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Abstract: In a previous study (Copiello and Grillenzoni, En. Proc., 2017), we have proven the solar photovoltaic 
capacity in Italy to be characterized by spatial dependence. In that research, the units of analysis were the 
Italian provinces, which correspond to level 3 of the European NUTS (Nomenclature of territorial units for 
statistics) classification. Here we focus on new data encoded according to the Italian townships, namely, the 
municipalities corresponding to level 2 of the European LAU (Local administrative units) classification. 
The change of scale is a huge challenge, due to both the difficulty to find reliable information and the time-
consuming definition of the proximity structure of the units: while the provinces are about 100, the Italian 
municipalities are several thousands, and each one shares the borders with many others. In particular, three 
neighboring regions - Veneto, Trentino-Alto Adige, and Friuli-Venezia Giulia, in North-eastern Italy - and 
their 1,121 towns are considered in this study, which primarily aims to delve into the issues related to the 
data gathering process. As far as the preliminary findings are concerned, we find more clues about the role 
played by the so-called neighborhood and peer effects. 

1 INTRODUCTION 

During the last four decades, in the Western 
economies, the energy production and consumption 
model has faced several changes, which imply that 
producers and consumers have experienced shifts in 
the energy mix. For instance, it deserves mentioning 
the progressive substitution of oil products with 
natural gas, which nowadays is the primary source to 
produce electricity, as well as to heat buildings, in 
several countries (Copiello, 2017). Moreover, it is 
worth recalling the ongoing transition toward the 
renewables. Under this framework, the last ten years 
have seen a sizeable increase in the amount of solar 
photovoltaic (PV) generation, which is about to 
supply a 10% share of the primary energy used in 
the residential sector (Copiello, 2017). The upward 
trend in PV energy production is expected to go on 
during the next years. According to the Short-Term 
Energy Outlook published by the Energy 
Information Administration (July 2017), in the U.S., 
the large-scale PV electricity generation should 
increase by 38% in 2017 and 19% in 2018, while the 
small-scale PV electricity generation will experience 
a growth of 32% and 29%, respectively. As far as 
long-term trends are concerned, the 2014 edition of 

Technology Roadmap: Solar Photovoltaic Energy 
published by the International Energy Agency 
envisions that 16% of total electricity generation will 
be met by PV systems in 2050, in comparison to 2% 
in 2020 and 7% in 2030. 

The ever-greater role played by PV systems has 
drawn the attention of the scholarly research, which 
has been engaged in analyzing the determinants of 
their adoption and deployment. Following a 
promising research strand focusing on neighborhood 
and peer effects, in a previous study we proven the 
spatial dependence that characterizes the installation 
of PV capacity in Italy (Copiello and Grillenzoni, 
2017b). In that research, the units of analysis were 
the Italian provinces, which correspond to level 3 of 
the European NUTS (Nomenclature of territorial 
units for statistics) classification. Here we focus on 
new data encoded according to the Italian townships, 
namely, the municipalities corresponding to level 2 
of the European LAU (Local administrative units) 
classification. In particular, three neighboring 
regions - Veneto, Trentino-Alto Adige, and Friuli-
Venezia Giulia, in North-eastern Italy - and their 
1,121 towns are considered (Figure 1). The dataset 
consists of all the PV systems that have been 
installed - both by households and companies, on the 
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Figure 1: Area of analysis: the municipalities in North-eastern Italy. 

buildings’ rooftop or on the ground - during the 
period 2005-2016, thanks to the subsidies provided 
by the Italian laws named “Conto Energia” (Palmer 
et al., 2015). 

The main purpose of this study is to delve into 
the issues related to the data gathering process, 
particularly the stage meant to define the proximity 
structure characterizing the units of analysis. 
Moreover, we aim to discuss the preliminary 
empirical evidence, as we find more clues about the 
role played by the so-called neighborhood and peer 
effects. 

The remainder of this paper is organized as 
follows. Section 2 provides a brief literature review 
about the drivers of the adoption of PV systems, 
with a specific focus on the few studies dealing with 
the topic of spatial patterns. Section 3 is devoted to 
discuss the data gathering process and the related 
issues, particularly as regards the proximity structure 
of the observations. Section 4 describes the 
preliminary results we achieve, stressing 
the  additional  clues  of spatial dependence. Finally,  

Section 5 outlines the conclusions of the 
analysis. 

2 LITERATURE REVIEW 

The literature argues that the choice to adopt PV 
systems depend on a set of influential parameters. 
Balcombe et al. (2013) provide a summary of 18 
earlier and contemporary studies that relate to the 
motivations and barriers for the adoption of 
microgeneration energy technologies, including both 
solar thermal and solar PV. Half of these studies 
concerns the UK, and most of the remaining 
involves continental Europe’s countries. The 
reviewed literature agrees in identifying the role 
played by environmental concerns and financial 
aspects. As far as the latter are concerned, the will to 
save money due to lower energy bills is a significant 
incentive, although counteracted by the expectation 
of high upfront and operating costs, not to mention 
long payback times and unclear impact on property 
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value. It looks like other motivations and barriers do 
matter, although there is a lack of consensus about 
their importance. Additional determinants emerging 
from the literature review performed by Balcombe et 
al. (2013) are as follows: age; household size;  home 
ownership or tenancy; social class; income; 
education. 

The survey performed by Sardianou and Genoudi 
(2013) focusing on the residential sector confirms 
some of the above findings: the consumers’ 
willingness to adopt renewable energy sources is 
affected by age, education, income, electricity cost, 
and perceived installation and maintenance costs. 
The same authors claim that a tax deduction is more 
likely to support the acceptance of the renewables 
than an energy subsidy. However, it should be 
considered that the above results stem from a small 
sample, and are characterized by a low goodness of 
fit. 

Within the domain of the renewable energies, the 
research strand that focuses on the adoption of PV 
points out the significance of the following factors to 
distinguish between early innovators, potential 
adopters, majority adopters, and rejecters: the per-
capita income more than sunlight intensity (Schaffer 
and Brun, 2015); the costs to be incurred and their 
ratio to the expected benefits (Vasseur and Kemp, 
2015); the built environment as well as the property 
ownership structure (Schaffer and Brun, 2015; 
Graziano and Gillingham, 2015; Balta-Ozkan et al., 
2015; Sommerfeld et al., 2017). 

Alongside the above empirical evidence, another 
phenomenon came to light following specific 
studies. The literature suggests that the adoption of 
the renewables, and especially the deployment of 
solar PV across a country, may be encouraged by a 
kind of emulation within communities and between 
neighbors. Let us quote the Schelly’s (2014) words: 
“Adoption of technological innovations is arguably 
promoted through [a] form of informal information 
sharing. [...] it is not simply information, but 
particular communities of information. [...] For 
some, individuals within their neighbourhood or 
community provided inspiration” (p. 188). Actually, 
during the last few years, a promising research 
strand has focused on the occurrence of peer effects 
and neighborhood effects in order to explain the 
adoption of renewable energy sources, and 
especially PV systems. That research branch sinks 
its roots in the idea that spatial dependence is a key 
driver for the diffusion of technological innovations 
across territories and regions (Anselin, 1988; Keller, 
2002; Schaffer and Brun, 2015). 

Bollinger and Gillingham (2012) found that 
social interactions - namely, peer effects - play a 
major role in explaining the diffusion of PV panels 
in California. Their analysis points to the 
significance of two phenomena that occur within the 
same zip code area and give rise to social spillovers: 
the visibility of the PV panels is the former, the 
influence of word of mouth is the latter. Other 
studies show evidence that PV adoption is affected 
by the number of similar systems that have been 
previously installed in the same area or, more to the 
point, in the recent past and in the immediate 
surroundings (Müller and Rode, 2013; Schaffer and 
Brun, 2015; Graziano and Gillingham, 2015; Balta-
Ozkan et al., 2015; Palm, 2016; Rode and Weber, 
2016; Dharshing, 2017; Zhao at al., 2017, Copiello 
and Grillenzoni, 2017b). Let us consider the words 
of Müller and Rode (2013) that get to the heart of 
the matter: “imitation of spatially close precursors is 
indeed an explaining factor in PV adoption; [...] 
results confirm a localized peer effect in the 
adoption of PV” (p. 527). Similarly, Graziano and 
Gillingham (2015) “find clear evidence of spatial 
neighbor effects (often know as ‘peer effects’) from 
recent nearby adoptions that diminish over time and 
space” (p. 816). Balta-Ozkan et al. (2015), 
Dharshing (2017), and Copiello and Grillenzoni 
(2017b) confirm the occurrence of regional spillover 
effects. Rode and Weber (2016) show the 
occurrence of localized emulative behavior. Zhao et 
al. (2017) claim that the deployment of PV systems 
may be described by clusters that tend to spread in 
the surrounding areas. 

3 DATA GATHERING PROCESS 
AND RELATED ISSUES 

3.1 Proximity Structure 

In order to investigate the occurrence of 
neighborhood and peer effects, the identification of 
the proximity structure that characterizes the unit of 
analysis is the most time-consuming process we had 
to deal with. It relies on the following stages: 
 use of search engines to find the list of 

adjoining municipalities for each analyzed 
township; 

 replacement of the adjoining municipalities’ 
names with the codes provided by the 
National Institute of Statistics; 
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Figure 2: Excerpt from the proximity structure dataset. 

 use of the codes to extrapolate the data 
concerning the solar photovoltaic capacity in 
the adjoining municipalities, which are then 
summed to calculate the total (Figure 2). 

As far as the first stage is concerned, in North-
eastern Italy, the number of municipalities 
surrounding each township highly varies, from a 
minimum of 1 to a maximum of 21. On average, the 
number of municipalities sharing their boundaries is 
equal to 7. Figure 3 shows a selection of complex 
neighborhoods. For instance, Verona - one of the 
chief town in the Veneto region - is surrounded by 
16 medium-sized townships. That situation is 
common to other chief towns, but it also occurs in 
rural and mountainous areas. Another unusual 
feature is that several municipalities are composed 
by at least two not contiguous territories. The issue 
is further complicated because, contrary to what is 
commonly thought, the municipal boundaries are not 
stable at all. During the last decade, several changes 
have taken place, mainly due to the need to reduce 
the number of local administrative units, so as to 
achieve saving in public expenditure. In the 
Trentino-Alto Adige region alone, 50 municipalities 
have disappeared: after having merged themselves, 
they have brought 18 new larger townships into 
being. Most of the mergers occurred in the last few 
years and became effective in January 2016. Instead, 
the figures on the installation of solar photovoltaic 
systems mainly refer to the ex-ante situation. 
Therefore, we had to keep track of both the 
following aspects: the photovoltaic capacity installed 

in the municipalities according to their former 
boundaries (before the mergers), and their currently 
neighboring towns (after the mergers). Another 
distinguishing feature concerns the Alto Adige area - 
namely, the province of Bolzano - where the 
municipalities are identified by two names. Since it 
is legally designated as a bilingual region, the former 
name is in Italian, while the latter is in German. 
Unfortunately, several sources use only one of the 
names to label the data they provide, hence we had 
to face matching problems when assembling the 
dataset. 

Leaving the above specific problems aside, the 
identification of the proximity structure entails, at 
least, two other issues, which have wide significance 
and strong ability to affect the results. The former is 
how we define the concept of proximity, namely, 
what is the assumptions - and the measures - which 
we rely on to distinguish the near spatial units from 
the distant ones. The latter consists in the sort of 
truncation the proximity structure is sometimes 
subjected to. 

As far as the first topic is concerned, to quote the 
words of Tobler (1970), “everything is related to 
everything else” (p. 234) and, more to the point, 
“everything is related to everything else, but near 
things are more related than distant things” (p. 236). 
In this study, we assume that the energy-related 
behavior in a municipality may be affected by what 
happens in the adjoining municipalities. Therefore, 
here we establish a relationship between proximity 
and administrative borders, suggesting to translate 
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Figure 3: Selection of complex neighborhoods. 

the concept of proximity into practice according to 
the shared boundaries between the analyzed 
municipalities. But why not to assume that the local 
behavior may be somehow affected by what happens 
in all the surrounding municipalities within a radius 
of, let us say, 50 kilometers? And why not to 
consider all the municipalities within the same 
province or region? Each of the above option is 
arbitrary and, although we prefer to adopt the first 
solution, the third one could be preferred for 
simplicity’s sake. However, it looks hard to sustain 
that a specific way to define the proximity structure 
should certainly prevail among several available 
alternatives. Moreover, one should be aware that the 
above remarks are not free of consequences for the 
results. In other words, the empirical findings on the 
occurrence of spatial dependence phenomena, in 
turn, also depend on how the spatial relationships 
between the units of analysis are defined. 

As regards the second topic, in our case study, 
the claim that “everything is related to everything 
else” is somehow violated by the presence of the 
national borders, where the spatial relationships find 
an unexpected interruption. For instance, in the 
province of Bolzano, the town of San Candido 
borders on the Austrian town of Sillian. The two 
towns are not situated on the opposite slopes of high 
mountains, instead they are both located along the 
Drava River in the Puster Valley. Moreover, they are 
well linked by a primary road, and border controls 
are no more carried out thanks to the Schengen 
Agreement, not to mention that more than 80% of 
the inhabitants in the Italian town of San Candido 
are German native speakers. The same situation can 
be found in several other municipalities, especially 
in the northern Alto Adige, at the Austrian border, 
and in the north-eastern Friuli, at the Austrian and 
Slovenian borders. Therefore, there is no reason to 
neglect the occurrence of cross-border relationships 
and dependencies, except that we have no data on 
the installed photovoltaic systems outside of Italy. 
Obviously that data can be searched for, but we must 
consider that they have a different nature and origin. 

Indeed, we are analyzing the photovoltaic systems 
that were subsidized according to a sequence of 
Italian laws (Palmer et al., 2015). That laws were 
stimulated by the European Directive 2001/77/CE. 
The same happened in Austria, but according to 
different detailed rules, as well as to different timing 
and subsidies. 

3.2 Other Parameter 

The data concerning the installed PV capacity, both 
in each municipality and in the adjoining ones, are 
juxtaposed with variables belonging to the following 
clusters (Table 1): geoclimatic aspects (surface area, 
latitude, altitude, solar radiation); demography 
(inhabitants and population density); economy 
(income); social and behavioral aspects (waste 
recycling rate). The underlying hypotheses are as 
follows. The PV capacity is expected to be fostered 
by a lower latitude and the corresponding higher 
solar radiation, while it is expected to be limited by 
unfavorable geographic conditions, such as smaller 
surface area and higher altitude. The number of 
inhabitants and the population density are 
anticipated to be positively related to the installed 
PV capacity, since individuals and families are 
important targets of the policies providing incentives 
and subsidies for the renewables. Also, the 
disposable income is expected to be positively 
related to the installed capacity, because the 
adoption of PV systems involves the ability to incur 
investment costs, even in presence of public grants. 
The waste recycling rate is assumed as a proxy of 
the adoption of innovative and responsible behavior, 
hence we expect that the more the individuals and 
households are prone to recycle, the higher should 
be the installed PV capacity. 

The above variables have some limitations, 
especially with regard to the reference period, which 
is not homogeneous. In particular, the data on solar 
radiation refer to several years ago. They stem from 
a research performed by ENEA, the former Italian 
institute for research on nuclear energy, now 
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National agency for new technologies, energy and 
sustainable economic development. The average 
radiation on monthly and yearly basis is extrapolated 
from EUMETSAT maps acquired during the period 
1995-1999. The results are published only for the 
towns with more than 10 thousand inhabitants. 
However, the yearly solar radiation for different 
locations, according to their latitude and longitude, 
may be estimated using a web-based calculation 
tool. 

Table 1: Summary of the parameters. 

Code Parameter Unit of 
measure 

Oipc Overall installed power 
capacity 

kW 

Oipcs-1 Oipc in the surrounding 
towns 

kW 

Oipc_05-10 Oipc 2005-2010 kW 

Oipc_05-10s-1 Oipc 2005-2010 in the 
surrounding towns 

kW 

Oipc_11-16 Oipc 2011-2016 kW 

Oipc_11-16s-1 Oipc 2011-2016 in the 
surrounding towns 

kW 

Area Municipality surface area km2 

Lat Latitude degrees 

Alt Altitude m 

Rad Global solar radiation MJ/m2 

Inhab Number of inhabitants  

Dens Population density inhab/km2

Inc Per capita disposable 
income 

Euros per 
capita 

Recycl Share of urban wastes 
recycled 

% 

4 PRELIMINARY RESULTS 

We base our preliminary findings on the following 
regression model, from which we expect useful 
suggestions in order to develop further studies: 

Ln Oipc =  +  Ln Oipcs-1 +  Ln X +  (1) 
where  is the constant,  and  are the regression 
coefficients, X is the vector of the independent 
variables, and  is the error term. We use a double 
logarithmic model since in the previous study it 
proved to fit better the data (Copiello and 
Grillenzoni, 2017b). Moreover, it allows dealing 
with the possible non-linear relationships between 

the parameters. Since the Ordinary Least Squares 
(OLS) estimates are affected by heteroscedasticity, 
as shown by the cone-shaped scatterplot of the 
residuals (Figure 4), we opt for using 
heteroskedasticity-robust Weighted Least Squares 
(WLS) (Copiello and Grillenzoni, 2017a). The 
results are summarized in Table 2. 

 

Figure 4: Cone-shaped scatterplot of the residuals. 

Due to their implications, two empirical findings 
are worth attention. The first is that, contrary to the 
expectations, the deployment of solar PV 
installations has little or nothing to do with latitude 
and solar radiation. The second is that several clues 
of neighborhood and peer effects arise from the 
analysis. 

Table 2: Summary of the results. 

Dependent Oipc   
Parameter  T-stat P-value 
const. 6.1309 2.375 0.0177 
Oipcs-1 0.4579 13.58 0.0000 
Area 0.8493 21.42 0.0000 
Dens 0.8313 22.40 0.0000 
Inc -1.0487 3.843 0.0001 
Adj. R2 0.6471   

 

The relationship between PV systems and 
geoclimatic variables is quite weak with regard to 
the installed capacity, on the one hand, and both 
latitude and solar radiation, on the other hand. In 
Figure 5 the values of these variables are subdivided 
into quartiles. The correlation values are -0.38 and 
0.45, respectively. It looks like the reason is the 
strong development of the PV capacity in Alto-
Adige. Despite being an entirely mountainous region 
characterized by a solar radiation of 4,661 MJ/m2 on  
average, the more northern area  of  analysis  has  an
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Figure 5: Relationship between PV systems and geoclimatic variables. 

installed photovoltaic capacity of 1,975 kW (54 
kW/Km2), which are nearly the same one can find in 
the Friuli region (2,151 kW, 77kW/km2), one degree 
of latitude to the south. To go to the root cause of 
that empirical finding, at least two hypotheses can be 
put forward. Firstly, the geoclimatic data may not 
tell the whole story, since during the winter a not 
negligible share of the solar radiation is lost in the 
Po Valley due to the recurrent presence of dense and 
persistent fog. Secondly, the propensity to adopt PV 
systems in Alto Adige may be ascribed to the 
influence of the neighboring Austria, where the 
government subsidies have started earlier. 

The second hypothesis paves the way to the main 
aim of this study, which is to check whether the 
deployment of PV capacity is driven by 

neighborhood effects, that is to say, whether the 
phenomenon is bolstered by emulation. The 
relationship between the installed capacity in each 
municipality and the corresponding installed 
capacity in the adjoining townships is positive and 
high. Therefore, if we aim to understand the 
deployment of the PV capacity and generation in a 
territory, then we should consider not only 
geoclimatic and socio-economic factors of that same 
territory, but also what happens with regard to the 
adoption of PV systems in the surroundings. 

5 CONCLUSIONS 

In this follow-up study, we analyze data encoded at 
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the municipal level, hence disaggregated at level 2 
of the European LAU (Local administrative units) 
classification. Here we find new empirical evidence 
of the spatial dependence characterizing the 
deployment of PV capacity and generation, 
confirming our previous findings and the claims of 
the few studies that have so far looked at this 
promising research strand. We may conclude that 
some energy-related behavior, signally those 
concerning the adoption of renewable energy 
sources, spread themselves across the space due to 
phenomena of emulation between neighbors and 
peers that can be caught and expressed according to 
proximity measures. 

However, further developments are required: by 
enlarging the dataset in order to include additional 
variables, by testing other proximity measures, and 
by defining not only spatial but also spatio-temporal 
regression models. 
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