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Abstract

The ineffectiveness of signature-based malware detection systems prevents the detection of malware, even objects of trivial obfus-
cation techniques, makes mobile devices vulnerable. In this paper a dynamic technique to detect malware on Android platform is
proposed. We exploit a set of energy related features i.e., feature which can be symptomatic of abnormal battery consumption. We
built different models exploiting four different supervised machine learning classification algorithms, obtaining for all the evaluated
models an accuracy greater than 0.91.
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1. Introduction and Related Work

Mobile devices widespread diffusion is attracting malicious attackers, which develop more and more aggressive
code to steal private and sensitive information from our devices.

Mobile malware usually needs to perform system-intensive tasks to perform the harmful action3. This slows down
the operating system, but it also has a secondary effect: all that processing power has to be fuelled by the battery. This
results in a device keeping its charge much less than beforehand and requiring more charges across the week than
before. Of course, there are multiple reasons for a fast-draining battery, such as an intensive app deliberately installed
or simply battery getting old.

Dynamic methods for malware detection are based on features that can only be observed at runtime and that
represent the behavior of applications (memory, CPU, network and statistics on system calls). Static approaches
are less computationally intense than dynamic methods as they do not need applications to be run for identifying
malware2,5,12, but they are typically ineffective with obfuscated code as well as with run-time infections. On the
other hand, dynamic methods are effective in identifying new threats, outperforming static methods, but they need
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applications to be run to identify malicious behaviour, potentially infecting the device6. In addition dynamic methods
are able to discriminate malware even when its code is obfuscated14.

In current state of the art literature, researchers usually focused their attention on the detection of malware for
mobile platform by analysing code2,5 or device resources6. Few attention is dedicated to the energy consumption
metrics, although it is a possible premonition of the presence of a malware.

2. The Method

The dynamic technique we propose relies on runtime observation of application under analysis behavior. We
consider three categories: CPU, Memory and Network.

In detail in the CPU category is divided in two subcategories i.e., CPU Usage and Virtual Memory. In the first one
falls the following metrics:

1. user: % of memory used by the application under analysis;

2. kernel: % of the memory requested by the Android kernel while the application under analysis is running.

In the second CPU subcategory (i.e., Virtual Memory) falls the number of minor and major page faults.
The Memory category there are following subcategories:

• Native memory: is the memory provided to the application process by the operating system. The memory is
used for heap storage and other purposes;

• Dalvik memory: is the memory requested for the Dalvik virtual machine process;

• Cursor memory: is the memory requested for read-write access operation to the result set returned by database
queries;

• Android shared memory: is the memory requested to share data between different processes.

In particular for each Memory subcategories following six features are gathered:

• PSS: is the total Proportional Set Size (PSS) is the RAM used by process. This is the sum of all PSS fields
above it. It indicates the overall memory weight of your process, which can be directly compared with other
processes and the total available RAM.

• shared dirty: is the amount of shared RAM that will be released back to the system when your process is
destroyed. Dirty RAM is pages that have been modified and so must stay committed to RAM (because there is
no swap in Android)

• private dirty: is the amount of RAM that will be released back to the system when your process is destroyed.
Dirty RAM is pages that have been modified and so must stay committed to RAM (because there is no swap in
Android)

• heap size: represents the RAM total usable by Dalvik Virtual Machine allocation for the application under
analysis.

• heap alloc: represents the RAM actually allocated by Dalvik Virtual Machine allocation for the application
under analysis.

• heap free: represents the allocable RAM (but not allocated yet) by Dalvik Virtual Machine for the application
under analysis.
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Table 1. The energy features involved in the study.
Category Feature Names

CPU CPU Usage User, Kernel
Virtual Memory Page Minor Faults, Page Major Faults

Memory

Native memory Native Pss, Native Shared Dirty, Native Private Dirty, Native Heap Size, Native Heap Alloc, Native
Heap Free

Dalvik memory Dalvik Pss, Dalvik Shared Dirty, Dalvik Private Dirty, Dalvik Heap Size, Dalvik Heap Alloc, Dalvik
Heap Free, Cursor Pss

Cursor memory Cursor Shared Dirty, Cursor Private Dirty
Android shared memory Ashmem Pss, Ashmem Shared Dirty, Ashmem Private Dirty

Link layer Number of ARP packets, Number of ICMP packets
Network Internet layer Number of IPv4 packets, Maximum packet size in bytes, Minimum packet size in bytes, Number of

bytes, Number of packets, Number of IPv6 packets
Transport layer Number of TCP packets, Number of UDP packets

Fig. 1. Training.

Fig. 2. Testing.

With regard to the third category, the Network one, three subcategories are considered: link layer (with following
features: Number of ARP packets, Number of ICMP packets, Size in byte standard deviation ), internet layer (with
following features: Number of IPv4 packets, Maximum packet size in bytes, Minimum packet size in bytes, Number
of bytes, Number of packets, Number of IPv6 packets) and transport layer (with following features: Number of TCP
packets, Number of UDP packets).

In total, we extract 38 features from the execution traces, all referred to single applications resource usage. All the
features considered are listed in Table 1.

Out of the considered features, 24 are related to different aspects of Memory usage. With regard to the CPU we
extract 4 features and 10 are related to the network category.

Once described the proposed feature set, Figures 1 and 2 respectively show the Training and the Testing phases of
the proposed method.

In detail in the Training phase we consider a set of labelled malicious and legitimate Android applications, these
applications are ran on a virtual Android environment to extract the energy feature set.

The feature set related to the legitimate and malicious applications with the relative labels (i.e., malicious or legiti-
mate) are the input for the supervised machine learning algorithms which input is a model.

The aim of the Testing phase (depicted in Figure 2) is to evaluate the effectiveness of the built model to discriminate
between legitimate and malware Android applications.

Once gathered the energy feature from an unknown Android application, we test the feature set against the model
built in the Training phase: the output is binary i.e., legitimate or malicious.
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Table 2. The mobile malware families evaluated, the dataset column is related to the family repository: D for Drebin, while H for HelDroid.

Family #samples dataset
Adrd 84 D
Basebridge 48 D
DroidDream 81 D
DroidKungFu 100 D
FakeDoc 100 D
FakeInstaller 100 D
Geinimi 85 D
GinMaster 100 D
Kmin 100 D
Opfake 100 D
Plankton 100 D
Ransomware 100 H

3. The Evaluation

In this section we present the results we obtained.
We experiment the proposed method on a real-world dataset composed of legitimate and malicious applications

belonging to different Android malware families.
We used a web crawler able to automatically download APK files from the Google official market1. The output of

this step is an extended collection of Android applications. To obtain the malware dataset applications, we obtained
samples from two malicious mobile application repositories: the Drebin? and the HelDroid? ? dataset. In detail,
in the following study we consider a total of 2098 mobile applications, 1000 belonging to Google Play, while 1098
belonging to malware repositories (belonging to 12 different malware families).

Table 2 shows the malicious families considered.
Every family contains samples which have in common several characteristics, like payload installation, the kind of

attack and events that trigger malicious payload For instance FakeInstaller samples have the main payload in common
but have different code implementations, and some of them also have an extra payload. FakeInstaller malware is
server-side polymorphic, which means the server could provide different apk files for the same URL request. There
are variants of FakeInstaller that not only send SMS messages to premium rate numbers, but also include a backdoor
to receive commands from a remote server. The Opfake samples make use of an algorithm that can change shape
over time so to evade the antivirus. The Opfake malware demands payment for the app or content through premium
text messages. This family represents the first polymorphic malware in Android environment. DroidKungFu installs a
backdoor that allows hackers to access the phone when they want and use it as they please. They could even turn it into
a bot. This malware encrypts two known root exploits, exploit and rage against the cage, to break out of the Android
security container. When it runs, it decrypts these exploits and then contacts a remote server without the user knowing.
GinMaster family contains a malicious service with the ability to root devices to escalate privileges, steal confidential
information and send to a remote website, as well as install applications without user interaction. The malware can
successfully avoid detection by mobile anti-virus software by using polymorphic techniques to hide malicious code,
obfuscating class names for each infected object, and randomizing package names and self-signed certificates for
applications. Geinimi represents the first Android malware in the wild that displays botnet-like capabilities. Once the
malware is installed, it has the potential to receive commands from a remote server that allows the owner of that server
to control the phone. Geinimi makes use of a bytecode obfuscator, Adrd family is very close to Geinimi but with less
server side commands, it also compromises personal data such as IMEI and IMSI of infected device. DroidDream is
another example of botnet, it gained root access to device to access unique identification information. This malware
could also downloads additional malicious programs without the user’s knowledge as well as open the phone up to

1 https://play.google.com/
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control by hackers. The name derives from the fact that it was set up to run between the hours of 11 pm and 8 am
when users were most likely to be sleeping and their phones less likely to be in use. Plankton uses an available native
functionality (class loading) to forward details like IMEI, browser history to a remote server. Also BaseBridge sends
information to a remote server running one ore more malicious services in background, like Kmin that transmits data
like IMEI, IMSI and other files to premium-rate numbers. The Ransomware malicious payload exhibits the ability
to deny the access to the mobile device7, usually by locking the user interface or using a popup overlay and/or by
encrypting the files stored on the external storage.

Once obtained the dataset, execution traces containing this information need to be collected by executing the
applications in a controlled environment. These traces have been recorded by running the applications, one at a time,
on the Android emulator. Monitoring scripts, with a monitoring interval of five seconds have been used. The procedure
of executing the applications was automated by means of a Linux shell script, which has been run on a Linux Mint
PC and made use of Android Debug Bridge (adb) 2, a command line tool that allows the PC to communicate with an
emulator instance or with an Android device. Network log files were collected by capturing the network traffic of the
emulator. Network statistics have been obtained by logging all network traffic of the emulator and by successively
running the tcpstat tool, set to sample the features at 5s intervals. Log files for CPU, memory, and network are later
unified by using timestamps recorded at execution time.

For applying stimuli to applications, the Monkey application exerciser 3 has been used in the script. It is a
command-line tool that sends a pseudo-random stream of user events into the system, which acts as a stress test
on the application software. One of the main problems of dynamic detection methods is in the execution of samples
during the development phase. In fact, there is currently no method to verify automatically that malicious payloads
are activated correctly. Due to the high number of samples that need to be used to obtain good quality classifiers, it
is not even possible to perform this verification manually. This introduces some additional uncertainty in dynamic
detection methods. In this work, we have tried to minimize the number of non-activated malicious payloads by pro-
viding a high number of stimuli (20,000, with a limit on execution time of 10 minutes) to each application (both
malware and benign). It is our belief that the duration that we have chosen is a good tradeoff between time when
most of the ransomware samples expose their malicious intentions and duration of the overall experimentation. The
Android emulator of choice is the one included in the Android Software Development Kit 4 release 20140702, running
Android 4.0, that was one of the most popular versions of Android. The reason why an Android emulator has been
chosen instead of real devices is that this solution provides the ability to run a large number of applications, making
the obtained dataset more significant. The Android operating system has been re-initialized each time before running
each application, to avoid possible interferences (e.g., changed settings, running processes, and modifications of the
operating system files) from previously run samples.

The classification analysis consists of building classifiers in order to evaluate the feature vector accuracy to distin-
guish between legitimate and malware Android applications.

For training the classifier, we defined T as a set of labeled application instances (M, l), where each M is associated
to a label l ∈ {legitimate, malicious}. For each M we built a feature vector F ∈ Ry, where y is the number of the
features used in training phase (y = 38). For the learning phase, we use a k-fold cross-validation: the dataset is
randomly partitioned into k subsets. A single subset is retained as the validation dataset in order to evaluated the
obtained model, while the remaining k−1 subsets of the original dataset are considered as training data. We repeated
the process for k = 10 times; each one of the k subsets has been used once as the validation dataset. To obtain a single
estimate, we computed the average of the k results from the folds.

We evaluated the effectiveness of the classification method with the following procedure:

1. build a training set T⊂D;

2. build a testing set T ′ = D÷T;

3. run the training phase on T;

2 http://developer.android.com/tools/help/adb.html
3 http://developer.android.com/tools/help/monkey.html
4 https://developer.android.com/sdk/index.htm
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4. apply the learned classifier to each element of T ′.

Each classification was performed using 30% of the dataset as training dataset and 70% as testing dataset employing
the full feature set.

In order to enforce the conclusion validity we consider four different classification algorithms11,10:

• HoeffdingTree9,8 (HT): is an incremental, anytime decision tree induction algorithm that is capable of learning
from massive data streams, assuming that the distribution generating examples does not change over time Ho-
effding trees exploit the fact that a small sample can often be enough to choose an optimal splitting attribute.This
idea is supported mathematically by the Hoeffding bound, which quantifies the number of observations (in our
case, the instances) needed to estimate some statistics within a prescribed precision (in our case, the goodness
of an attribute);

• Support Vector Machine16: the support-vector machine (SVN) constructs a hyperplane or set of hyperplanes in
a high- or infinite-dimensional space, which can be used for classification, regression, or other tasks like outliers
detection. Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest
training-data point of any class (so-called functional margin), since in general the larger the margin, the lower
the generalization error of the classifier? ;

• Guassian13: it involves a Gaussian process and it measures the similarity between points (the kernel function) to
predict the value for an unseen point from training data. The prediction is not just an estimate for that point, but
also has uncertainty informationit is a one-dimensional Gaussian distribution (which is the marginal distribution
at that point? ;

• K-nearest neighbours classifier 1 (IBk): is a non-parametric method used for classification and regression. In
both cases, the input consists of the k closest training examples in the feature space. In detail, in k-NN classi-
fication, the output is a class membership. An object is classified by a plurality vote of its neighbors, with the
object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically
small). If k=1, then the object is simply assigned to the class of that single nearest neighbor.

In the classification analysis, five metrics are considered: Precision, Recall, F-Measure and ROC Area.
The precision has been computed as the proportion of the examples that truly belong to class X among all those

which were assigned to the class. It is the ratio of the number of relevant records retrieved to the total number of
irrelevant and relevant records retrieved:

Precision = t p
t p+ f p

where tp indicates the number of true positives (for instance, a malware application rightly detected as malicious)
and fp indicates the number of false positives (for instance, a trusted application wrongly detected as legitimate).

The recall has been computed as the proportion of examples that were assigned to class X, among all the examples
that truly belong to the class, i.e., how much part of the class was captured. It is the ratio of the number of relevant
records retrieved to the total number of relevant records:

Recall = t p
t p+ f n

where tp indicates the number of true positives and fn indicates the number of false negatives (for instance, a
malware application wrongly detected as legitimate).

The F-Measure is a measure of a test’s accuracy. This score can be interpreted as a weighted average of the preci-
sion and recall:

F-Measure = 2∗ Precision∗Recall
Precision+Recall
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The Roc Area is defined as the probability that a positive instance randomly chosen is classified above a negative
randomly chosen.

Table 3 shows the classification results.

Algorithm Precision Recall F-Measure Accuracy
SVM 0.913 0.933 0.929 0.937
HT 0.928 0.938 0.931 0.940

Gaussian 0.909 0.911 0.915 0.919
IBk 0.911 0.908 0.915 0.920

Table 3. Performance results.

All the considered classification algorithms obtain a precision and a recall greater than 0.9. In detail the model
obtaining the best performances (i.e., a precision equal to 0.928 and a recall equal to 0.938) is the one obtained with
the HoeffdingTree algorithm. This is symptomatic that the proposed feature set is able to effectively discriminate
between legitimate and malware Android application.

4. Conclusion and Future Work

In this paper a malware detector for Android platform is proposed. We consider 38 features belonging to three dif-
ferent categories: CPU, Memory and Network, subsequently the feature set is considered as input for four supervised
machine learning algorithms. We reach a precision equal to 0.928 and a recall equal to 0.938 with the HoeffdingTree
classification algorithm. Future works are related to the application of formal verification technique15,4 to the energy
related feature set considered with the aim to reach better performances.
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