
FOCLASA 2002 Preliminary Version

SecSpaces: a Data-driven Coordination Model
for Environments Open to Untrusted Agents ?

Nadia Busi, Roberto Gorrieri,
Roberto Lucchi and Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura Anteo Zamboni 7, I-40127 Bologna, Italy.

E-mail: {busi, gorrieri, lucchi, zavattar}@cs.unibo.it

Abstract

In this paper we initiate an investigation about security problems which occur when
exploiting a Linda-like data driven coordination model in an open environment.
In this scenario, there is no guarantee that all the agents accessing the shared
tuple space are trusted. Starting from the analysis of the few proposals already
available in the literature, we present a novel coordination model which provides
mechanisms to manage tuple access control. The first mechanism supports logical
partitions of the shared repository: in this way we can restrict the access to tuples
inside a partition, simply by limiting the access to the partition itself. The second
mechanism consists of adding to the tuples some extra information which exploit
asymmetric cryptography in order, e.g., to authenticate the producer of a tuple or
to identify its reader/consumer. Finally, we support the possibility to define access
control policies based on the kind of operations an agent performs on a tuple, thus
discriminating between (destructive) input and (non-destructive) read operations.

1 Introduction

New networking technologies are calling for the definition of models and lan-
guages adequate for the design and management of new classes of applications.
Innovations are moving towards two directions. On the one hand, the Internet
is the candidate environment for supporting the so-called wide area applica-
tions. On the other hand, smaller networks of mobile and portable devices,
such as mobile ad-hoc networks or peer-to-peer systems, support applications
based on agents or components which interact according to a dynamically

? Work partially supported by MEFISTO Progetto “Metodi Formali per la Sicurezza e il
Tempo”, Microsoft Research Europe and by NAPOLI Progetto “Network Aware Program-
ming: Oggetti, Linguaggi, Implementazioni”.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:busi@cs.unibo.it�
mailto:gorrieri@cs.unibo.it�
mailto:lucchi@cs.unibo.it�
mailto:zavattar@cs.unibo.it�

Busi et al.

reconfigurable communication structure. In both cases, the challenge is to
develop applications without knowing, at design time, the overall structure
of the system as well as the entities that will be involved. Such systems are
usually referred to as open systems.

Coordination models and languages, which advocate a distinct separation
between the internal behaviour of the entities and their interaction, represent
a promising approach for the development of applications for open systems.
For instance, we assist to a renewed interest in data-driven coordination in-
frastructures originated by Linda [Gel85] as exemplified by recent commercial
products, such as JavaSpaces [Sun02] and TSpaces [PSD98], which are two co-
ordination middlewares for distributed Java [GJS96] programming proposed
by Sun Microsystem and IBM, respectively.

Both proposals exploit the so-called generative communication [Gel85]: a
sender communicates with a receiver through a shared tuple space (TS for
short), where emitted tuples are collected; the receiver can consume the tuples
from the TS; a tuple generated by an agent has an independent existence in
the tuple space until it is explicitly withdrawn by a receiver; in fact, after
its insertion in TS, a tuple becomes equally accessible to all agents, but it
is bound to none. This form of communication is referred to as generative
communication because when a datum is produced, it has an existence which
is independent of its producer, and it is equally accessible to all agents.

In open systems, new critical aspects come into play such as the need to
deal with a hostile environment which may comprise also components which
are unknown at design time. Clearly, also untrusted agents may enter the sys-
tem and, according to the data-driven approach, they can access the repository
in order to read/remove data, as well as maliciously produce new data.

In this paper we propose an extension/modification of the tuple space
coordination model which supports some form of control in the production,
reading and consumption of data. To the best of our knowledge, only lan-
guages such as KLAIM [NFP98,NFP97] and SecOS [VBO02] already provide
access control mechanisms in data-driven coordination languages.

KLAIM exploits classic access control policies to manage the access among
agents and tuple spaces: types are used to indicate the access rights of the
agents, i.e., the operations that each agent may perform on each of the avail-
able tuple space. In open systems, especially in those with a high level of
dynamicity, the managing of these information may be a critical task, mainly
because the system should support a rapid and sometimes uncontrolled evo-
lution of the agents community. More precisely, new agents may frequently
enter the system, as well as old agents may rapidly exit, in an uncontrolled
manner. Moreover, in some applications it could be useful to have a finer
grained control, e.g., at the level of tuples and not at the level of spaces. For
example, we may want to ensure that an agent cannot read tuples with a
private contents, but it can read all the other tuples.

SecOS follows a quite different approach. The access rights are not asso-

2

Busi et al.

ciated to the agents, but all control information are stored inside the data.
More precisely, SecOS supports two forms of locks which are called symmetric
and asymmetric. The former exploits the same key to protect and access the
information, while the latter uses a pair of keys, one to protect and another
one to access. This two locking techniques can be applied to protect either one
single field inside a tuple or the whole tuple. In the first case the used locks
are called Field-locks, while in the second one, they are called Object-locks.

In SecOS a read operation is defined as the juxtaposition of an input
followed by an output operation, namely

rd e x.P
def
= in e x.(out x | P)

This fact has the two following consequences:

• There is no discrimination between non-destructive and desctructive input
access policies. More precisely, there is no way to discriminate between the
readers and the consumers of a datum. This could be an undesired feature
in many applications. Consider, e.g., an information system in which an
information can be accessed by any agent, but it can be removed only by
specialized garbage collectors.

• An agent able to access a datum is also able to reproduce that datum,
possibly creating new instances of that datum. This means that an agent
which is a reader of a datum, is implicitly also a potential producer for that
datum. Also this feature could be undesired in many applications. Consider,
e.g., a master/worker system in which we want to ensure that tasks can be
produced only by masters and consumed only by workers. According to
the SecOS approach, there is no direct way to avoid a malicious worker to
reproduce new instances of the tasks it consumes.

Starting from these observations, we propose a novel coordination model
called SecSpaces which aims at supporting the advantages of both the ap-
proaches. In particular, as in SecOS we introduce the access information inside
the data, but we refine the access controls supported in SecOS by permitting
to discriminate, e.g., the read from the in permissions.

More precisely, we propose to extend a typical Linda-like coordination
model introducing three new ways for controlling the access to data. The
first way is to support logical partitions of the shared tuple space. This can
be used to restrict the access to the data inside a specific partition only to
the agents holding an explicit handle to be used to address that partition.
The second mechanism we consider is to add some cryptographic information:
these can be exploited, e.g., to authenticate the producer of a datum as well
as identifying the readers/consumers for that datum. Finally, we support the
possibility to discriminate the access control policies between (destructive)
input and (non-destructive) read operations.

The main contribution of SecSpaces is in the definition of an advanced
matching rule, which exploits some extra information that we permit to enter

3

Busi et al.

in the tuples. The examples, that we report in the remainder of the paper,
prove the generality and flexibility of this matching rule, that can be exploited
to achieve several access control mechanisms. However, acting only at the level
of matching rule, we do not support any control on the execution of the out-
put operations. Due to the asynchrony of the communication supported by
the tuple space, we consider the problem of controlling the ability to produce
tuples, as a different and orthogonal task with respect to the analysis of ad-
vanced matching rules to be used to retrieve those tuples. We leave for future
work the definition of policies for the control of output operations.

Another novelty of our approach is that we define only the coordination
model, without considering the internal structure of the agents accessing the
coordination medium. More precisely, we formally specify the actual state
of the tuple space, how this is modified by the execution of the coordination
primitives, and which is the return value of the primitives. This corresponds
to the typical approach taken in the investigation of coordination models and
languages, i.e., support a distinct separation between coordination and com-
putation concerns. In our specific case, this approach is particularly promising
mainly for two reasons.

(i) If we develop a coordination model without making any assumption on
the nature of the agents that will exploit that model, we obtain a model
which is clearly open to heterogeneous agents, components based on dif-
ferent technologies, as well as new forms of agents which are unknown
beforehand.

(ii) A formal definition of the coordination model, independently of the agents,
permits an analysis of the basic properties of the model itself. These
properties of the model are then expected to hold in all its specific ex-
ploitations.

The definition of a complete framework, for the modeling and analysis of
both the agents and the tuple space, as is done in KLAIM and SecOS, is left
for future work, when we will move our interest to the analysis of instances of
systems exploiting our coordination model.

The remainder of the paper is structured as follows. Section 2 formalizes
our starting point, i.e., a Linda-like coordination model with some form of
subtyping; this model is useful to clarify the problems that we see when ex-
ploiting this family of coordination models in environments open to untrusted
agents. Sections 3, 4 and 5 introduce incrementally our novel coordination
model SecSpaces. Section 6 discusses related work, future research and re-
ports some concluding remarks.

2 Linda-like coordination model

Most of the currently exploited Linda based coordination infrastructures are
developed for object-oriented programming languages (see, e.g., JavaSpaces

4

Busi et al.

and TSpaces). To be consistent with this family of models, we use a matching
rule between entries and templates which considers some form of subtyping.
More precisely, in our abstract model, a tuple is a finite sequence of fields
taken from a generic set Data. 1 In this context, it is reasonable to map the
notion of subtype with the notion of extension: given a tuple e, each new
tuple e′ obtained by adding some extra fields to e, is considered to be a sub-
type of e. This form of subtyping influences the matching rule as follows: if
an entry e matches a template t, then also all the extensions e′ of e matches
template t. This matching rule is inspired by the way subtyping is exploited
in JavaSpaces and in SecOS. Differently from our model, in JavaSpaces sub-
typing corresponds to class inheritance and fields are typed objects. On the
other hand, SecOS uses a notion of extension similar to ours, but tuples are
unordered collections of fields, each one with an associated field lock used as
a selector to access its content.

We now formalize this Linda-like coordination model extended with sub-
typing. Let Data, ranged over by d, d1, . . ., be a denumerable set of data. Let
Entry, ranged over by e, e′, . . ., be the set of finite sequences of data taken
from Data and denoted by < d1; . . . ; dn >, n ≥ 1. Templates may use wild-
cards to let some field unspecified; syntactically, a wildcard is denoted by null
(which we assume to be not in Data). In the following, dt, dt1, . . ., range over
Data ∪ {null}. Finally, let Template, ranged over by t, t′, . . ., be the set of
finite sequences composed of data and wildcards denoted by < dt1; . . . ; dtn >,
n ≥ 1. We define the matching rule as follows.

Definition 2.1 Matching rule - Let e =< d1; . . . ; dn > be an entry and
t =< dt1; . . . ; dtm > be a template; we say that e matches t if the following
conditions hold:

• m ≤ n,

• dti = di ∨ dti = null, 1 ≤ i ≤ m.

With e matches6 t we denote that e and t does not satisfy matching rule,

The coordination primitives we consider are the classical Linda operations:
out(e) which introduces the entry e in the shared repository; rd(t) which
verifies the presence of a matching entry e currently available in the shared
repository (i.e. e matches t); in(t) which is the destructive counterpart of
rd(t); rdp(t) which is the non-blocking version of rd(t), i.e. it terminates even
if no matching is currently avalaible in the repository; inp(t) which is the
non-blocking version of in(t).

The operations, except out(e), have a return value: rd(t) and in(t) return
a copy of the matching entry e (in the case of in(t) this matching entry e is also
removed from the repository); rdp(t) and inp(t) have the same return value

1 In Linda, a tuple is a finite sequence of typed fields; for the sake of simplicity we consider
a unique generic type Data

5

Busi et al.

(and effect) of rd(t) and in(t), respectively, except when no matching entry is
currently avalaible. In such a case, the return value is fail and denotes the
absense of matching entries in the repository.

Let Action = {out(e), rd(t), in(t), rdp(t), inp(t)} (ranged over by α) be
the set of operations that an agent can perform, and ReturnV alue = Entry∪
{fail,−} (ranged over by r) be the set of return values of the operations.
As described above, fail denotes the failure of the non blocking read/input
operations, whilst − indicates that the operation does not have any return
value, as it happens for the out operation.

In the following, TS, TS’, . . ., range over M(Entry), and are used to de-
scribe the states of the shared repository, i.e. the entries currently avalaible.
To describe the effect of the operations on the shared repository, we use a la-
beled transition system, that is a quadruple (M(Entry),Action,ReturnV alue,
→), where → ⊆M(Entry)×Action x ReturnV alue×M(Entry). (TS,α,r,

TS’)∈→ (denoted also with TS
α

−→
r

TS’) has the following meaning: when

the state is TS, and an action α is performed, then after the execution, the
state of the repository is TS’ and the return value is r. Table 1 defines the
semantics of the primitives.

TS⊕{e} in(t)

−→
e

TS, e matches t TS⊕{e} rd(t)

−→
e

TS⊕{e}, e matches t

TS⊕{e} inp(t)

−→
e

TS, e matches t TS⊕{e} rdp(t)

−→
e

TS⊕{e}, e matches t

TS
inp(t)

−→
fail

TS, ∀e ∈TS:e matches6 t TS
rdp(t)

−→
fail

TS, ∀e ∈TS:e matches6 t

TS
out(e)

−→
−

TS⊕{e}

Table 1
Semantics of the primitives.

As an example illustrating the use of wildcards to obtain previously un-
known information, consider the entry < d1; d2 > that can be read by any
agent simply performing rd(< d1; null >) or even rd(< null >). In partic-
ular, the operation rd(< null >) exploits both a wildcard and subtyping to
match with all possible entries in the space. This simple example shows that

6

Busi et al.

there is no way to bound the entry scope. Consequently, the first goal of
this work is to extend the notion of entry, template and matching in order to
introduce a manner to regulate the access to an entry.

3 Partitioning the space

In Linda-like systems each tuple in a shared repository may be potentially
read or consumed by each agent having access to that repository. In many
applications this could be an undesired feature; consider, e.g., applications in
which the agents coordinated through the tuple space are divided into classes;
it may be useful to distinguish the space of the entries in which the classes
interact.

Starting from this observation, we show an approach to limit the visibility
of entries. The proposal that we are going to introduce can be potentially
used to separate (logically) the spaces in which groups of agents interact.
Essentially, we extend the entry structure, with a special field, named partition
field. The partition field is the only one in which the matching rule does
not accept wildcards. Therefore, an agent executing a read operation on a
subspace, is forced to deliver a proof of knowledge of the partition field value
of the subspace that it wants to access.

Let C be a denumerable set of partition field values (ranged over by c, ct,
cs, . . .). We also assume that C contains a special default value #; whose
meaning will be described in the following. An entry e, and a template t with
the partition field, are defined as follows (n ≥ 1):

e =< d1; . . . ; dn >[c]

t =< dt1; . . . ; dtn >[ct]

Let Entryc and Templatec be the set of entries and templates with partition
field, respectively. In the following, e, e′, . . ., range over Entryc, and t, t′,
. . ., range over Templatec. The tuples < d1; . . . ; dn > and < dt1; . . . ; dtn >,
n ≥ 1, are also denoted in the compact form < ~d > and < ~dt >, respectively.
We also define e|d as the operator that, given an entry e =< ~d >[c], returns

the tuple of data < ~d >.

Definition 3.1 Matching rule with partition fields - Let e =< ~d >[c]

be an entry, and t =< ~dt >[ct] be a template; we say that e matchesc t when
the following conditions hold:

• ct = c,

• < ~d > matches < ~dt >.

The definition of matchesc is a conservative extension of matches (see Defini-
tion 2.1).

7

Busi et al.

Example 3.2 matchesc evaluation - A list of entry matching examples
follows.

template does it match with < d1; d2 >[c]?
< null >[c] yes
< null; null >[c] yes
< d1; null >[c] yes
< d1; d2 >[c] yes
< d1; d2 >[c′], c′ 6= c no
< null; null; null >[c′] no

The semantics of the primitives, using the entry (template) with partition
field and the matching rule matchesc, is obtained simply by replacing in Table
1 matches with matchesc, and the e used to describe the return value with e|d
(in this context ReturnV alue = {e|d |e ∈ Entryc}∪{fail,−}). Observe that
the return value does not contain the partition field, as we use this information
only to control the access to the entries.

The partition field and the matching rule induce a partitioning of TS.
More precisely, every c ∈ C identifies a subspace, that is composed by all
entries in TS with partition field set to the value c. To match with entries of
the subspace characterized by c, agents must know c. However, the special
default value # provides the agents with a manner to cooperate each other,
even without knowing any specific partition field value for a working subspace.
For the sake of simplicity, when an entry (template) has the partition field set
to #, we omit to specify it.

Example 3.3 Secure group communication - We have previously ob-
served that the partition field induces a partitioning of TS. Hence, this fact
can be exploited in order to limit, to a group of agents, the access to a parti-
tion. To each group Gi, we associate ci ∈ C, with ci 6= cj, if i 6= j. We assume
that ci is known only by all the agents that are members of Gi, and that
they keep ci secret. In order to write, and consume, a datum into the space
dedicated to Gi, it is sufficient to execute out(< ~d >[ci]) and in(< ~dt >[ci]),
respectively. The rd, rdp, inp operations into the space dedicated to Gi can
be obtained similarly. Using this approach, an agent that can read (or write)
an entry to the subspace identified by ci, is a member of Gi. We motivate
this assertion observing that: i) the execution of an out operation implies the
knowledge of ci; therefore, by hypothesis, only an agent that is a member of
Gi can do it; ii) matchesc implies that who reads an entry e =< ~d >[ci] knows
ci; therefore, by hypothesis, only agents that are members of Gi can read it.

In order to evaluate the expressiveness of the language, it is interesting to
analyse which information an agent can take about the current state of TS, as
well as to analyse the ability to force specific modifications of the state. Here
we study two examples, the first one is the function EmptyTS? that tests if

8

Busi et al.

the space is empty, and the second one is the function RemoveAll that removes
all the entries in TS.

Example 3.4 Implementing function EmptyTS? - In the model of Sec-
tion 2, EmptyTS? can be implemented with an atomic operation: rdp(<
null >). If no matching entry is found, the space is empty, otherwise it is
not. The problem we encounter when implementing EmptyTS?, using the
enriched model of this section, is that rdp(< null >) should be repeated for
each c ∈ C. Hence, EmptyTS? cannot be performed in a single step; it an-
swers correctly only if no other agent changes TS during its execution (thus,
it requires to be executed in a transactional manner). As an example, if C
contains more than one value, e.g. c1 and c2, when the function tests if the
subspace identified by c1 is empty, an agent can write an entry in the subspace
identified by c2, and vice versa. In these cases, the function may terminate
with a wrong result.

Example 3.5 Implementing function RemoveAll - Using the language
of Section 2, the function RemoveAll can be implemented as a program that
repeatedly executes a non blocking input inp(< null >), until no matching
is found. When the program terminates, TS is empty. The following piece of
code implements this program:

repeat { m = inp (<null>); } until (m == fail);

To do this using the enriched model of this section, it is necessary to repeat,
for each value of partition field c ∈ C, a non blocking input operation, using
the template < null >, until it finds no matching. If C contains more than
one value, e.g. c1 and c2, when the program terminates the removal of all
the entries from the subspace characterized by c1, agents may have written
in the subspace identified by c2 in the meanwhile, and vice versa. Hence, the
function may terminate incorrectly.

A consideration about performance is needed. Given a template < ~dt >[ct],
if there exists a matching entry e in the space, then e =< ~d >[c] and ct = c. We
can exploit ct in order to reduce the research space to the subspace identified
by ct.

4 Adding cryptography to the entries

In Section 3 we have show how to implement a TS structured into logical sub-
spaces. The idea that we have followed to control the access is that only the
agents that know cs can write, or read, the entries in the subspace identified
by cs. However, we cannot distinguish between the read and write permis-
sions on entries. On the other hand, it is rather easy to find applications
that need this feature. For example, a client-server service (such as a print
service): clients send the requests to the server which is the only agent that
collects them. Using TS to implement the model, the client submits the work

9

Busi et al.

writing an entry, and the server reads the requests. It is important to allow
the permission to read the submitted jobs only to the server. Furthermore,
several applications need to authenticate the sender or the receiver of the en-
try. For example, the distribution of software: a software house distributes
its software products, upgrades and patches, writing them into the space. In
order to avoid to download and install uncertified code, the receiver requires
the authentication of the data producer. In order to support these class of
applications, the following section introduces entries with a new kind of field,
named cryptographic field.

4.1 Cryptographic field

As commented above, we intend to use asymmetric cryptography to distin-
guish between writers and readers, and to provide a manner for authenticating
the sender (“who has written the entry”), and the receiver (“who is executing
the read/input”). In order to describe the entry, we firstly define:

- The set of plaintexts PlainText, ranged over by p, p′,. . .;

- The set of encryption keys Key, containing private and public keys. In the
following, when we refer to pairs of private and public keys (PrivK, PubK),
we assume that a plaintext encrypted with PubK (resp. PrivK) can be
decrypted only using PrivK (resp. PubK);

- The set Ciphertext, ranged over by s, st,. . ., that contains the ciphertexts
obtained encrypting p ∈ PlainText, with k ∈ Key, denoted with {p}k.

In the following, r, rt, . . ., range over (Key × PlainText) ∪ {?}.
The idea is to exploit this new field in the matching rule, in order to

capture a more sophisticated relation between entries and templates, that
uses asymmetric cryptography. In particular, from one side a pair r = (k, p) is
given, and from the other one a ciphertext c; the test consists of comparing the
text p with the text obtained by decrypting c (using an asymmetric encryption
algorithm, e.g. [RSA78]) with key k. The special value r =? denotes that the
condition is to be ignored. An entry e, and a template t, with cryptographic
(and partition) field, are defined as follows:

e =< ~d >
[c]
[r;s]

t =< ~dt >
[ct]
[rt;st]

Let Entryc
s and Templatec

s be the set of entries and templates with crypto-
graphic (and partition) fields, respectively. In the following, e, e′, . . ., range
over Entryc

s, and t, t′, . . ., range over Templatec
s. We define e|d as the operator

that, given an entry e =< ~d >
[c]
[r;s], returns the tuple of data < ~d >.

Definition 4.1 Matching rule with cryptographic fields - Let e =<
~d >

[c]
[r;s] be an entry, and

10

Busi et al.

t =< ~dt >
[ct]
[rt;st]

be a template; we say that e matchesc
s t if the following

conditions hold:

• if r = (k, p) then decrypt(st, k) = p

• if rt = (kt, pt) then decrypt(s, kt) = pt

• < ~d >[c] matchesc < ~dt >[ct].

The definition of matchesc
s is a conservative extension of matchesc (see Defi-

nition 3.1).

Example 4.2 matchesc
s evaluation - Let (PrivKA, PubKA) and (PrivKB,

PubKB) be pairs of private and public keys. A list of entry matching examples
follows.

template does it matchesc
s with < d >[(PubKA,p),{pe}PrivKB

]?

< null >[?,{p}PrivKA
] yes

< null >[(PubKB ,pe),{p}PrivKA
] yes

< null >[?,{p}PrivKE
] no, if PrivKE 6= PrivKA

The semantics of the primitives, using the entry (template) with crypto-
graphic field and the matching rule matchesc

s, is obtained simply by replacing
in Table 1 matches with matchesc

s, and the e used to describe the return
value with e|d (in this context ReturnV alue = {e|d |e ∈ Entryc

s}∪{fail,−}).
Observe that also in this case the cryptographic fields are used only to control
the access to the entries, then the return value does not include this field.

4.2 Examples

In order to prove the adequacy of cryptographic field to solve the security
issues that we have tackled, this section presents several examples. In partic-
ular, we hint how to solve problems such as distinguishing the write and read
permission, as well as the authentication of the sender and of the receiver.

4.2.1 Entry replication

Here we show that using cryptographic fields with private and public keys, it
is possible to avoid the unauthorized replication of entries. This feature can be
useful in several applications, e.g., to distinguish write and read permissions.
On the contrary, if the readers can write the entries that they can read, then
a reader is also a writer (read permission inherits write permission).

Let (PrivK, PubK) be a pair of private and public keys of the agent P . If
P publishes its public key PubK and keeps PrivK secret, then, even assuming
p as a default value known by all the agents, only P can generate the entry
< ~d >[?,{p}PrivK]. By definition, the return value of a read operation does not
include the cryptographic field. Hence, the reader does not obtain {p}PrivK ,
and cannot generate exactly that entry because it does not know PrivK.

11

Busi et al.

Therefore, except when the reader is the sender, the reader cannot reply the
entry in the space.

Symmetrically, one may wonder if a writer is also a reader, that is if an
agent can always match the entries that it produces. The answer is that an
agent cannot always read the entries that it writes. In particular, it cannot
when the entry that it writes has r set to (PubKi, p

′) with a generic plaintext
p′, and it does not know the respective private key PrivKi. For instance, all
agents can produce the entry e =< ~d >[(PubKi,p′),s] with a generic ciphertext s,
because p′ and PubKi are public. However, only the agent that holds PrivKi

can read this entry, because to match with e, the reader must know, or must be
able to generate, {p′}PrivKi

(s has no influence, because it may be disregarded
setting in the template rt =?). Therefore, using the cryptographic field, we
obtain the maximum flexibility to assign the write and read permission.

4.2.2 Secure channel

Several applications need to communicate using secure channels, e.g., the ex-
change of confidential data between two agents, or electronic commerce. Lan-
guages whose aim is to provide a way to guarantee a secure communication
should accomplish secure channels implementation. Hence, we perform a com-
parison among SecOS, KLAIM and SecSpaces discussing the way a secure
channels between two agents, say A and B, could be modeled in the three
coordination platforms.

An encoding of a secure channel in SecOS [VBO02] could be based on
asymmetric object locks. More precisely, a pair of keys is associated to the
channel and one of the two keys is given to A and the other one to B. In
this way, data availability and integrity, as well as authentication of sender
and receiver are supported. A secure channel can be encoded in KLAIM cre-
ating a new location and allowing permissions of write/read on that location
only to A and B, respectively. Both the proposals require a phase of construc-
tion/definition of the secure channel. In the case of SecOS, the encoding needs
a trusted entity or a procedure that creates a pair of keys and distributes them
to A and B. The phase of secure channel construction in KLAIM consists in
the creation of the new location. This phase represents an overhead for the
system and may be also an entry point for an attack by an enemy agent.
Therefore, the elimination of such this phase could make the implementation
more robust.

An encoding of a secure channel in SecSpaces follows. In particular, we do
not exploit any preliminary phase, but we simply make the standard assump-
tion that A knows the public key of B, and vice versa. Let (PrivKA, PubKA),
(PrivKB, PubKB) be two pairs of private and public keys of A and B, respec-
tively. We assume that PrivKA (resp. PrivKB) is known only by A (resp.
B), and that they keep it secret. We also assume that PubKA, PubKB, and
a generic plaintext p are public pieces of information. The functions ssend
and sread, used in order to send and to read a data from A to B on a secure

12

Busi et al.

channel, are encoded as follows:

ssend(< ~d >) := out(< ~d >[(PubKB ,p),{p}PrivKA
])

sread(< ~dt >) := in(< ~dt >[(PubKA,p),{p}PrivKB
])

Using this encoding, we observe that: i) only A can generate {p}PrivKA
,

hence only A can write the entry encoded by the function ssend; ii) only B
can generate {p}PrivKB

, hence only B can (using sread function) read the data
written by A; iii) B cannot reply the entry written by A on the secure channel
(except for the case in which B is A), as observed in section 4.2.1. Hence,
by i) and ii), the communication on the secure channel guarantees the mutual
authentication of A and B. This property provides a way for guaranteing non
repudiation. For example, suppose that A performs an electronic payment to
B using the secure channel. A sends the payment to B using ssend, then A
cannot repudiate the written entry (because it contains a data that is signed
with its own private key), i.e. to deny the payment, that, by ii), can be
collected only by B. Moreover, by iii), B cannot reply the entry in the space,
hence it cannot recycle the payment.

Finally, a consideration on p. At least A and B must know p, then the
solution assumes p to be a public data. However, in order to avoid to sign
always the same p, during the interaction this value can be refreshed, e.g.,
transmitting new plaintexts p′ within the tuple of data. In this way, p′ is
known only by A and B.

Example 4.3 Many-to-many communication - In this example we show
how to encode the many-to-many communication model, distinguishing the
permission of writing and reading the entries.

Let DW and DR be the set of agents constituting the group of writers and
readers, respectively. Let (PrivKW , PubKW) and (PrivKR, PubKR) be pairs
of private and public keys, and pW , pR be two generic plaintexts. We assume
that: i) PrivKW (resp. PrivKR) is known only by all the agents in DW (resp.
DR), and that they keep it secret; ii) PubKW , PubKR, pW and pR are public
pieces of information. The functions outtogroup and infromgroup, used in
order to write and to read a data, can be encoded as follows:

outtogroup(< ~d >) := out(< ~d >[(PubKR,pR),{pW }PrivKW
])

infromgroup(< ~dt >) := in(< ~dt >[(PubKW ,pW),{pR}PrivKR
])

The encoding ignores the partition because it is not necessary. Hence,
the encoding that we provide can be applied to each partition. Using this
encoding, we observe that:

- Only agents in DW know PrivKW , hence the ciphertext {pW}PrivKW
can

13

Busi et al.

be generated only by an agent in DW ;

- In the reader template, (PubKW , pW) imposes to capture only entry signed
with {pW}PrivKW

, therefore written by an agent in DW ;

- Only agents in DW know PrivKW , hence a reader that is not also a writer
(i.e. it is not in DW) cannot replicate the data written by the agents in
DW ;

- Only agents in DR know PrivKR, hence the ciphertext {pR}PrivKR
can be

generated only by an agent in DR;

- In the writer entry, (PubKR, pR) imposes to match only with template
signed with {pR}PrivKR

, therefore generated by agents in DR.

The approach that we have followed is similar to the encoding of the secure
channel. However, the assumption that the private keys are known by more
than one agent does not allow to authenticate the entities that write or read
the entries.

4.2.3 Symmetric and asymmetric cryptography

Security protocols based on communication channels, typically use symmetric
and asymmetric cryptography, in order to guarantee security properties (e.g.
secrecy, authentication). The section compares symmetric and asymmetric
cryptography with fields we have. In particular, we show similarities between
symmetric cryptography and partition fields, as well as between asymmetric
cryptography and cryptographic fields.

If agents A and B share a symmetric key KAB, that is secret, then they
are the unique agents that can encrypt the data with KAB, and decrypt the
obtained ciphertext. If A and B share a partition field pAB, that is secret, then
only A and B can write, and read, the entry e =< ~d >[p] with p = pAB. Hence,
either solutions can be used to guarantee the secrecy of the data exchanged
between A and B. Moreover, in either solutions there is no way to authenticate
who writes, or who reads, the data.

Using asymmetric cryptography, it is possible: i) to sign a data (e.g. en-
crypting the data with its own private key) in order to allow the receiver to
authenticate the sender; ii) to send an encrypted message, and to be sure that
only one can decrypt it (simply by encrypting the message with the public
key of the receiver), i.e. only the legitimate receiver can read the data. The
same results can be obtained using cryptographic fields, as shown in Section
4.2.2.

Finally, we can encode the partition fields using cryptographic fields. Let
(PrivPF, PubPF) be a pair of private and public keys known by all the
agents. We can encode the partition field set to c simply by compiling the
cryptographic fields, in the entry and in the template, as follows: [(PubPF, c),
{c}PrivPF]. In order to write this entry, the writer must be able to generate
{c}PrivPF , hence it must know c. Analogously, to satisfy the matching rule
the reader must be able to generate {c}PrivPF , hence it must know c.

14

Busi et al.

However, we continue to support both kinds of fields, for the following
reasons: i) let e =< ~d >

[c]
[r;s], and t =< ~d >

[ct]
[rt;st]

, if r = rt =? then e matchesc
s

t if and only if < ~d >[c] matchesc < ~d >[ct]; ii) the matchesc evaluation is
faster than the one for matchesc

s, because it does not involve cryptography;
iii) asymmetric cryptography is usually used to estabilish a symmetric session
key between agents, because symmetric encryption is faster than asymmetric
encryption. Analogously, we can use cryptographic field to estabilish a “ses-
sion” partition field between agents. For example, suppose that A has a new
partition field pAB, that is secret. In order to estabilish the session partition
with B, A can use a secure channel (see Section 4.2.2) to communicate pAB

(e.g., using ssend(< pAB >)) to B.

5 Discriminating the in and rd permissions

There are examples of applications in which several (or all) agents can read
some data, but only a subset of them can delete such data. For example,
every person can publish some data of interest to the community (e.g. name,
phone, e-mail, ..), writing an entry in the space. It is reasonable to think that
this information should not be removed by the agents, except by the owner
(for example, to update the published data). To accomplish this goal, crypto-
graphic field values are not sufficient to describe the whole set of permissions
that are necessary. In this section we present how to extend the entry in order
to describe the permission of the data retrieval operations. In particular, we
introduce two distinct permissions, the first one for non-destructive (rd and
rdp) operations, and the second one for destructive (in and inp) operations.
To obtain this goal, we simply associate a partition field and a cryptographic
one, to each permission. Let Entryc

s(rd, in) be the set, ranged over by e, e′,
. . ., of entries with read and input permissions, defined as follows:

e =< ~d >
[c]rd[c′]in
[r;s]rd[r′;s′]in

We define e|d as the operator that, given an entry e =< ~d >
[c]rd[c′]in
[r;s]rd[r′;s′]in ,

returns the tuple of data < ~d >. Hence, the matching rule is a function on the
operation currently executed. The template continues to be defined as in the
previous section (that is t ∈ Templatec

s), because the reference to the current
operation is inherited by the operation itself.

Definition 5.1 Matching rule with permissions - Let op ∈ {rd, rdp, in,
inp} be the primitive on which the matching must be evaluated, t be a tem-

plate and e =< ~d >
[c]rd[c′]in
[r;s]rd[r′;s′]in be an entry; we define e matchesc

s(op) t as
follows:

• < ~d >
[c]
[r;s] matchesc

s t, if op ∈ {rd, rdp}.
• < ~d >

[c′]
[r′;s′] matchesc

s t, if op ∈ {in, inp}.
15

Busi et al.

In other words, matchesc
s(op) is reduced to matchesc

s using only the partition
and the cryptographic field of e corresponding to op.

It is trivial to prove that matchesc
s(op) is well defined; in both cases

matchesc
s is applied to entry e ∈ Entryc

s and template t ∈ Templatec
s.

The semantics of the primitives, using the entry with permission on the op-
erations and the matching rule matchesc

s(op), is obtained simply by replacing
in Table 1 matches with matchesc

s(op), and the e used to describe the return
value with e|d (in this context ReturnV alue = {e|d |e ∈ Entryc

s(rd, in)} ∪
{fail,−}).

We call SecSpaces the coordination model characterized by the primitives
and the semantics of this section.

5.1 Examples

Entry access control is based on the capacity of the reader to provide a proof
of possessing the permission (i.e., to satisfy matchesc

s(rd)). Consequently,
to assign the read-only permission to an entry corresponds to the problem
of finding a setting of partition and cryptographic fields, relative to the in
operation, that no agent can be able to match. Hence, the problem is to find
a pair (k, p) such that nobody can guess the s that, when decrypted with
key k, gives p. The same conclusion follows when we want to assign only the
permission of consuming the data (in,inp). A possible solution is to include,
within Key, a special value, say $, for denoting that the matching can never
be satisfied.

The model “many-to-many” encoded in Example 4.3, can be extended in
this context for refining the way that agents can use to interact. For example,
the agents interacting can be collected into three groups: DW be the group of
writers; DR be the group of agents that can match the entry written by agents
of DW , only using rd and rdp; DI be the group of agents that can match the
entry written by agents of DW , only using in and inp. It is obtained simply
by introducing a new pair of private and public key (PrivKI , PubKI), and
pI . We assume that PrivKI is known only by all the agents in DI , that they
keep PrivKI secret, and that PubKI and pI are public pieces of information.
Using also the assumptions of Example 4.3, the encoding of the write, read
and input group operations is as follows:

outtogroup(< ~d >) :=

out(< ~d >[(PubKR,pR),{pW }PrivKW
]rd[(PubKI ,pI),{pW }PrivKW

]in)

rdfromgroup(< ~dt >) := rd(< ~dt >[(PubKW ,pW),{pR}PrivKR
])

infromgroup(< ~dt >) := in(< ~dt >[(PubKW ,pW),{pI}PrivKI
])

16

Busi et al.

Example 5.2 The in permission does not inherit rd permission - It
is legitimate to wonder if an agent, with only the in permission on the entry e,
can simulate the read removing e with an in, and then writing it in the space.
In section 4.2.1 we have shown that it is possible to avoid the unauthorized
replication of data in TS. Hence, in permission does not inherit rd permission.

6 Conclusion and related work

In this paper we have proposed SecSpaces, a Linda-like coordination model
that permits to control the access to the entries stored in the shared data space,
and to authenticate/identify the producer of an entry or its reader/consumer.
SecSpaces substantially introduces a new advanced matching rule, which ex-
ploits two new kinds of fields, namely partition and cryptographic fields.

In the Introduction we have already discussed two proposals, KLAIM and
SecOS, that aim to solve the problem of adding access control policies to
the primitives of Linda. A comparison is shown in Section 4.2.2, where the
encoding of secure channels in SecOS, KLAIM and SecSpaces are discussed.
Here we want to add a further observation, the symmetric and asymmetric
field locks of SecOS are used to select specific fields inside entries, hence they
provide also a way to assign the permission for accessing the fields. Differently,
SecSpaces uses the position of fields inside the tuples to access them, and an
agent may use standard cryptographic approaches for protecting specific fields.

Here we report a list of other significant proposal present in the literature.
The proposal in [MMU01] is based on the concept of law-governed interactions.
In particular, permission policies (law) are described using Prolog rules; the
agents have the corrects access rights if they satisfy the rules. This check is
executed by policy-independent trusted controllers. The proposal of [Pin92]
is to provide Linda with directed communication, i.e. private channels. The
solution exploits asymmetric cryptography, at each entry corresponds a spe-
cial data, the ticket. The matching is avalaible only if the tickets of entry and
template match (i.e. one of them is the public ticket and the other one is the
corresponding private ticket). Finally, [Woo99] presents a survey of the pos-
sibilities provided adding attributes in the tuple-space systems. In particular,
several manners to introduce the attributes are discussed, more precisely how
to insert them to the level of fields, of entries and of tuple-spaces.

References

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, 1985.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. Addison-Wesley, 1996.

17

Busi et al.

[MMU01] N. Minsky, Y. Minsky, and V. Ungureanu. Safe Tuplespace-Based
Coordination in Multi Agent Systems. Journal of Applied Artificial
Intelligence, 15(1), 2001.

[NFP97] R. De Nicola, G. Ferrari, and R. Pugliese. Coordinating Mobile Agents
via Blackboards and Access Rights. In Proc. of the Second International
Conference on Coordination Models and Languages, Lectures Notes in
Computer Science 1282, Springer, pages 220–237, 1997.

[NFP98] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language
for Agents Interaction and Mobility. IEEE Transactions on Software
Engineering, 24(5):315–330, May 1998. Special Issue: Mobility and
Network Aware Computing.

[Pin92] J. Pinakis. Providing directed communication in Linda. In Proceedings of
the 15th Australian Computer Science Conference, pages 731–743, 1992.

[PSD98] P.Wyckoff, S.W.McLaughry, and D.A.Ford. TSpaces. IBM System
Journal, August 1998.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communication of the ACM,
21(2):120–126, February 1978.

[Sun02] Sun Microsystems, Inc. JavaSpacesTM Service Specification, 2002. URL:
http://www.sun.com/jini/specs/.

[VBO02] Jan Vitek, Ciarán Bryce, and Manuel Oriol. Coordinating Processes with
Secure Spaces. To appear in Science of Computer Programming, 2002.

[Woo99] Alan Wood. Coordination with Attributes. In Proceedings of the Third
International Conference COORDINATION ’99, Springer LNCS-1594,
pages 21–36, 1999.

18

http://www.sun.com/jini/specs/�

