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1. Introduction

The design of an aircraft engine is a complex iterative process aimed at achieving the best compromise between
aerodynamic and structural requirements. A deep understanding on how mechanical components behave from both
a static and dynamic point of view is therefore necessary in order to optimize the system performance by increasing
the efficiency. In aircraft engines and specifically in low pressure turbine bladed disks both mechanical and unsteady
aerodynamic loads are the main responsible for high cycle fatigue (HCF), which is considered the ”major cost, safety
and reliability issue for gas turbine engine” (Castanier et al. (2006)). For this reason blades and disks require special
attention and a very careful design due to the crucial role they play during the operation of gas turbine engines. As
so much is dependent on the reliability of these components, the tendency of manufacturers would be to over-design
them in order to largely cope the safety specifications. On the other , limited weights are necessary to achieve the
high efficiency characterizing the latest generation gas turbine engines. This aspect unavoidably leads to design much
slender blades and thinner disks, making them more prone to mechanical vibrations.

Due to the large operative range characterizing these systems, bladed disks can not be designed to work outside
of all resonant zones. Their configuration comes from preliminary aerodynamic and efficiency considerations which
make the design strict and not easily modifiable. This statements can be easily visualized by looking at the schematic
Campbell / Waterfall diagram of a turbine bladed disks (Fig. 1):

Fig. 1. Campbell / Waterfall diagram of a turbine bladed disks: the disk’s natural frequencies are here plotted as a nearly horizontal lines whose
actual shape depends on the rotor speed Ω. This is due to the blades’ stiffening effect caused by the increasing centrifugal force. The straight lines
starting from the axis origin denote the so called engine order (EO) traveling wave excitation and represent the harmonic content of the unsteady
pressure distribution exciting the bladed disk.

Among all the possible crossings between the mode shapes and the EO lines, just few of them actually correspond to
resonance conditions. In particular, the critical crossings are those for which the relationship holds:

EO = z · N ± H, ∀ z ∈ N∗ (1)

where N is the number of disk’s sectors (i.e. the number of blades) and H is the harmonic index of the mode shape,
i.e. the number of nodal diameters occurring during the vibration (Battiato et al. (2018)). Although some critical
crossings can be ”moved” outside the operative range by slightly modifying the disk design (grey resonances in Fig.
1), some others can not be avoided and additional sources of damping are necessary to mitigate the effects of dangerous
vibrations. This practice is crucial to avoid unacceptable level of dynamic stresses that would drastically reduce the
fatigue life of the most critical engine’s components (e.g. the blades).
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Nowadays, the most used practices to reduce dynamic stresses in bladed disks would be exploiting dry friction
occurring at the joints used to connect the engine’s components. These might involve specific blade’s locations (blade
root,shroud, part span shroud) (Zucca et al. (2012); Krack et al. (2013)) or the employment of external devices known
as friction dampers (underplatformdampers, snubbers) (Sanliturk et al. (2001); Petrov et al. (2007); Firrone et al.
(2013); Schwingshackl et al. (2012)). However, simulating the damping effect caused by such localized joints is of
interest especially when studying forced vibrations of single bladed disks assemblies.

In order to meet the needs of industries the scientific community is now moving towards the dynamic analysis of
the effects that extended joints have on large structural systems. In the field of turbomachineries typical examples
are the multi-stage bladed disks connected by bolted flanges (Battiato et al. (2018)) and the casing-vanes assemblies
where extended lap joints can be found (Lassalle et al. (2016)). The mentioned trend comes up beside another relevant
task, that is the development of advanced numerical techniques in order to make the prediction of the non-linear
forced response of these structure feasible and efficient. This would overcome the limited practices currently used
by industries which require modeling the mechanical systems by using commercial FE codes. However, due to the
increasing complexity of the mechanical components and the need to simulate larger structures, two issues must
be faced at the same time. First, the number of degrees of freedom (DoFs) involved in the numerical simulation is
sometimes so large that even linear dynamic analyses become prohibitive in terms of computational time or limited
capabilities of the computer hardware. Second, in FE codes the non-linear behavior of frictional joints can only be
evaluated by direct time integration approaches, which makes most of the time the analyses unfeasible due to huge
computational costs. This paper addresses both aspects by presenting novel techniques for the modal reduction of FE
models that guarantee high compression of the number of non-linear DoFs at the contact interfaces. This allows for
a modal representation of the corresponding contact forces by leading to a dramatic reduction of the size of the non-
linear problem to be solved. The goodness of the proposed methodologies is quantified both in terms of accuracy and
time costs savings on the calculation of non-linear forced response by using the Harmonic Balance Method (HBM).

2. Non-linear forced response analysis

In this section the equations of motion (EQM) of a structure with contact interfaces are introduced and the solution
strategy based on the HMB (Cardona et al. (2016)) is presented.

Solving complex dynamic and static structural problems often requires modeling the mechanical components by
using the FE method. Design practices in industries are in fact based on the usage of robust FE codes. At the same time
even commercial FE codes are even largely employed in academia to carry out research projects. For these reasons the
following description of non-linear dynamic systems requires the definition of matrix and vector quantities that can
either be just exported from commercial FE software or further processed by suitably defined reduction techniques
(see section 3).

The EQM of a large structural system with contact interfaces can be written as:

Mẍ(t) + Cẋ(t) +Kx(t) = fe(t) − fc(x, ẋ, t) (2)

where M, C and K are the mass, viscous damping and stiffness matrices, x(t) is the vector of generalized DoFs, while
fe(t) and fc(x, ẋ, t) are the corresponding vectors of external and non-linear contact forces respectively. Note that x(t)
contains just physical DoFs if FE matrices are used, while it collects a mix of physical and modal coordinates when
particular component mode synthesis reduction schemes are used (Gruber et al. (2016)).

In order to reduce the large calculation times typical of the numerical integration of non-linear systems, the HBM
can be used to compute the steady-state response of the system. In particular, due to the periodicity of fe, the displace-
ments x and the non-linear contact forces fc(x, ẋ, t) are periodical at steady-state. These quantities can then be written
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as the real part of the following truncated series of harmonic terms:

x(t) =
Nh∑

h=0

X(h) · eihωt, fn(x, ẋ, t) =
Nh∑

h=0

F(h)
c · eihωt (3)

where X(h) and F(h)
c are the hth order complex amplitudes of the displacements and contact forces respectively, ω is

the circular frequency and Nh is the number of retained harmonics required by the HBM approximation. By plugging
Eqn. 3 into Eqn. 2, the EQM are turned into a set of non-linear, complex, algebraic equations:

D(h)(ω)X(h) = F(h)
e − F(h)

c , ∀ h = 0, . . . ,Nh (4)

where D(h)(ω) = K + ihωC − (hω)2M is the hth order dynamic stiffness matrix.
Since non-linear contact forces fc

1 only depend on the relative displacements of the contact DoFs, it would be
convenient to rearrange Eqn. 4 in order to decouple the solution of the non-linear part of the problem from the linear
one. A possible strategy to accomplish this task requires the evaluation of the receptance matrix H(h) (i.e. the inverse
of D(h)), so that the EQM can be re-written in the following form:

X(h) = X(h)
e −H(h)F(h)

c , ∀ h = 0, . . . ,Nh (5)

The first term at the right-hand side of Eqn. 5 represents the steady-state linear response of the structure due to the
external excitation (i.e. X(h)

e = H(h)F(h)
e ), while the second term takes into account the contribution of the non-linear

forces. In order to distinguish the non-linear partition from the linear one, the vectors X(h), F(h)
e and F(h)

c can be written
as:

X(h) =

{
X(h)

n

X(h)
l

}
, F(h)

e =


F(h)

e,n

F(h)
e,l

 , F(h)
c =


F(h)

c,n

F(h)
c,l

 (6)

where the subscripts n and l denote the non-linear (contact) and linear DoFs respectively. By using the partitioning of
Eqn. 6, Eqn. 5 becomes:

{
X(h)

n

X(h)
l

}
=


X(h)

e,n

X(h)
e,l

 −
[
H(h)

nn H(h)
nl

H(h)
ln H(h)

ll

] 
F(h)

c,n

F(h)
c,l

 (7)

where the quantity F(h)
c,l is assumed to be equal to the zero vector since the non-linear contact forces only depend on

the non-linear displacements. Therefore, the non-linear partition of the EQM is represented by the following set of
matrix equations:

X(h)
n = X(h)

e,n −H(h)
nn F(h)

c,n, ∀ h = 0, . . . ,Nh (8)

1 In order to simplify the notation the explicit dependency of the vector quantities on the relative displacements and time is hereafter removed.
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Such set of equations is non-linear and has to be solved for the complex amplitudes of the contact DoFs by using an
iterative solution method (e.g. Newton-Raphson algorithm). Once the non-linear forces F(h)

c,n are obtained from Eqn. 8,
the response of the linear DoFs X(h)

l can be found by solving the following equation:

X(h)
l = X(h)

e,l −H(h)
ln F(h)

c,n (9)

It must be noted that the equations of Eqn. 8 are coupled to each other, meaning that the harmonic components of the
non-linear contact forces F(h)

c,n depend on all the harmonic components of the non-linear displacements X(h)
n .

2.1. Contact forces evaluation

The problem of modeling periodical contact forces due to friction contacts and their implementation in numerical
solvers has been addressed by several authors. The commonest method found in literature for the calculation of the
non-linear forced response is based on the so called Alternating Frequency Time (AFT) method (Cameron et al. (1989);
Poudou et al. (2003)). This method requires to evaluate the contact forces in the time domain by using the contact
model that better describes the actual contact state at the interface between the interacting components (Firrone et al.
(2011)). Among the contact models found in the technical literature the most used is the 1-D contact element with
normal load variation (Yang et al. (1998)) (Fig. 3).

Fig. 2. 1-D contact element with normal load variation.

In Fig. 3 u(t) and v(t) represent the tangential and normal relative displacement defined by two nodes in contact, while
w(t) is the tangential displacement of the slider. The contact model’s parameters are represented by the tangential and
normal contact stiffnesses, kt and kn respectively, the coefficient of friction µ and the normal preload f0. The normal
contact force fn(t) is defined as:

fn = max( f0 + kn · v(t), 0) (10)

while the tangential contact force ft(t) depends on the contact state, i.e. stick, slip and lift-off. For each of these the
contact force in the tangential direction can be written as:

ft =



kt · u(t) stick
sgn(ẇ) · µ fn slip
0 lift-off

(11)
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3. Interface reduction methods

The prediction of the effects that friction has on the non-linear response of structures with large contact interfaces
is a crucial task for industries. The major challenge comes from the difficulty of ling detailed FE models with highly
refined meshes at the contact interfaces. From a mathematical point of view this means having the non-linear partition
of Eqn. 7 not negligible with respect the linear one (i.e. dim(X(h)

n ) ��� dim(X(h)
l )). Therefore, using the 1-D Jenkins

element for each pair of nodes in contact would be inconvenient if no reduction methods are applied to the contact
interface DoFs.

The drawback of simulating contact on regions with a high density of DoFs is overcome by using interface re-
duction methods (Castanier et al. (2001); Holzwarth et al. (2015); Kuether et al. (2017)). These allow for a modal
representation of the contact interfaces by achieving a dramatic compression on the number of DoFs. In this paper
two novel interface reduction methods are presented, i.e. the Gram-Schmidt interface (GSI) method (Battiato et al.
(1-2018, 2-2018)) and the Multi-stage (MS) method (Firrone et al. (2018); Battiato et al. (2018)). The first is more gen-
eral and suitable for any geometry of the contact interfaces, while the second was specifically developed for interfaces
featuring a circular geometry.

3.1. Reduction scheme for the contact interface

Regardless of the particular interface reduction method, the mathematical scheme used to modalize the interface
DoFs is basically the same. Let us consider two mechanical components interacting to each other through an extended
contact interface (Fig. 3).

Fig. 3. Two mechanical components in contact through an extended contact interface. The black regions xi j and xa j denote the contact interface
and active DoFs for the jth component.

Assume that each component is modeled by using the FE method. The DoFs vector of each component can be written
as:

x j =

{
xmj

ηs j

}
, ∀ j = 1, 2 (12)

where:

• xmj is the vector of nm j master DoFs (i.e. the set of physical DoFs used to performed the dynamic analyses)
of the jth component. xmj collects the set xi j of ni j interface DoFs, and possibly the set xa j of naj active DoFs
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(xmj = [xT
i j

xT
aj

]T ), so that nm j = ni j + naj . Note that xa j could be empty if no other physical DoFs are required to
perform the analyses except the interface ones.
• ηs j is the vector of nsj modal DoFs. ηs j exists just if a CMS method (e.g. Craig-Bampton, Rubin) is applied to

the FE matrices2 (Gruber et al. (2016)). In this case the transformation matrix implementing the CMS reduction
through a Galerkin projection process is denoted by T j.

In the most general case Eqn. 12 can be rewritten as:

x j =


xi j

xa j

ηs j

 , ∀ j = 1, 2 (13)

The idea behind the GSI and MS reduction methods is that of representing the DoFs partitions xi j by means of a
superposition of interface modes. If the interface modes are arranged as the columns of a reduction matrix Φi jk j , the
physical DoFs can be expressed by the following relationship:

xi j � Φi jk jηk j (14)

where the matrix Φi jk j has ni j rows and nk j � ni j columns, while ηk j is the vector of the corresponding nk j modal
coordinates. According to the result of Eqn. 14, Eqn. 13 becomes:


xi j

xa j

ηs j

 �

Φi jk j 0 0

0 I 0
0 0 I




ηk j

xa j

ηs j

 = R jxr j , ∀ j = 1, 2 (15)

where R j is the global coordinates transformation matrix, while xr j is the new reduced vector of generalized coordi-
nates. The reduced mass and stiffness matrices for the jth component can be found by applying the following Galerkin
projection:

M j = RT
j TT

j MFEMj T jR j K j = RT
j TT

j KFEM j T jR j ∀ j = 1, 2 (16)

The matrices M and K of Eqn. 2 are finally obtained by assembling the matrices M j and K j, while the damping matrix
C is built by solving the eigenproblem defined by M and K, assuming certain modal damping ratios ζ.

Note that the smaller the number of retained interface modes nk j , the more effective the reduction of Eqn. 14. If
the same reduction process is performed for the physical contact forces F(h)

cn , the non-linear partition of Eqn. 7 gets
the same dramatic reduction. In this way the non-linear solver operates on a smaller partition and less expensive
computational efforts are required to evaluate the forced response of the structure.

2 The FE mass and stiffness matrices are here denoted as MFEM j and KFEM j respectively
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3.2. Gram-Schmidt interface reduction method

On the fulfillment of the partitioning of Eqn. 12 the undamped EQM of the jth component can be written as:

[
Mmmj Mms j

Msmj Mss j

] {
ẍmj

η̈s j

}
+

[
Kmmj Kms j

Ksmj Kss j

] {
xmj

ηs j

}
=

{
fmj

φs j

}
(17)

By solving the eigenproblem defined by the partitions Kmm and Mmm the full set of characteristic constraint modes is
obtained (Castanier et al. (2001)). These can be arranged for increasing eigenvalues as the columns of the following
modal matrix:

Φmm j =
[
ϕ1 j . . . ϕmj

]
(18)

The modal matrix of Eqn. 18 allows for a coordinate transformation involving all the master DoFs. If a coordinate
transformation is desired just for a subset of ni j physical DoFs,Φmm j has to be partitioned as in the following equation:

xmj =

{
xi j

xa j

}
= Φmm j

{
ηi j

ηa j

}
=

[
Φii j Φia j

Φai j Φaa j

] {
ηi j

ηa j

}
(19)

where ηi j and ηa j are two arbitrary set of modal coordinates with size ni j and nk j respectively. Previous studies on
the GSI method proved that performing a Gram-Schmidt orthonormalization (Strang (1993)) on the columns of Φii j

produces a good basis for the modal representation of the physical partitions xi j . The size of xi j can be actually reduced
if a modal truncation on the GSI modes is performed as suggested by the Eqn. 14.

3.2.1. Application
The GSI method is here used to compute the non-linear forced response of a structure consisting of a stator vane

segment connected to the corresponding casing sector. The assembly is characterized by two friction joints that exhibit
a non-linear behavior: the interlocking and the hooks (Fig. 4).

Fig. 4. (a) real vane segment of a low pressure turbine module for aeronautical applications; (b) schematic view of a stator vane segment connected
at the casing by means of hook joints.
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Although in the reality both joint typologies are active in terms of energy dissipation by friction, in this numerical
application just the hook joints are considered. These in fact represent typical applications of lap joints with extended
contact interfaces.

Due to the cyclic periodicity of the assembly the dynamic analyses were performed starting from the vane-casing
sector FE model. A first reduced order model (ROMI) was obtained by applying the Craig-Bampton CMS technique
(CB-CMS). The total set of master DoFs retained in the reduction can be listed as follows:

- nhv = nhc = nh = 450 DoFs at the hooks for the vane and casing. These sets DoFs are spread over the hooks
contact interfaces.

- ni = 144 DoFs at the interlocking joint. ni includes both the DoFs at the left and vane’s interlocking.
- na = 72 DoFs at the blade and casing’s outer surface.
- nc = 3080 DoFs at the left and casing frontiers for the application of cyclic symmetry constraints.
- nk = 100 modal coordinates corresponding to the reduced basis of fixed interface normal modes retained em-

ployed in the reduction.

The Tran method in combination with cyclic symmetry constraints (Tran (2001)) for a harmonic index 2, is applied
in order to reduce the DoFs partitions xcl and xcr with nu = 100 interface modal coordinates. The resulting ROM is
such that mode shapes and natural frequencies of the starting FE model are captured with high accuracy (maximum
percentage error on the natural frequencies < 0.1%).

A new reduced order model (i.e. the ROMII) was created by reducing the hooks DoFs by the GSI method. Previ-
ous studies on this reduction technique showed that an optimal set of modes used to reduce the contact interface is
represented by a mix of free and full-stick GSI modes (Battiato et al. (2-2018)). The first are computed by leaving
the interface DoFs ”free”, i.e. assuming no interaction between the neighboring contact interface. The second are
computed by connecting the interface DoFs with spring elements having the same contact stiffnesses assumed for the
contact element (Fig. 5).

Fig. 5. (a) hooks in the free configuration; (b) hooks in the full-stick configuration.

The reason for that comes to the necessity of having a reduction basis suitable to represent the two possible extreme
configuration of the contact interface: no contact (free) and full contact (full-stick).

In order to test the performances of the GSI method, a set of benchmark frequency response functions (FRFs) was
obtained by solving the ROMI . For validation purposes the normal preload at the interlocking was chosen in order to
prevent any friction phenomena at the interlocking itself. The sensitivity parameter for each FRF is just represented by
the normal preload f0 at the front and rear hook joint. The black line plots in Fig. 6 show the trend of the benchmark
FRFs when f0 is varied. As expected, decreasing the value of f0 makes the hook joints increasingly lose. This results
in larger relative displacements at the contact interface which cause energy dissipation by friction and reduction of the
vane vibration amplitude.
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Fig. 6. Comparison between the FRFs obtained by using the ROMI (black line benchmark FRFs) and the ROMII (blue circle plots).

In the same figure the non-linear FRFs of the ROMII are compared with the benchmark ones. It can be noted that
reducing the hooks interfaces with 40 GSI modes, i.e. 20 computed with the system in free condition and 20 with the
system in full-stick condition, ensures a perfect matching of the FRFs. In fact, no significant differences can be found
neither in terms of vibration amplitude nor in terms of resonance frequency.

The best performance of the ROMII are justified in terms of the size of the reduced model (1316 DoFs of the
ROM without GSI reduction vs 436 DoFs of the GSI ROM) and time spent in the computation of each non-linear
forced response (i.e. the calculation performed with the non-reduced contact interface was ∼300 times slower than the
calculation performed after the application of the GSI reduction technique). Note that the GSI reduction is particularly
effective on the non-linear partition of the EQM, whose size decreased from 900 to 40.

3.3. Multi-Stage reduction method

The MS reduction method was originally developed in order to solve the problem of coupling two or even more
cyclic symmetric structures3 having different number of sectors (D’Souza et al. (2011)). This is done by exploiting
the ”known” shapes of their vibrating modes. The modes exhibit a certain number of nodal diameters H (i.e. nodal
lines along which the modal displacements are null), which allow describing the distribution of the displacements by
the trigonometric functions sin(Hθ) and cos(Hθ) (Battiato et al. (2-2018)). Therefore, unlike the GSI method, the MS
method does not require the computation of the interface modes since they are a priori known.

In order to understand how the interface DoFs xi j can be reduced, consider a stage composed by N identical sectors
(Fig. 7 (a)). The FE model of the sector representative of the whole stage geometry is constructed so that groups of
nodes at its interface have the same angle in a cylindrical coordinate system which is aligned with the axis of the stage
itself. These groups of nodes are referred to as radial line segments (Battiato et al. (2-2018)), and Z of them exist
within each sector (Fig. 7 (b)). Therefore, NZ is the total number of radial line segments at the stage interface. The
number of DoFs per radial line segment is nl.

3 The cyclic symmetric structure are here often denoted as stages. This term comes from the usual field of application, i.e. the turbomachinery
field.



 G. Battiato  et al. / Procedia Structural Integrity 24 (2019) 837–851 847
G. Battiato et al. / Structural Integrity Procedia 00 (2019) 000–000 11

Fig. 7. (a) interface and active DoFs for a bladed disk; (b) inter-stage boundary of a cyclic symmetric stage. Sectors and radial line segments are
denoted by i and k respectively.

The vector xi j can then be partitioned as follows:

xi j =



xR1 j

xR2 j

...
xRNZ j


(20)

where the subscript R stands for ”radial line segment”. The motion xRkj of the kth radial line segment of the jth stage
can be expressed by using the following relationship (Battiato et al. (2-2018)):

xRk j =
1
√

NZ
a0

i j
+

√
2

NZ

R̃−1∑
h=1

ah
i j,c cos[( j − 1)ϕk] +

√
2

NZ

R̃−1∑
h=1

ah
i j,s sin[( j − 1)ϕk] +

1
√

NZ
(−1) j−1aR̃ (21)

where ϕk = 2πk/(NZ), ai j denote a vector of interface spatial Fourier coefficients with subscripts c or s identifying the
cosine and sine components respectively and R̃ = NZ/2 if NZ is even or R̃ = (NZ − 1)/2 if NZ is odd. The last term
Eqn. (21) does not exist if NZ is odd. If the spatial Fourier coefficients are grouped as follows:

ai j =
{
(a0

i j
)T , (a1

i j,c)T , (a2
i j,c)T , . . . , (aR̃−1

i j,c )T , (aR̃
i j,c)T , (aR̃−1

i j,s )T , . . . , (a2
i j,s)

T , (a1
i j,s)

T }T (22)

the interface DoFs can be written as:

xi j = (FNZ,NZ ⊗ Inl )ai j = F ai j (23)
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where Inl is the identity matrix of size nl and FNZ,NZ is the NZ×NZ real valued Fourier matrix (Castanier et al. (2016)).
Eqn. 23 represents a pure coordinate transformation and does not introduce any reduction of the interface DoFs xi j .
However, a strong reduction of the set ai j can be achieved by just retaining the columns of FNZ,NZ corresponding to
the mode shapes having the desired number of nodal diameters H. All the other mode shapes are neglected. If Σ is
the set of harmonic indexes corresponding to the EO exciting the structure (Eqn. 1), the coordinate transformation of
Eqn. 23 becomes a reduction just if the Σ columns of FNZ,NZ are retained.

3.3.1. Application
The MS reduction method is here used to compute the non-linear forced response of a multi-stage system with

friction contacts at the flange joint. The structure consists of two different bladed disks with the same number N of
sectors (N = 50 for each disks, Fig. 8).

Fig. 8. Multi-stage bladed disk FE model.

The FE models of the two stages were generated in ANSYS by repeating the FE models of the fundamental sectors
N times around the z-axis. The stages 1 and 2 consist of 43200 and 40300 4-node brick elements with 42250 and
38900 nodes respectively. The material properties were chosen according to the standard values of the steel: Young’s
modulus E = 210 GPa, Poisson’s ration ν = 0.33 and density ρ = 7800 kg/m3. For both stages the number of radial
line segments per sector is Z = 4. All the radial line segments have five equally spaced nodes, meaning that the two
stages have perfectly matching meshes at the contact interface.

A first reduced order model was obtained by applying the CB-CMS method to the stages. For each of them the set
of interface and active DoFs xi j and xa j were retained as master. xi j represents the vector of DoFs of the nodes lying
on the medium radius circumference of the jth stage contact surface, while xa j was defined by selecting one node per
blade in the middle of the blades’ airfoils (Fig. 7 (a)). In addition the first 200 fixed-interface normal modes were
employed in the reduction of the two stages, yielding two CB-CMS ROMs with 950 DoFs each4. The reduced order
model resulting from the CB-CMS reduction of the two stages is here denoted as a ROMI .

The multi-stage system was assumed to be excited by two clocked EO = 2 traveling waves. Therefore, a second
reduced order model, i.e. the ROMII , was obtained by just retaining the columns of the Fourier matrix corresponding
to the harmonic index H = 2 (Eqn. 1 for z = 0). By looking at the Table 1 it can be noted how a strong reduction of
the interface DoFs is achieved when the coordinate transformation of Eqn. 23 is applied.

4 For reference, the first 200 natural frequencies of the CB-CMS ROMs are within the 0.3% of the corresponding FE natural frequencies.
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Table 1. Sizes of the DoFs partitions for the reduced order models ROMI and ROMII .

ROM # interface DoFs # active DoFs # CB-CMS modal coordinates # total DoFs

ROMI 1000 300 400 1700
ROMII 12 300 400 712

By solving non-linear reduced order models ROMI and ROMII , the forced response for the stage 1 and 2 are
obtained.(Figs. 9 and 10).

Fig. 9. Normalized forced responses of the stage 1: ROMI vs ROMII .

Fig. 10. Normalized forced responses of the stage 2: ROMI vs ROMII .

It is possible to observe the typical behavior of friction joints where the full stick condition occurs for small value of
F0 (F0 = 1N). By increasing the excitation amplitude slip occurs, and the peak response decreases and shifts towards
the free response where no friction is present. Similar trends were also found in Battiato et al. (1-2018) meaning that
the flange can be considered as a component that can be designed in order to be an important and optimal source of
damping.

Figs. 9 and 10 clearly shows the perfect match between the non-linear forced responses computed by using the
ROMI and ROMII . These results make the ROMII preferable when non-linear calculation have to be performed. The
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best performance of the ROMII can be justified in terms of size of the model (1700 DoF of the ROMI vs 712 DoF of
the ROMII) and time spent in the computation of each nonlinear forced response (∼ 890 s for the ROMI vs ∼ 30 s for
the ROMII). The efficiency of the MS reduction method lies on the high compression achieved for the interface DoFs
(i.e. 1000 for the ROMI vs 12 for the ROMII).

4. Conclusions

The current trend in the design process is the simulation of large complex systems made by a large number of com-
ponents. The ambitious task of the whole system simulation relies, first, on a suitable tuning of the single components
FE model participating to the full structure and, second, on a suitable modeling of the interface between components.
When such interfaces can not be considered as localized with respect to the physical domain of the components,
classic reduction techniques are no more efficient in terms of computational time. For this reason, dedicated reduc-
tion techniques for the contact interfaces have to be developed in particular when the uncertainty of loose contacts is
taken into account. In this paper a method to overcome the long computations of the frictionally damped non-linear
response of jointed structures with large contact interfaces is presented. It is based on the idea of modal reduction of
the interface degrees of freedom by using suitably defined bases of interface modes. To this aim two novel reduction
techniques are introduced: the Gram-Schmidt Interface method and the Multi-stage method. The first is proved to
be effective for contact interfaces having a generic geometry, while the second is appositely developed for circular
interfaces. Results show high accuracy in the prediction of the non-linear forced response of structure with lap joints
with a remarkable reduction of the computational cost without loosing the accuracy of the benchmarks solution.
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