In Lisa an attribute must be declared and thus it is impossible
to use an undefined attribute by mistake. Lisa also checks that the value of a declared
attribute is set at least at some point in the semantic action. However, it does not
perform any control-flow analysis to check that the attribute value is always set.
For example, if we have a production START → E and the action code is if(false)

START.val = E.val;, Lisa will accept it as a valid grammar definition, although
START.val will never be defined. Our type system can capture this kind of errors
and detect that the grammar definition is incomplete. In Silver the well-definedness
analysis proposed by Kaminski et al. [6] successfully addresses the problems of
closure and non-circularity. However, similarly to Lisa, Silver does not guarantee
that equations actually set the values of attributes. Such errors are captured only at
run-time.

We could apply our system to the previous frameworks. For Lisa, among others
we would have to map Lisa’s DSL constructs to the language defined in Sect. 3.
Particular attention would be needed when mapping the construct for reading an
attribute a at node N as in Lisa this involves also visiting the subtree rooted at
N . So the attribute access construct would have to be mapped into the sequence
eval p[i]; p[i].a where p[i] = N . Silver would benefit from the proposed type system
to assure that attributes always have the desired values. Moreover, the proposed type
system can be used in alternative to Kaminski et al.’s [6] work. Applying our system
to Silver would require appropriate mapping of the source DSL to the constructs of
our DSL and, as with Lisa, when accessing an attribute we would have to perform
an explicit visit of the node to which the attribute is attached.

The proposed type system is also applicable to some non-modular development
frameworks, although the lack of modularity makes the well-definedness analysis less
challenging. Even though ANTLR forces to declare attributes the compiler generator
does not check that attribute values are actually set. When an attribute is defined
but not set the compiler generator assigns a default value to it and this might drive to
some unexpected behavior. With our approach such errors wold be detected. Similar
considerations can be done for Yacc. On the other hand, Spoofax [7] does not rely on
attributes and JastAdd [5] that uses full-fledged attribute grammars cannot benefit
from the proposed type system.

8 Conclusions

This paper presents a type system equipped with a type inference algorithm, for the
Neverlang platform. The Neverlang platform is a modular development frameworks
for language implementation, in which, programming components rely on attributes
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to share semantic information. The proposed type system traces attribute definition
and use. Well typed components cannot cause runtime errors due to attribute
misuse. The type decorations needed for the type system can be inferred from
the definition/use of the attributes in the semantic actions associated with the
components without knowledge of the whole language implementation.

The formalization considers a restriction of the Neverlang platform. In future
work we would like to extend it to full-fledged Neverlang. In particular, have the
possibility of specifying more than one role in a single slice and extend the expression
language to full Java. Regarding this last point, however, we would like to separate
“attribute specific” constructs, from the “host” language. This would make our
approach usable also in other frameworks.
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