
Electronic Notes in Theoretical Computer Science 74 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume74.html 18 pages

On the construction of a new generalization of
Runge–Kutta methods

Mark Sofroniou 1

Department of Research and Development,
Wolfram Research Inc., Champaign, Illinois, USA

Giulia Spaletta 2,3

Department of Mathematics, Bologna University,
Piazza Porta S.Donato 5, 40127 Bologna, Italy

Abstract

We give an overview of the construction of algebraic conditions for determining the
order of Runge–Kutta methods and describe a novel extension for numerically solv-
ing systems of differential equations. The new schemes, called Elementary Differen-
tial Runge–Kutta methods, include as a subset Runge–Kutta methods, Taylor series
methods, Multiderivative Runge–Kutta methods. We outline how order conditions
have been constructed for the new schemes using B-series and their composition
and give details relating to a Mathematica implementation.

Keywords. Elementary differentials; B-series; Generalized Runge–Kutta meth-
ods; geometric numerical integration.

AMS. 65L05, 05C05

1 Introduction.

In recent years there has been a growth of interest in the field of geometric
numerical integration, as evidenced by the appearance of the recent mono-
graph [8]. The essential idea is that if a differential system has a certain
structural property, then the numerical method should preserve this structure
as closely as possible. This results in improved qualitative behavior, which is
particularly evident in long time simulations.

1 Email: marks@wolfram.com
2 Email: giulia@dm.unibo.it
3 Work partially supported by the University of Bologna, funds for selected research topics.

c©2003 Published by Elsevier Science B. V.

189

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Sofroniou and Spaletta

Certain types of numerical methods that use derivatives of the vector field
cannot always reproduce the same qualitative behavior as methods involving
just the vector field [9]. To overcome this limitation, a new class of methods
is introduced here. Details relating to the automation of the new theory are
given together with explanatory examples.

This article is organized as follows. Section 2 contains a survey of the
modern graph theory based formalism for the generation of order conditions
of Runge–Kutta methods that is based on trees. Then we recall multideriva-
tive Runge–Kutta methods along with the more general concept of B-series.
In Section 3 a new class of numerical methods is introduced and the con-
nection with a graph approach is described, based on a more specific type of
tree. In Section 4 order conditions for the new numerical schemes are derived
along with an example method. In Section 5 a numerical example is given to
illustrate the advantageous qualitative behavior of the new schemes.

2 Background.

Consider the solution of an initial value problem, given in autonomous form
for simplicity and without loss of generality:

y′(t) = f(y(t)), y(0) = y0, y ∈ � d, f :
� d �→ � d .(1)

To obtain approximate solutions, the continuous system (1) is replaced by
a discrete map ψf ,h, dependent upon the system under consideration, the
numerical solver used and a step-size h. The time-evolution of (1) is then
modeled by iterating ψf ,h on the initial conditions.

A one-step numerical method has order p if, for all sufficiently regular
problems (1), the local error after one step satisfies y1 − y(h) = O(hp+1)
as h → 0 [8]. To check the order of a one-step method, the Taylor series
expansion of both y(h) and y1 have to be computed around h = 0. This leads
to algebraic order conditions to be imposed on the method coefficients.

There is a one-to-one correspondence between rooted trees and the ele-
mentary differentials appearing in the Taylor expansion. This relationship is
illustrated in Sections 2.2 and 2.4 (see [3, theorem 307B] for proof). Trees
were used in this context by Merson [15] and subsequently developed into a
major theory by Butcher and later by Hairer and Wanner (see [3,6,7,8] for a
summary). The process can be automated using computer algebra and the
Mathematica package Butcher.m is the first to implement the tree formal-
ism [18]. Techniques for constructing specialized methods can readily be built
upon the functionality [11,19]. In the work outlined here, we will use this
package as a starting point for our implementation.

2.1 Runge–Kutta methods

We now recall the definition of Runge–Kutta (RK) methods, using a form that
facilitates composition using B-series in Definition 2.2.

190

Sofroniou and Spaletta

The s-stage RK method for the differential system (1) is:

Yi = yn + h

s∑
j=1

ai,j f(Yj), i = 1, . . . , s,

yn+1 = yn + h

s∑
i=1

bi f(Yi)

(2)

and is of order p if its Taylor series expansion agrees with the exact solution
up to and including terms in hp, but not all terms in hp+1.

The parameters ai,j , bi and ci are chosen such that yn represents an ap-
proximation to the Taylor series expansion of the solution to some order in the
time step h. It has become standard practice to represent the free parameters
of RK methods using a Butcher tableau [3]:

c1 a1,1 · · · a1,s

...
...

. . .
...

cs as,1 · · · as,s

b1 · · · bs

(3)

The row-sum conditions ci =
∑s

j=1 ai,j, i = 1, 2, . . . , s, are usually assumed
to hold and appear naturally in the derivation of high order methods [6]. If
the condition ai,j = 0, 1 ≤ i ≤ j ≤ s, holds, then the method is said to be
explicit and the intermediate stages Yi in (2) can be computed sequentially.

2.2 Representation of trees.

A tree constitutes a set of vertices and edges and is a graph with no cycles. A
rooted tree is a tree where the root has been highlighted; graphically this is
emphasized by encircling the root [10]. All trees may be constructed in terms
of the trivial tree (tree with one vertex) τ .

Since we are concerned with unordered trees, where the order of the branch-
ing is unimportant, exponentiation can be used to denote multiple branching
of a subtree, k-fold branching of a subtree u being represented by uk. Grafting
is the process of joining a tree to a new vertex (the root) via an edge; l-fold
grafting onto a new root is denoted by [lu]l, the subscript being omitted if
l = 1. Butcher adopts the convention of balanced subscripts [3], so that for
example [2τ][2τ]3 is instead represented as [[τ][2τ]2].

In Mathematica, each tree is represented by a functional form, using the
symbol f. Table 1 illustrates the relationship between the two representations,
while an example tree is depicted in Figure 1.

2.3 Graph definitions

Let T denote the set of rooted trees and consider a tree:

u = [um1
1 , . . . , umn

n] ,(4)

191

Sofroniou and Spaletta

Fig. 1. The rooted tree [[τ 2][2τ]2], represented in Mathematica as f [f [f 2] f [f [f]]].

τ [τ] [2τ]2 [τ 2] [3τ]3 [2τ
2]2 [τ [τ]] [τ3]

f f [f] f [f [f]] f [f2] f [f [f [f]]] f [f [f2]] f [f f [f]] f [f3]

Table 1
Illustration of the correspondence between Butcher’s notation (above) for the
representation of trees and the functional form used in Mathematica (below).

where mi denotes the multiplicity, or number of occurrences, of the subtree ui.
We will need the functions r (the order), σ (the symmetry), γ (the density)
and α (the number of monotonic labellings), r, σ, γ, α : T �→ � which are
defined recursively for the tree in (4) as:

r(u) = 1 +

n∑
i=1

mi r(ui),

σ(u) =

n∏
i=1

mi! σ(ui)
mi ,

γ(u) = r(u)
n∏

i=1

γ(ui)
mi ,

α(u) =


 r(u)− 1

m1 r(u1), . . . , mn r(un)


 n∏

i=1

(
(mi r(ui))!

mi!

) (
α(ui)

r(ui)!

)mi

,

(5)

with r(τ) = α(τ) = γ(τ) = σ(τ) = 1 and where the multinomial coefficient
appears in the definition of α. The following relationship holds:

α(u) σ(u) γ(u) = r(u)! .(6)

The reciprocal of the density γ(u) of a rooted tree u occurs in the right hand
side of the order conditions for RK methods (see (9)). Table 2 summarizes
the values of the quantities defined in (5) for the rooted trees through order 4.

2.4 Elementary differentials

The formation of the elementary differential (or Frechet derivative) associated
with a rooted tree u is now illustrated. Given u ∈ T of order r(u), associate
a distinct label 1, . . . , r(u), with each vertex, to obtain a rooted labelled tree.
For each vertex write f with superscript ik where k is the label of the vertex.
Add subscripts il corresponding to the labelling of each descendant l unless
the vertex is terminal (has no descendants). Summing the product of these
terms over non-rooted indices gives the imth component of the required vector

192

Sofroniou and Spaletta

Name τ τ2 τ3,1 τ3,2 τ4,1 τ4,2 τ4,3 τ4,4

Representation τ [τ] [2τ]2 [τ 2] [3τ]3 [2τ
2]2 [τ [τ]] [τ3]

Order r 1 2 3 3 4 4 4 4

Density γ 1 2 6 3 24 12 8 4

Symmetry σ 1 1 1 2 1 2 1 6

Monotonic labellings α 1 1 1 1 1 1 3 1

Table 2
The nomenclature and some numbers related to the first few rooted trees.

4 5

2
1

3
6
7

Fig. 2. A rooted labelled tree corresponding to the rooted tree [[τ 2][2τ]2].

derivative, where m is the label of the root. For example, consider the tree
depicted in Figure 1. Attach labels to obtain the tree depicted in Figure 2.
The corresponding vector component is:

f i1
i2i3

f i2
i4i5

f i4 f i5 f i3
i6

f i6
i7

f i7(7)

where superscripts denote components and subscripts denote partial deriva-
tives. The summation convention is assumed (implicit summation over all
superscripts i2, . . . , ir(u) not associated with the root). The elementary differ-
ential is formed by summing the components (7) over i1.

As an example, consider the following third order total derivative:

y(3) = f (2)(f , f) + f (1)(f (1)(f)) .(8)

Notice that the relation involves the two elementary differentials associated
with the third order rooted trees of Table 1. When the differential system (1)
is scalar valued, then (8) can be written in the (perhaps more familiar) form:

y(3) = f ′′ f 2 + (f ′)2 f .

The notation fy is also commonly used to indicate the dependence of the
derivative explicitly.

The following definition relates elementary differentials to trees.

Definition 2.1 For the tree u in (4), the elementary differential is a mapping
F (u) :

� d �→ � d defined recursively by

F (u)(y) = f (m)(y)(F (u1)(y), . . .︸ ︷︷ ︸
m1

, . . . , F (un)(y)), . . .︸ ︷︷ ︸
mn

) ,

with F (τ)(y) = f(y) and m =
∑n

i=1mi.

193

Sofroniou and Spaletta

The number of occurrences of the elementary differential associated with
the rooted tree u, appearing in a Taylor expansion of the exact solution, is
given by the number of monotonic labellings α(u) (see (11)).

2.5 Elementary weights

The left hand side of an order condition for an RK method associated with
u ∈ T is formed via the elementary weight function Φ(u) which is a polyno-
mial in the method coefficients. Butcher proved that necessary and sufficient
conditions for a pth order RK method are given by [3]:

Φ(u) =
1

γ(u)
, ∀r(u) ≤ p .(9)

Additional relations, such as stability properties of the method or Butcher’s
simplifying assumptions, may give rise to a reduction in the number of trees
which need to be considered [19].

An algorithm for evaluating the elementary weight function is outlined
here, assuming the notation used for the Runge–Kutta method coefficients
and the row-sum conditions (see Section 2.1). Consider the rooted labelled
tree of Figure 2. To the root with label j associate the quantity bij . Consider
each vertex pair adjoined by an edge with labels k, l, ordered so that l denotes
the label of the vertex farthest from the root. To each such pair, associate the
quantity aikil, unless the vertex with label l is terminal, when the term cik is
used instead. The elementary weight function is then formed by summing the
product of these terms over the indices from 1 to the number of stages s. It is
not difficult to see that the summation is in fact independent of the labelling
of the tree.

In Butcher.m, Φ(u) is calculated by recursing through all levels of a tree,
starting at the root and generating the required indices along the way. Book-
keeping stores the index at the previous level. A finishing touch ensures that
the ik are displayed as consecutive letters i, j, k, . . . etc.

An alternative strategy for deriving the elementary weight function Φ(u)
has also been implemented using a tensor formulation. Advantages are that
the tensor form is independent of the number of stages of the method, it is
more compact (consumes less memory) and much more efficient than the index
notation described above. Summation over repeated indices in the elementary
weight function is recast in terms of vector and matrix operations. To illustrate
the correspondence, Φ(u) is compared in Table 3 for trees of order r ≤ 4 using
tensor notation and Butcher’s index notation. The Mathematica representa-
tion of the tensor notation is also given. In the tensor notation, a = A = [ai,j]
denotes an s× s matrix and b = [bi], c = [ci] denote s-dimensional vectors. In
addition, the s-dimensional vector e = [1, 1, . . . , 1]T is introduced along with
a diagonal matrix C = diag(c1, . . . , cs) . The operation of exponentiation of a
vector is interpreted componentwise.

194

Sofroniou and Spaletta

Functional tree Tensor Φ Mathematica Index Φ

f bT e b.e
∑

i

bi

f [f] bT c b.c
∑

i

bici

f [f [f]] bT Ac b.a.c
∑
i,j

biai,jcj

f [f2] bT c2 b.(c2)
∑

i

bic
2
i

f [f [f [f]]] bT AAc b.a.a.c
∑
i,j,k

biai,jaj,kck

f [f [f2]] bT Ac2 b.a.(c2)
∑
i,j

biai,jc
2
j

f [f f [f]] bT CAc b.(c ∗ a.c)
∑
i,j

biciai,jcj

f [f3] bT c3 b.(c3)
∑

i

bic
3
i

Table 3
Different notations used to represent the elementary weight function Φ.

Evaluation of the elementary weight function for a set of trees is not neces-
sarily an independent process. For example, the third, fifth and seventh trees
depicted in Table 3 share the same operation a.c; this result can be stored
and evaluated only once. Another advantage of the tensor representation is
that it is independent of the particular method (explicit, implicit, etc.).

2.6 Multiderivative Runge–Kutta methods

Multi–Derivative Runge–Kutta (MDRK) methods generalize RK methods by
including contributions from total derivatives of the vector field [12].

Let a
(k)
i,j , b

(k)
i , i, j = 1, . . . , s, k = 1, . . . , q, be real coefficients. The s-stage

q-derivative RK method for the differential system (1) is given by:

Yi = yn +

q∑
k=1

hk

k!

s∑
j=1

a
(k)
i,j D

k(Yj), i = 1, . . . , s ,

yn+1 = yn +

q∑
k=1

hk

k!

s∑
i=1

b
(k)
i Dk(Yi).

(10)

D denotes the differential operator, Dk the total derivative of order k and
D1 = f . MDRK methods involve a table of free parameters that are associ-
ated with each total derivative. An important special case of MDRK methods

195

Sofroniou and Spaletta

are Taylor series methods:

a
(k)
i,j = 0, i, j = 1, . . . s, k = 1, . . . q .

Let Tk denote the set of rooted trees u of order k, then the k-th total deriva-
tive is a linear combination, with coefficients α(u), of elementary differentials
F (u) [3]:

Dk =
∑
u∈Tk

α(u)F (u)(11)

The linear combination (11) with k = 3 is given in (8).

2.7 B-Series

The concept of B-series gives insight into the behavior of numerical methods
and allows extensions to more general classes of methods. The main results
of the theory of B-series began with the work of Butcher [2] and were subse-
quently generalized by Hairer and Wanner [5].

Let a : T ∪ {∅} �→ �
be a sequence of real coefficients defined for all trees

(not be confused with the coefficients a used in the notation for RK methods).
Then the following is a B-series [4]:

B(a,y) = a(∅)y +
∑
u∈T

hr(u)

σ(u)
a(u)F (u)(y) .(12)

The exact solution of (1) is a B-series. The numerical solution of a number
of numerical schemes, including RK methods and MDRK methods, are also
B-series.

2.8 Composition of B-Series

The composition of two B-series can be represented asB(b, B(a,y)) = B(ab,y)
in terms of the product of the coefficients, according to the following definition.

Definition 2.2 Let a,b : T ∪{∅} �→ �
be two sequences with a(∅) = 1. Then

for a tree u ∈ T define the composition:

ab(u) =
∑
v<u

b(v)
∏

w∈u\v
a(w) ,

where v < u denotes that v is a subtree of u sharing the same root and u \ v
is the set of trees remaining after deleting the subtree v from u at the root.

Figure 3 gives an example of the process outlined in Definition 2.2. The
composition formula for B-series gives a recursive procedure for deriving order
conditions. For RK methods Definition 2.2 should be applied repeatedly by
considering the cuttings of a tree u induced by the tree of order one, τ . This

196

Sofroniou and Spaletta

Fig. 3. Cuttings of the tree u = [τ [τ][τ 2]] induced by a tree v = [τ [τ]] together
with the remainder sets (dashed lines).

gives rise to the recursive procedure for determining the elementary weight
outlined in Section 2.5 (see [8] for more details).

3 New schemes

The goal of the remainder of this article is to show that there exist methods
which use different combinations of elementary differentials resulting in addi-
tional degrees of freedom when compared with MDRK schemes. This extra
freedom can be used to attain improved qualitative behavior.

3.1 Elementary Differential Runge–Kutta methods

Making use of elementary differentials to compute approximations at the in-
ternal stages, we define an Elementary Differential Runge–Kutta method as:

Yi = yn +
∑
u∈U

hr(u)

r(u)!

s∑
j=1

a(u)i,j F (u)(Yj), i = 1, . . . , s

yn+1 = yn +
∑
u∈U

hr(u)

r(u)!

s∑
i=1

b(u)i F (u)(Yi);

(13)

where U denotes a finite set of trees U ⊂ T . EDRK methods constitute a
subset of B-series methods and contain, in turn, MDRK methods as a sub-
set. EDRK schemes have one table of free parameters for each elementary
differential.

3.2 Connection with P-trees

It is sometimes advantageous to consider solving differential systems that are
partitioned and to solve each system with a suitable numerical method (for
example a stiff and a non-stiff solver). The analysis of partitioned systems of
differential equations can be accomplished using P-trees, or bicolor trees with
two types of non-root vertices (see [6] for a summary). Here we will consider
an application of P-trees in a slightly different context.

Order conditions for EDRK methods can be derived using the composi-
tion formula for B-series outlined in Section 2.8. However, the situation is
somewhat more complicated for EDRK methods than it was for RK methods,

197

Sofroniou and Spaletta

Fig. 4. Decomposition of the tree [2τ2]2 (above) and the associated P-trees (below).

Order 1 2 3 4 5 6 7 8 9 10

Order

conditions
1 1 2 4 9 20 48 115 286 719

Distinct

components
1 2 7 26 107 458 2058 9498 44947 216598

Table 4
The number of order conditions (rooted trees) and the number of decompositions

(P-trees) at various orders.

Fig. 5. Decomposition of third order trees [2τ]2 (left) and [τ 2] (right).

since we need to consider the remainder sets induced by all possible subtrees
of a tree u.

As will be illustrated in Section 4.1, the number of distinct terms in each
order condition for EDRK methods depends on the number of ways that a
tree can be decomposed into subtrees. The number of distinct decomposi-
tions of trees u ∈ Tk corresponds to the number of P-trees of order k. The
decomposition of the tree [2τ

2]2 into subtrees is displayed graphically in Fig-
ure 4 together with the associated P-trees. The second and fifth trees turn
up twice. The number of P-trees at each order is given in Table 4. As a
further example, consider the trees of order three. There are two rooted trees
[2τ]2 and [τ 2] which have four decompositions (associated P-trees) and three
decompositions respectively, as shown in Figure 5.

3.3 Generation of P-trees

Now that we have outlined the role of P-trees in the B-series composition
formula for EDRK methods, we require an algorithmic process for actually

198

Sofroniou and Spaletta

generating them. Given a particular rooted tree our goal is to generate the
associated P-trees. Butcher.m is used to generate rooted trees in a functional
form, in terms of the single symbol f. The essence of our implementation is that
each rooted tree should be traversed recursively and each non-root vertex is
then represented in two ways with either the symbol f or the symbol g. Details
of this process are now summarized, together with some optimizations required
for efficient implementation. Before continuing it is useful to establish lower
and upper bounds on the number of P-trees associated with a given rooted
tree.

For straight trees (where each vertex has only one descendant) and trees
with unit symmetry, σ(u) = 1, there are 2r(u)−1 associated P-trees (see the
leftmost trees in Figure 5). Thus we simply need to generate all possible
combinations of non-root vertices alternately using the symbol f or g. Sorting
is then used to ensure that the sub-trees are generated in a canonical form.

For remaining trees with σ(u) > 1, the representation (4) necessarily in-
volves a subtree with umi

i , mi > 1, so that detection of this situation in a
recursive traversal is straightforward. There are a number of possible imple-
mentation strategies.

To derive a lower bound on the number of P-trees arising from a rooted
tree, consider the bushy trees [τm], m > 1, where every non-root vertex is
terminal. There are exactlym+1 associated P-trees and they can be efficiently
generated using a binomial expansion. For example, there are m+1 terms for
(f + g)m, namely fm, f gm−1, . . . , gm. See the rightmost trees in Figure 5 for
illustration.

Powers of more general subtrees um, m > 1, u �= τ can be generated by
considering a polynomial of k distinct terms, where k is the number of P-trees
associated with the subtree u. These powers can be generated directly using
a multinomial expansion (see [1, pg. 283]):

(x1 + x2 + · · ·+ xk)
m =

∑
m1+m2+···+mk=m


 m

m1, m2, . . . , mk


 xm1

1 xm2
2 · · ·xmk

k .

The summation constraint can be handled by considering the partitions of
integers; for m = 3 it suffices to consider all possible combinations of {m1,
m2, m3} which take the values {3, 0, 0}, {2, 1, 0}, {1, 1, 1}.

Despite the existence of this direct multinomial expansion, we found that
there are more efficient ways of proceeding. One approach, which also avoids
generating duplicates, is to recursively decompose the multinomial into bi-
nomials. However, we found that it is more efficient to handle powers using
a binary power decomposition and simply sort the results and collect dupli-
cates. Intermediary results are hashed for efficient recall. We have chosen
the left-right binary decomposition since in general it generates fewer inter-
mediary duplicates than the right-left form (see [13] for a discussion of the
different product sequences involved). Often, as is the case in Section 4.1,

199

Sofroniou and Spaletta

1

2 3

1

23

1

2 3

1

23

Fig. 6. Monotonic labellings of the third order rooted tree [τ 2] (left) and an
associated P-tree (right).

we are interested in simultaneously generating P-trees from a given forest of
trees. An advantage of the binary power decomposition approach is that it
allows intermediary results to be shared across trees.

The next result that we require is a way of counting the number of times
a P-tree v turns up in the expansion of a rooted tree u into P-trees. In
order to accomplish this the quantities defined in (5) can be extended in a
straightforward way to P-trees (see [8]). Now consider the identity (6). Since
r(u) = r(v) and γ(u) = γ(v) then the following integer relationship holds:

α(v)

α(u)
=
σ(u)

σ(v)
.(14)

Formula (14) counts the number of repetitions of a P-tree v that is associated
with a given tree u.

Figure 6 depicts an example of the computation of α(u) and α(v) for
a third order tree u = [τ 2] and an associated P-tree v. The two labelled
trees associated with u are topologically equivalent, since we are dealing with
unordered trees, so that α(u) = 1. However the two labelled trees associated
with v are topologically distinct so that α(v) = 2. Therefore from (14) it
follows that the P-tree v turns up twice in the expansion of u into P-trees.

Computationally it is generally more efficient to use σ(u) for the compu-
tation in (14) instead of α(u) (and the symmetries are needed in any case in
the computation of the order conditions in Section 4.1).

4 Derivation of EDRK methods

Now that a process for the generation of P-trees associated with a rooted tree
has been outlined and formula (14) for the number of occurrences of each P-
tree has been derived, we are in a position to determine the order conditions
for EDRK methods. All that remains is to define a function to compute
the elementary weight function for EDRK methods. This entails generating
the tree dependent coefficients by recursive traversal of all P-trees associated
with each rooted tree. During the recursion of each P-tree it is necessary to
determine the tree quotient and remainder sets appearing in Definition 2.2, so
that each coefficient can be labelled with its associated subtree. In order to
match the definition of an EDRK method (13) with Definition 2.2 we need to
recursively rescale the coefficients by a factor of σ(u)/r(u)! for all subtrees u.

200

Sofroniou and Spaletta

4.1 EDRK order conditions

Table 5 gives the order conditions through order four for EDRK methods using
a tensor notation. In contrast to RK methods, each coefficient is associated
with a tree (and hence an associated elementary differential). Consider the
number of algebraic terms at order three in Table 4. Of the seven distinct
components, four appear in the order condition associated with τ3,1 in Table 5
and three appear in the other condition for τ3,2 (see Figure 5 for illustration).

Order conditions for standard RK methods are recovered from Table 5 by
considering only coefficients involving the tree τ (the last component on the
left hand side of each order condition).

Comparing the new order conditions in Table 5 with those for MDRK
methods (which constitute a subset) reveals a typographical error in [6, Sec-
tion II.13, Exercise 3] where the term

∑
i bi

(3) has been omitted.

4.2 Example method

As an example consider the order conditions for one stage implicit EDRK
schemes of order four which involve the trees τ , τ3,1 and τ3,2. This yields the
following algebraic equations:

b(τ)1 = 1 ,

b(τ)1 a(τ)1,1 =
1
2
,

1
6
b(τ3,1)1 + b(τ)1 a(τ)

2
1,1 =

1
6
,

1
3
b(τ3,2)1 + b(τ)1 a(τ)

2
1,1 =

1
3
,

1
6
b(τ3,1)1 a(τ)1,1 +

1
6
b(τ)1 a(τ3,1)1,1 + b(τ)1 a(τ)

3
1,1 =

1
24
,

1
3
b(τ3,1)1 a(τ)1,1 +

1
3
b(τ)1 a(τ3,2)1,1 + b(τ)1 a(τ)

3
1,1 =

1
12
,

1
6
b(τ3,1)1 a(τ)1,1 +

1
3
b(τ3,2)1 a(τ)1,1 + b(τ)1 a(τ)

3
1,1 =

1
8
,

b(τ3,2)1 a(τ)1,1 + b(τ)1 a(τ)
3
1,1 =

1
4
.

(15)

It is not difficult to deduce that the following coefficients give the unique
solution to the order conditions (15):

τ τ3,1 τ3,2

1
2

1

−1
4

−1
2

1
8

1
4

(16)

With the coefficients (16) the EDRK method can be written as follows:

Y1 = yn +
1
2
hF (τ)(Y1) +

1
6
h3

(
−1

4
F (τ3,1)(Y1) +

1
8
F (τ3,2)(Y1)

)
yn+1 = yn + hF (τ)(Y1) +

1
6
h3

(
−1

2
F (τ3,1)(Y1) +

1
4
F (τ3,2)(Y1)

)
.

(17)

201

Sofroniou and Spaletta

Order Tree Order condition

1 τ b(τ)T e = 1

2 τ2 = [τ] 1
2
b(τ2)

T e+ b(τ)T a(τ) e = 1
2

3 τ3,1 = [2τ]2

1
6
b(τ3,1)

T e + 1
2
b(τ2)

T a(τ) e

+1
2
b(τ)T a(τ2) e+ b(τ)T a(τ) a(τ) e = 1

6

τ3,2 = [τ 2] 1
3
b(τ3,2)

T e+ b(τ2)
T a(τ) e+ b(τ)T (a(τ) e)2 = 1

3

4 τ4,1 = [3τ]3

1
24

b(τ4,1)
T e+ 1

6
b(τ3,1)

T a(τ) e + 1
4
b(τ2)

T a(τ2) e

+1
2
b(τ2)

T a(τ) a(τ) e + 1
6
b(τ)T a(τ3,1) e

+1
2
b(τ)T a(τ2) a(τ) e+

1
2
b(τ)T a(τ) a(τ2) e

+b(τ)T a(τ) a(τ) a(τ) e = 1
24

τ4,2 = [2τ
2]2

1
12

b(τ4,2)
T e + 1

3
b(τ3,1)

T a(τ) e

+1
2
b(τ2)

T (a(τ) e)2 + 1
3
b(τ)T a(τ3,2) e

+b(τ)T a(τ2) a(τ) e+ b(τ)T a(τ) (a(τ) e)2 = 1
12

τ4,3 = [τ [τ]]

1
24

b(τ4,3)
T e + 1

6
b(τ3,1)

T a(τ) e + 1
3
b(τ3,2)

T a(τ) e

+1
4
b(τ2)

T a(τ2) e+
1
2
b(τ2)

T (a(τ) e)2

+1
2
b(τ2)

T a(τ) a(τ) e + 1
2
b(τ)T ((a(τ) e) (a(τ2) e))

+b(τ)T ((a(τ) e) (a(τ) a(τ) e)) = 1
8

τ4,4 = [τ 3]
1
4
b(τ4,4)

T e+ b(τ3,2)
T a(τ) e

+3
2
b(τ2)

T (a(τ) e)2 + b(τ)T (a(τ) e)3 = 1
4

Table 5
Order conditions through order four for EDRK methods using tensor notation.

This method is implicit in the internal stage value Y1 which should be com-
puted using Picard or Newton iteration. The iteration can be started from
Y

(0)
1 = yn, but in general better estimates can be obtained using information

from previous integration steps (see [7,8] for an overview).

It turns out that the method (17) has a number of desirable properties;
it is symmetric and symplectic [16]. The method coefficients for the tree τ
in (17) correspond to the implicit midpoint rule (one stage Gauss–Legendre
implicit RKmethod) which has order two. The higher order trees in the EDRK
method (17) serve to raise the order of the method to four. For comparison

202

Sofroniou and Spaletta

an implicit RK method requires at least two stages to attain order four; the
two stage Gauss–Legendre scheme of order four is given by:

1
4

1
12

(
3− 2

√
3
)

1
12

(
3 + 2

√
3
)

1
4

1
2

1
2

Thus EDRK methods in general attain higher order than RK methods for
fewer stages, by making use of higher order elementary differentials instead of
additional function evaluations.

5 Numerical example

In this section the EDRK method that was derived in Section 4.2 is applied
to a differential system, for which analytic expressions for the elementary
differentials are given.

5.1 Euler’s equations

Euler’s equations model the movement of a rigid body whose center of mass
is fixed at the origin [14]:

y1
′ = a1 y2 y3, a1 =

I2 − I3
I2 I3

y2
′ = a2 y3 y1, a2 =

I3 − I1
I3 I1

y3
′ = a3 y1 y2, a3 =

I1 − I2
I1 I2

(18)

where the vector y = (y1, y2, y3)
T represents the angular momentum in the

body frame and I1, I2, I3 are the principal moments of inertia. Two quadratic
first integrals of the system are:

H(y) =
1

2

(
y1

2

I1
+
y2

2

I2
+
y3

2

I3

)

I(y) = y1
2 + y2

2 + y3
2 .

The values of the principal moments are taken as I1 = 2, I2 = 1, I3 = 2/3
and the initial conditions are y1 = cos(11/10), y2 = 0, y3 = sin(11/10). With
these initial values the invariant I(y) has the effect of constraining the motion
from

� 3 to the unit sphere. The invariant H(y), in conjunction with I(y),
constrains the motion to an ellipsoid on the unit sphere.

203

Sofroniou and Spaletta

Fig. 7. Comparison of Euler’s method (left) and the EDRK method (17) (right) for
numerically solving Euler’s equations (18).

5.2 Computation of Elementary Differentials

There are three elementary differentials involved in the method (17). For
Euler’s equations (18) these are given by:

F (τ) =



a1 y2 y3

a2 y3 y1

a3 y1 y2


 ,

F (τ3,1) =



a1 y2 y3 (2 a2 a3 y1

2 + a1 a3 y2
2 + a1 a2 y3

2)

a2 y1 y3 (a2 a3 y1
2 + 2 a1 a3 y2

2 + a1 a2 y3
2)

a3 y1 y2 (a2 a3 y1
2 + a1 a3 y2

2 + 2 a1 a2 y3
2)


 ,

F (τ3,2) =




2 a1 a2 a3 y1
2 y2 y3

2 a1 a2 a3 y1 y2
2 y3

2 a1 a2 a3 y1 y2 y3
2


 .

Clearly there is a lot of repeated structure. An efficient implementation should
exploit this by evaluating all of the elementary differentials simultaneously and
sharing work across components.

5.3 Quadratic invariant conservation

In order to illustrate some of the desirable qualitative features of EDRK meth-
ods, we carried out a numerical experiment for Euler’s equations (18) with step
size 1/10 on the interval [0, 32]. Picard iteration was used to solve the implicit
equations with an error tolerance of one Unit in the Last Place in IEEE dou-
ble precision. The results are depicted in Figure 7. It is known that Euler’s
method does not conserve quadratic invariants and the solution drifts away
from the manifold (the unit sphere). In contrast the EDRK method (17) con-
serves both quadratic invariants to the order of unit roundoff and the solution
remains on the manifold.

204

Sofroniou and Spaletta

6 Conclusions

A modern graph theoretical framework for studying numerical methods for
differential equations, based on rooted trees, has been reviewed. An extension
to a new class of numerical methods has been outlined. The determination
of order conditions is tedious and error prone when carried out by hand.
This problem is compounded by the fact that the order conditions for the
new schemes are a formal superset of those for Runge–Kutta methods and are
therefore much more complicated. AMathematica package has been developed
to derive the new order conditions and details of the construction have been
presented.

Symplectic numerical methods are advantageous for solving Hamiltonian
systems of differential equations (see for example [17,8]). It is known that
MDRK schemes, and hence Taylor Series methods, cannot be symplectic un-
less they are RK methods [9]. In contrast, it has recently been demonstrated
that there exist symplectic EDRK schemes that are not RK methods. This
result, together with simplified order conditions for symplectic EDRK meth-
ods are given in [16]. Thus by expanding the class of numerical integrators
we are able to utilize derivatives of the vector field but maintain many of the
desirable qualitative features that are commonplace in geometric numerical
integration. A numerical example has been presented as illustration here and
several more are given in [16].

Acknowledgements

The authors would like to thank Reinout Quispel and Per Christian Moan for
collaboration on theoretical aspects of this work and the Mathematical and
Statistical Sciences Department, LaTrobe University, Melbourne, for hospital-
ity.

References

[1] Abramowitz, M., and Stegun, I. A., “Handbook of Mathematical Functions,”
9th Ed., Dover Publications, New York, 1970.

[2] Butcher, J. C., An algebraic theory of integration methods, Math. of Comp. 26,
117 (1972), 79–106.

[3] Butcher, J. C., “The Numerical Analysis of Ordinary Differential Equations,”
John Wiley and Sons, Chichester, 1987.

[4] Butcher, J. C., and Sanz-Serna, J. M., The number of conditions for a Runge–
Kutta method to have effective order p, Appl. Numer. Math. 22 (1996), 103–111.

[5] Hairer, E., and Wanner, G., On the Butcher group and general multi-value
methods, Computing 13 (1974), 1–15.

205

Sofroniou and Spaletta

[6] Hairer, E., Nørsett, S. P., and Wanner, G., “Solving Ordinary Differential
Equations I: Nonstiff Problems,” 2nd Ed., Springer Series in Computational
Mathematics 8, Springer-Verlag, Berlin, 1993.

[7] Hairer, E., and Wanner, G., “Solving Ordinary Differential Equations II:
Stiff and Differential Algebraic Problems,” 2nd Ed., Springer Series in
Computational Mathematics 14, Springer-Verlag, Berlin, 1996.

[8] Hairer, E., Lubich, C., and Wanner, G., “Geometric Numerical Integration,”
Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin,
2002.

[9] Hairer, E., Murua, A., and Sanz-Serna, J. M., The non-existence of symplectic
multi-derivative Runge–Kutta methods, BIT 34, 1 (1994), 80–87.

[10] F. Harary, “Graph Theory,” Addison–Wesley, London, 1969.

[11] Iserles, A., Ramaswami, G., and Sofroniou, M., Runge–Kutta methods for
quadratic ordinary differential equations, BIT 38, 2 (1998), 315–346.

[12] Kastlunger, K. H., and Wanner, G., Runge Kutta processes with multiple nodes,
Computing (Arch. Elektron. Rechnen) 9 (1972), 9–24.

[13] Knuth, D. E., “The Art of Computer Programming: Seminumerical
Algorithms,” 3rd. Ed., Addison Wesley, Reading, Massachusetts, 1998.

[14] Marsden, J. E., and Ratiu, T. S., “Introduction to Mechanics and Symmetry,”
Springer-Verlag, New York, 1994.

[15] Merson, R. H., An operational method for the study of integration processes,
Proc. Symp. Data Processing, Weapons Research Establishment, Salisbury,
Australia, 110 (1957), 1–25.

[16] Moan, P. C., Quispel, R. G. W., Sofroniou, M., and Spaletta, G., Symplectic
elementary differential Runge–Kutta methods, in preparation (2003).

[17] Sanz-Serna, J. M., and Calvo, M. P., Numerical Hamiltonian Problems, Applied
Mathematics and Mathematical Computation 7, Chapman and Hall, London,
1994.

[18] Sofroniou, M., Symbolic derivation of Runge–Kutta methods, J. Symb. Comp.
18, 3 (1994), 265–296.

[19] Sofroniou, M., and W. Oevel, W., Symplectic Runge–Kutta schemes I: order
conditions, SIAM J. Num. Anal. 34 (1997), 2063–2086.

206

