
p ( )
URL: http://www.elsevier.nl/locate/entcs/volume54.html 14 pages

On the Serializability of
Transactions in JavaSpaces

Nadia Busi and Gianluigi Zavattaro

Dipartimento di Scienze dell'Informazione, Universit�a di Bologna, Italy.

E-mail: busi,zavattar@cs.unibo.it

Abstract

JavaSpaces is a coordination infrastructure inspired by the shared dataspace model:

processes interact by introducing, consuming, and testing for the presence/absence

of data in a common repository. Besides these traditional operations, an event

based coordination mechanism is considered which allows for the noti�cation of the

introduction of new instances of data in the repository.

JavaSpaces also supports transactions: multiple coordination operations can be

grouped into a bundle that acts as a single atomic operation. In this paper we

adopt serializability as a criterion to evaluate the correctness of the JavaSpaces

transaction semantics: we prove that serializability is satis�ed only if we restrict to

output, input, and read operations. On the other hand, in the presence of either

test for absence or event noti�cation, serializability is not satis�ed; we propose an

alternative semantics and we prove that it supports serializability.

1 Introduction

Coordination middlewares are emerging as suitable architectures for mak-

ing easier the programming of distributed applications. JavaSpaces [3] and

TSpaces [9], produced by Sun Microsystem and IBM respectively, are the

most prominent examples. Both proposals borrow the main features of both

the data-driven and the control-driven coordination models [8]:

� the generative communication operations of Linda [5], according to which

processes communicate through production, consumption and test for pres-

ence of data in a common data repository; besides the traditional blocking

input and read operations also versions which terminates by signalling the

absence of matching data are provided;

� an event noti�cation mechanism, allowing for a process to register its inter-

est in the future arrivals of some data, and then receive communication of

each occurrence of this event.

c
2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Busi and Zavattaro

A further feature, relevant for distributed applications and supported by both

the aforementioned proposals, is a transaction mechanism. A set of coordina-

tion operations can be grouped in a transaction, and executed in such a way

that either all of them succeed or none of them is performed.

Consistency of the data repository in the JavaSpaces speci�cations [6] is

ensured by requiring transactions to satisfy the so called ACID (atomicity,

consistency, isolation and durability) properties, traditionally supported by

database management systems. In particular, in this paper we are concerned

with preservation of the isolation property, also called serializability: \Ongoing

transactions should not a�ect each other. Any observer should be able to see

other transactions executing in some sequential order".

To meet the isolation requirement for transactions, in the JavaSpaces spec-

i�cation the semantics of coordination operations is a�ected as follows. A

datum produced within a transaction will become accessible from outside the

transaction only when the transaction commits; data consumption or test

for presence within a transaction can operate on items emitted either within

the transaction or in the common dataspace. Moreover, a datum tested for

presence within a transaction cannot be consumed by processes outside the

transaction until the transaction commits. Concerning the test for absence

operations, if the only occurrences of matching data have been withdrawn by

another transaction, the operation will wait until that transaction commits

before reporting an operation failure. Event noti�cations performed within a

transaction will receive noti�cation of data productions occurring both within

the transaction and in the common dataspace. When a transaction commits,

all the event noti�cations local to the transaction are dropped; moreover, the

data produced, but not consumed, within that transaction become available in

the shared dataspace, and are noti�ed to event registrations performed outside

the transactions.

In this paper we provide a formal investigation of the serializability of

transactions in JavaSpaces. To this aim, we abstract away from the con-

crete language, by embedding the coordination primitives in a process cal-

culus equipped with a CHAM-like [1] operational semantics. 1 The proof of

serializability relies on a stronger notion, similar to con
ict serializability in

databases [4]: a pair of consecutive operations, performed within two di�er-

ent transactions (or the �rst outside any transaction and the second within a

transaction), can be swapped without altering the �nal result.

We start our investigation with a �rst calculus, comprising the basic co-

ordination primitives for data production, consumption and test for presence:

in this case, the constraints on the semantics imposed by JavaSpaces speci�-

cations [6] are suÆcient to guarantee serializability of transactions.

1 To simplify the treatment, we also forbid nested transactions and we provide only suc-

cessful termination (commit) of transactions.

2



Busi and Zavattaro

Then, we extend the calculus with the test for absence operations, and

we provide an example showing that the constraints imposed by [6] on these

operations, although necessary, no longer suÆce to ensure serializability. We

propose an improved, serializable semantics, obtained by adding further con-

straints on data production and on test for absence operations.

Furthermore, to guarantee the serializability of the calculus extended with

an event noti�cation mechanism, we show that it is necessary to modify the

semantics of noti�cation operations performed within a transaction speci�ed

in [6].

In this paper we abstract away from timeouts, used in JavaSpaces to

avoid undesired in�nite blocking of processes. However, our examples of non-

serializable transactions remain valid also in presence of timeouts.

To the best of our knowledge this is the �rst work concerned with transac-

tions in a shared dataspace coordination language containing test for absence

and event noti�cation primitives. A formal treatment of transaction serial-

izability in the slightly di�erent setting of shared variables (hence concerned

with read and write primitives only) can be found in [2].

2 Transactions and the Basic Coordination Primitives

The JavaSpaces speci�cations adopts the following lock mechanism for trans-

actions: \When read, an entry is added to the set of entries read by the pro-

vided transaction. Such an entry may be read in any other transaction to

which the entry is visible, but cannot be taken". This policy in necessary in

order to ensure serializability of transactions as described by the following

example. Consider the con�guration

hai j create(x ):read(a):take(b):commit(x ) j

create(y):take(a):write(b):commit(y)

containing a datum a, a transaction x which reads datum a and consumes b,

and a transaction y which removes a and then produces b.

If the above policy is not taken into account, the following non-serializable

computation may be executed: the datum a is �rst read inside the transaction

x , and then consumed by the transaction y ; after, the datum b is �rst produced

inside transaction y and then consumed inside transaction x ; at this point both

the transactions may commit. This computation is clearly non-serializable

because the two transactions cannot be executed atomically one after the

other.

The remainder of this section is devoted to prove that the above policy

is enough to ensure serializability of transactions in the case only the basic

coordination operations read, write, and take are taken into account.

3



Busi and Zavattaro

2.1 The calculus

Let Name be a set of data ranged over by a, b, : : :, Const be a set of program

constants ranged over by K , K 0, : : :, and Txn a set of transaction names

ranged over by x , y , : : :. We use capital letters X , Y , : : :, to range over

}(Txn) (ie. the power-set of Txn); we represent sets and multisets with the

classical bracket notation, sometimes omitting the brackets in the case of

singletons, ie. fxg is represented also with x .

Let Conf ranged over by P , Q , : : : be the set of the possible con�gurations

de�ned by the following grammar:

P ::= haiX j C j xfPg j x :C fPg j P jP

C ::= 0 j �:C j C jC j K

where:

� ::= write(a) j read(a) j take(a) j create(x ) j commit(x )

Con�gurations are the parallel composition of available data, programs, and

active transactions. Available data are modelled by terms haiX , where a de-

notes the datum and X the set of active transaction from which the datum has

been read (it is usually omitted when empty); this information is necessary to

implement the transaction policy described above. Programs are represented

by terms C containing the coordination primitives.

Active transactions are denoted in two possible ways: on the one hand,

xfPg models a transaction with name x and involved programs and data

described by the con�guration P ; on the other hand, x : C fPg represents a

transaction x containing a program C which is interested in performing a co-

ordination operation requiring interaction with the environment outside the

transaction. The second kind of notation is necessary to permit the interac-

tion between operations performed inside a transactions and the environment

external to the transaction: for instance, we use x : take(a):PfQg to denote

a transaction x , containing a program which requires to consume a datum a

outside the transaction.

To denote parallel composition we adopt the usual j operator; in the fol-

lowing we use
Q

i Pi to denote the parallel composition of the indexed terms

Pi .

A program can be a terminated program 0 (which is usually omitted),

a pre�x form �:P , the parallel composition of subprograms, or a program

constant K .

A pre�x � can be one of the coordination primitives write(a), which in-

troduces a new object hai inside the data repository, read(a), which tests for

the presence of an instance of object hai, and take(a), which consumes an

instance of object hai. We consider two further operations: create(x ) to start

a new transaction, and commit(x ) for successful transaction termination.

4



Busi and Zavattaro

Constants are used to permit the de�nition of programs with in�nite be-

haviours. We assume that each constant K is equipped with exactly one

de�nition K = C ; as usual we assume also that only guarded recursion is

used [7].

We use a structural congruence relation on con�gurations to denote terms

with a di�erent syntax but representing the same con�guration; this is denoted

by � and it is de�ned as the smallest congruence satisfying the following

axioms

(i) P j0 � P (ii) P jQ � Q jP

(iii) P j(Q jR) � (P jQ)jR (iv) C � K if K = C

(v) xfC jPg � x :C fPg

comprising the standard axioms for parallel composition (i){(iii), the stan-

dard axiom for program constants (iv), plus an axiom used to permit to a

program inside a transaction to move in a position which allows it to perform

a coordination operation requiring interaction with the environment outside

the transaction.

A transaction is started by a create operation and it is possibly terminated

by a commitment operation, performed by all the involved processes. When

performed within a transaction, a read operation may test for presence either

a datum produced under that transaction or a datum in the external envi-

ronment. As discussed above, when a datum is read within a transaction it

cannot be consumed by processes outside that transaction. A take operation

behaves in a similar way, and the selected datum is withdrawn from the datas-

pace. A datum written within a transaction will not be visible to processes

outside the transaction until the transaction commits; before commitment,

this datum can be consumed by a process inside the transaction; in that case,

the object will never become externally visible.

The semantics of the language is described by a labelled transition system

(Conf , Label , �!) where Label = fX:�;X:�;X:� j X 2 }(Txn); jX j � 1g
(ranged over by �, �, : : :) is the set of the possible labels; with abuse of

notation we use � to denote also part of a label as in X : �. With x : �
we denote fxg : � and with � we represent ; : �. The label X : � denotes

a standard computation step, while X :� and X :� the beginning and the

end of a transaction, respectively. The labelled transition relation �! is the

smallest one satisfying the axioms and rules in Table 1. Observe that rule (10)

makes use of the function Data(Q) (used to denote the set of data available

in the con�guration Q) inductively de�ned as follows:

Data(haiX ) = fag Data(P jQ) = Data(P) [ Data(Q)

Data(C ) = Data(xfPg) = Data(x :C fPg) = ;

Axiom (1) indicates that hai; can be consumed by a process performing

a take(a) operation; the subscript set of transaction names should be empty

5



Busi and Zavattaro

(1) take(a):P jhai;
�
�! P

(2) read(a):P jhaiX
�
�! P jhaiX

(3) write(a):P
�
�! hai;jP

(4) create(x ):P
y:�
�! yfP [y=x ]g y fresh

(5) x : take(a):PfQgjhaiY
x :�
�! x :PfQg Y � fxg

(6) x :read(a):PfQgjhaiY
x :�
�! x :PfQgjhaiY [fxg

(7) xf
Q

i commit(x ):Pi j
Q

j haj igj
Q

hhbhiYh

x :�
�!

Q
i Pi j

Q
j haj ij

Q
hhbhiYhnx

(8)
P

X :�
�! P 0

P jQ
X :�
�! P 0jQ

� = �;�

(9)
P

�
�! P 0

xfPg
x :�
�! xfP 0g

(10)
P

x :�
�! P 0

P jQ
x :�
�! P 0jQ

Data(Q) = ;

(11)
Q � P P

�
�! P 0 P 0 � Q 0

Q
�
�!Q 0

Table 1

Operational semantics for the basic calculus (symmetric rules omitted).

because the datum should not be previously read within active transactions.

Axiom (2) models the read operation (in this case the subscript set of trans-

action names does not play any role). Axiom (3) indicates that the e�ect of

the execution of a write(a) operation is the production of the datum hai; (the
subscript set of transaction names is initially empty).

Each active transaction is identi�ed by a unique name; we model this

naming mechanism by associating to each transaction a fresh name (i.e. a

new name which has not been previously used in the agent). For the sake

of simplicity, we do not formally model any mechanism to ensure the global

freshness of names, however, standard mechanisms can be exploited which

allow for the propagation of locally-fresh names.

When a new transaction is started by a program create(x ):P , a fresh name

y is used to identify uniquely the new transaction; this name must be substi-

tuted for x inside P . This is described in axiom (4) where P [y=x ] denotes the

substitution of x with y inside P . Axioms (5) and (6) describe take and read

operations, performed by processes inside a transaction, on data in the exter-

nal environment; in the case of consumption, the removed datum should not

be previously read within other active transactions (this is ensured by the side

6



Busi and Zavattaro

condition Y � fxg); in the case of read, the name of the transaction should

be added to the subscript set of transaction names associated with the read

datum. Axiom (7) describes transaction commitment: the processes inside

the transaction must agree on the commitment operation, the data produced

inside the transaction become available to the external environment, and the

name of the committed transaction should be removed from the subscript set

of transaction names associated to the data in the external environment.

Rule (8) is the usual local rule, while (9) is the application of the local

rule to transactions: observe that the transaction name is added to the label

in order to denote the transaction under which the action is taken. Rule

(10) indicates that a transaction commitment performed by the con�guration

P can be performed also in P jQ provided that Q does not contain data;

this side condition is necessary in order to ensure that all the data in the

environment are taken into account by the axiom (7) which introduces the

transaction commitment action. Finally, rule (11) is the standard rule for

structural congruence.

It is worth noting that we do not �x any constraints concerning the use of

the transaction operations create and commit inside programs. For example,

the set of con�guration Conf comprises also the program commit(y):start(y)
which requires to commit a transaction before it is created. However, the oper-

ational semantics ensures that this kind of terms have no outgoing transitions

(see the axiom (7)). Moreover, it is also worth noting that the operational

semantics does not permit the execution of nested transactions, ie. transac-

tions inside an outer transaction. Even if this a simpli�cation, we claim that

the results we prove on serializability apply also in a more general setting in

which nested transactions are supported.

2.2 Serializability

Serializability is a generally accepted criterion for correctness of the execution

of transactions. Given the interleaving execution of a set of transactions, it is

serializable if the same result can be reached by a serialized execution of the

transaction. An execution is serialized if all the actions taken inside the same

transaction are executed sequentially, one after the other, without interleaving

with actions outside the transaction:

In the following we need the following notation: txn(X:�) = txn(X:�) =

txn(X:�) = X to denote the transaction names occurring in a transition label

and actxn(P) = fx j 9C ;Q s.t. xfQg or x : C fQg is a subterm of Pg to

denote the set of the transactions active in a con�guration.

De�nition 2.1 Given the transition sequence P
�1�! Pi

�2�! : : :
�n�! Pn we

denote it also with P
�
�! P 0 where � = �1 : : : �n . The transition sequence

P
�
�! P 0, with actxn(P) = actxn(P 0) = ;, is serialized i� �i = x :� implies

�i+1 = x :� or �i = x :� for i = 1; : : : ; n � 1. A transition sequence P
�
�! P 0

7



Busi and Zavattaro

is serializable if there exists a permutation �0 of � such that P
�0

�! P 0 is a

serialized transition sequence.

The following lemma proves that each transition performed inside a trans-

action can be delayed and executed after a subsequent transition, provided

that the latter is performed outside the transaction.

Lemma 2.2 If P
�
�! P 00 �

�! P 0 with � = x :�0 where �0 6= �, and txn(�) 6=

txn(�) then there exists P 000 such that P
�
�! P 000

�
�! P 0.

We are now ready to present the theorem which reports the serializability

result for the calculus with the basic coordination operations only.

Theorem 2.3 Let P be a con�guration and P
�1�! P 0 be a transition sequence

such that actxn(P 0) = ;.

� If actxn(P) = ; then there exists a permutation �2 of �1 s.t. P
�2�! P 0 is

serialized.

� If actxn(P) = fxg then there exist �2 and �3 s.t. for each � 2 �2 then

txn(�) = fxg, �2�3 is a permutation of �1, and P
�2�! P 00 �3�! P 0 where

actxn(P 00) = ;.

3 Adding Test for Absence

In this section we extend the previous calculus with two further coordination

primitives read9 and take9 which are variants of the read and take operations

which embed the possibility to test for the absence of matching data, respec-

tively. These operations behave like the corresponding read and take only in

the case the required datum is available for reading or consumption; other-

wise, they terminate by indicating the absence of the required datum. These

two coordination primitives correspond to the readIfExists and takeIfExists

operations of JavaSpaces.

The two operations are guards for programs with two possible continua-

tions: read9(a)?P Q and take9(a)?P Q , where P is the continuation chosen

in the case the operation succeeds, while Q is chosen if the required datum is

not available.

Before presenting the formal syntax and semantics of the extended calcu-

lus, we discuss some problems related to serializability.

Consider the following con�guration in which a datum is required to be

consumed within a transaction and tested for absence outside that transaction:

hai j create(x ):take(a):take(b):commit(x ) j read9(a)?0 write(b)

Consider now the following computation: the consumption of hai inside the

transaction occurs, subsequently the test for absence outside the transaction

is performed; after, the datum hbi is �rst produced and then consumed inside

8



Busi and Zavattaro

the transaction; �nally, the transaction commits. This computation is clearly

non-serializable because the unique way to perform the test for absence and the

output operation outside the transaction is to execute them after the take(a)

but before the take(b) operations inside the transaction. This kind of problem

is solved in JavaSpaces by avoiding the consumption of data taken within a

transaction: these data are simply locked and they are removed only when

the transaction commits. Locked data can be neither read nor consumed, and

disallow the execution of operations testing the absence of data of that kind.

We now discuss a further problem concerning serializability in the pres-

ence of test for absence operations which is not addressed in the JavaSpaces

speci�cations.

Consider the con�guration

create(x ):take9(a)?0 (take(b):commit(x )) j write(a):write(b)

and its following computation: the transaction starts, the take9(a) opera-

tion tests the absence of a and activates the continuation take(b):commit(x );

subsequently the two output operations outside the transaction are executed;

�nally the input operation inside the transition occurs and the transaction

commits.

This computation is clearly non-serializable because the unique way for the

transaction to commit is that the two write operations outside the transaction

are executed exactly between the test for absence and the input operation

inside the transaction. To solve this problem we propose the following further

lock policy: after a test for absence is performed inside a transaction on a

certain kind of data, no data of that kind can be introduced in the shared

dataspace before the end of the transaction.

This new constraint forbids the execution of the write(a) operation in the

computation described above. On the other hand, it does not forbid the exe-

cution of output operations performed inside transactions; indeed, data pro-

duced inside transactions are not introduced in the globally shared dataspace

until the transaction commits. For example, in the con�guration

create(x ):take9(a)?0 (take(b):commit(x )) j

create(y):write(a):take(a):write(b):commit(y)

the write(a) operation inside the transaction y could be executed even after

the test for absence in transaction x .

Consider now a similar con�guration in which the datum hai produced

inside the transaction y is not removed before the transaction commits:

create(x ):take9(a)?0 (take(b):commit(x )) j

create(y):write(a):write(b):commit(y)

In this case the transaction y cannot commit if the test for absence inside

transaction x has been already performed due to the lock policy we have

adopted; indeed, if the transaction commits, the emitted datum hbi should be

9



Busi and Zavattaro

(30) write(a):P
~a
�! haijP

(40) create(x ):P
y:�
�! yfP [y=x ]g;

;
y fresh

(50) x : take(a):PfQgRT jhaiY
x :�
�! x :PfQgR[aT Y � fxg

(70) xf
Q

i commit(x ):Pi j
Q

j haj ig
R
T j
Q

hhbhiYh

x :�j aj�

������!
Q

i Pi j
Q

j haj ij
Q

hhbhiYhnx

(12) take9(a)?P Q jhai
�
�! P

(13) read9(a)?P Q jhaiX
�
�! P jhaiX

(14) take9(a)?P Q
:a
�!Q

(15) read9(a)?P Q
:a
�!Q

(16) x : take9(a):P QfRgRT jhaiY
x :�
�! x :PfRgR[aT Y � fxg

(17) x :read9(a):P QfRgRT jhaiY
x :�
�! x :PfRgRT jhaiY[x

(18)
P

X ::a
�! P 0

P jQ
X ::a
�! P 0jQ

a 62 Data(Q) [Rem(Q)

(19)
P

:a
�! P 0

xfPgRT
x ::a
�! xfP 0gR

T[fag

(20)
P

x :A�
�! P 0

P jQ
x :A�
�! P 0jQ

Data(Q) = ; and A \ Tfa(Q) = ;

(21)
P

~a
�! P 0

P jQ
~a
�! P 0jQ

a 62 Tfa(Q)

(22)
P

~a
�! P 0

xfPgRT
x :�
�! xfP 0gRT

Table 2

Operational semantics for test for absence (symmetric rules omitted).

introduced in the globally shared dataspace and this cannot happen due to

the lock introduced by the previously executed test for absence operation.

We are now ready to present the formal syntax and semantics of the cal-

culus with test for absence. Formally, the two new operations are introduced

as guards for programs with two possible continuations:

C ::= : : : j �?C C

where:

� ::= read9(a) j take9(a)

10



Busi and Zavattaro

Moreover, we have to add two kinds of information to active transactions: the

set of data tested for absence and those removed during the transaction. This

is achieved by using the new con�gurations:

P ::= : : : j xfPgRT j x :C fPgRT

where R;T 2 }(Name) are two sets of data representing the kind of data

removed and tested for absence inside the transaction, respectively.

The new set of con�gurations is denoted by Conf9; while the new set of

labels is denoted by Label9 = Label [ fX::a;X:~a;X:A� j X : }(Txn); a 2
Name;A � Nameg. The �rst label is used to model test for absence operations

on datum a, the second label denotes the execution of a write(a) operation,

while the third label is the new label for transaction commitment indicating

also the multisets of data which have been produced, but not consumed, dur-

ing the transaction and should be introduced in the shared repository after

transaction commitment.

The rule (v) of the structural congruence � should be modi�ed according

to the new syntax:

(v 0) xfC jPgRT � x :C fPgRT

The operational semantics is de�ned by the labelled transition system

(Conf9, Label9, �!) where the labelled transition relation �! is the smallest

one satisfying the axioms and rules in Table 1 and in Table 2 where (30), (40)

(50), and (70) are substituted for the corresponding rules in Table 1. The rules

(18) and (20) use the two functions Rem(P) and Tfa(P), denoting the set of

data removed and those tested for absence inside transactions active in the

con�guration P , respectively. They are inductively de�ned as follows:

Rem(xfPgRT ) = Rem(x :CfPgRT ) = R

Rem(P jQ) = Rem(P) [ Rem(Q)

Rem(C ) = Data(haiX ) = ;

Tfa(xfPgRT ) = Tfa(x :C fPgRT ) = T

Tfa(P jQ) = Tfa(P) [ Tfa(Q)

Tfa(C ) = Tfa(haiX ) = ;

Axiom (30) introduces the new label ~a denoting the execution of a write(a)

operation. Axioms (40) and (50) are the adaptations of the corresponding rules

to the new syntax; in particular, (50) updates the set of data removed from

the environment by input operations inside the transaction. Axiom (70) intro-

duces the new label X:A� (the notation �jaj denotes the multiset union of

all the singletons fajg).

Axioms (12) and (13) describe the successful execution of the new take9(a)
and read9(a) operations, respectively. These new operations fail when no

datum hai is found in the environment; this is modelled by the label :a
introduced by the axioms (14) and (15). Axioms (16) and (17) are adaptations

11



Busi and Zavattaro

of (12) and (13) to the case in which the operations are executed inside a

transaction; in (16) the set of data removed inside the transaction is updated,

while in (17) the subscript set of transaction names associated to the read

datum is extended with the name of the current transaction.

A transition labelled with :a, representing a test for absence of a, can be

performed only if the environment does not contain any hai and also no hai
have been previously consumed inside an active transaction (see rule (18)).

Moreover, when a test for absence is performed inside a transaction, the sub-

script set T of data tested for absence must be updated (see rule (19)). Ac-

cording to rule (20) a transaction can commit only if the data it introduces in

the shared repository are not currently tested for absence inside other active

transactions; moreover, the side condition Data(Q) = ; ensures that all the

data available in the environment when a transaction commits are taken into

account by the rule (70) (which introduces transaction commitment). Rule

(21) ensures that an output operation of hai is performed only if active trans-

action exists which already tested for the absence of that kind of datum. On

the other hand, this output operation can be performed if executed inside a

transaction (see rule (22)).

The lock policy that we propose ensures the serializability of transaction;

this is formally proved by the fact that the Lemma 2.2 and the Theorem 2.3

hold also in the new calculus extended with test for absence.

4 Adding Event Noti�cation

In this section we extend the calculus with an event noti�cation mechanism

inspired by the notify primitive of JavaSpaces.

The syntax of the kernel language is simply extended with a new pre�x:

� ::= ::: j notify(a;C )

The new program notify(a;C ):P can register its interest in the future in-

coming arrivals of the data of kind a, and then receive communication of

each occurrence of this event. When this event occurs, a new instance of

the program C is activated as reaction to the event. This behaviour can be

modelled by introducing a new term on(a;C ), which is a listener that spawns

an instance of program C every time a new object hai is introduced in the

dataspace. Formally we extend the con�gurations as follows:

P ::= ::: j on(a;P)

The new set of con�gurations is denoted with Confn .

According to the JavaSpaces speci�cation \a notify ... applies to write

operations that are committed to the entire space. A notify performed under

a ... transaction additionally provides noti�cation of writes performed under

that transaction." Following this approach a listener inside a transaction has

12



Busi and Zavattaro

(23) notify(a;P):Q
�
�! on(a;P)jQ

(300) write(a):P j
Q

i on(a;Pi )
~a
�! haijP j

Q
i(Pi jon(a;Pi ))

(700) xf
Q

i commit(x ):Pi j
Q

j haj ij
Q

k on(ck ;Rk )g
R
T j
Q

hhbh iYh
j
Q

l on(dl ;Ql )
x :�j aj�

������!
Q

i Pi j
Q

j haj ij
Q

hhbh iYhnx
j
Q

l (on(dl ;Ql )j
Q

(�j aj )(dl )
Ql )

(2000)
P

x :A�
�! P 0

P jQ
x :A�
�! P 0jQ

Data(Q) = ; and A \ Tfa(Q) = ;

and A \On(Q) = ;

(2100)
P

~a
�! P 0

P jQ
~a
�! P 0jQ

a 62 Tfa(Q) [On(Q)

Table 3

Operational semantics for event noti�cation (symmetric rules omitted).

visibility of new data produced also outside that transaction. For example in

the con�guration

create(x ):notify(a; commit(x )) j write(a)

the transaction may commit. Indeed, consider the following computation:

�rst the transaction is started, then the notify operation produces the lis-

tener on(a; commit(x )); then the output operation outside the transaction is

executed and activates as reaction the program commit(x ) inside the transac-

tion; at this point the transaction may commit. This computation is clearly

non-serializable because the transaction can commit only if the output opera-

tion outside the transaction is performed after the notify operation inside the

transaction.

To tackle this problem, we propose to change the semantics of event noti-

�cation performed inside transactions: a notify operation performed under a

transaction applies only to write operations committed inside the same trans-

action.

In order to prove that transaction serializability is now satis�ed we de�ne

the following formal semantics: (Confn ;Labeln ;�!) where the labels are the

same as those of the calculus with test for absence Labeln = Label9 and the

transition relation�! is de�ned by the axioms and rules in Table 1, in Table 2,

and in Table 3, where (300), (700), (2000), and (2100) are substituted for the

corresponding rules in the previous tables.

The unique new axiom is (23) which produces a listener as e�ect of the

execution of a notify operation. The other rules are adaptations of previous

rules: (300) noti�es to listeners the occurrence of a write operation; whereas,

(700) noti�es the introduction of all the data produced by a transaction which

is currently under commitment. As for (70) the notation �jaj denotes the

multiset union of all the singletons fajg; here, we use also (�jaj )(dl) to denote

13



Busi and Zavattaro

the number of occurrences of dl inside the multiset (�jaj ).

The rules (2000) and (2100) use a new function On(P) which returns the

set of data on which there exist listeners active in the con�guration P ; it is

inductively de�ned as follows:

On(on(a;C )) = fag On(P jQ) = On(P) [ On(Q)

On(C ) = On(haiX ) = On(xfPgRT ) = On(x :C fPgRT ) = ;

This function is used in order to ensure that no other listeners exist in the

environment which could be interested in data produced by a write operation

(rule (2000)) or by a committed transaction (rule (2100)).

The semantics we propose ensures the serializability of transaction as the

Lemma 2.2 and the Theorem 2.3 hold also in the complete calculus comprising

both the test for absence and the event noti�cation operations.

References

[1] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer

Science, 96:217{248, 1992.

[2] N. De Francesco, U. Montanari, and G. Ristori. Modelling Concurrent Accesses

to Shared Data via Petri Nets. In Proc. Programming Concepts, Methods and

Calculi (PROCOMET), pages 403{422. Elsevier Publisher, 1994.

[3] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and

Practice. Addison-Wesley, 1999.

[4] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database System

Implementation. Prentice-Hall, 2000.

[5] D. Gelernter. Generative Communication in Linda. ACM Transactions on

Programming Languages and Systems, 7(1):80{112, 1985.

[6] Sun Microsystems. JavaSpaces Service Speci�cation, available at

http://java.sun.com/products/javaspaces. 1998.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] G.A. Papadopoulos and F. Arbab. Coordination Models and Languages.

Advances in Computers, 46:329{400, 1998.

[9] P. Wycko�, S. McLaughry, T. Lehman, and D. Ford. T spaces. IBM Systems

Journal, 37(3):454{474, 1998.

14


