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Abstract This paper proposes an approach to modelling and exhaustive verifica-
tion of mutual exclusion algorithms which is based on Timed Automata in the
context of the popular UPPAAL toolbox. The approach makes it possible to study the
properties of a mutual exclusion algorithm also in the presence of the time
dimension. For demonstration purposes some historical algorithms are modelled
and thoroughly analyzed, going beyond some informal reasoning reported in the
literature. The paper also proposes a mutual exclusion algorithm for N ≥ 2 pro-
cesses whose model checking confirms it satisfies all the required properties.
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1 Introduction

Mutual exclusion is the well-known problem faced by a collection of N ≥ 2
asynchronous processes sharing some data variables. To avoid interference and
ultimately unpredictable behavior of shared data, processes should access one at a
time the common variables, i.e., they should execute one at a time their critical
sections.
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Different solutions are described in the literature ranging from hardware to
software based solutions. Software solutions can depend on blocked-queue sema-
phores or on a monitor structure. More challenging are solutions which make use of
a few weak and unfair semaphores [1, 2] or they can be pure-software solutions,
i.e., based on some communication variables and synchronization protocols regu-
lating the try (or enter) and the exit sections which respectively precede and follow
an execution of the critical section (CS). A process engaged into the try-protocol
competes for entering its CS. A process not interested in entering its CS, e.g.,
because it has just finished executing its CS and the exit-protocol, runs its so called
non critical section (NCS).

Methods for proving the correctness of mutual exclusion algorithms include
proof-theoretic approaches [1] and model checking [3, 4]. Model checking can be
preferable because it ensures formal modelling and automates the analysis activi-
ties. In particular, the use of Timed Automata [5] in the context of the popular and
efficient UPPAAL toolbox [6] is advocated in this work, because it permits an in
depth exploration of the behavior of an algorithm also along the time dimension,
which can be difficult in a proof-theoretic approach.

This paper proposes a modelling approach based on UPPAAL and applies it to
property checking of two known algorithms and to a new developed one. The
afforded analysis enables to go beyond the informal reasoning often reported in the
literature (see, e.g., the different indications about the worst case waiting time of
competing processes in the N >2 scenario of the Peterson algorithm [7, p. 101]).
All of this testifies the known difficulties in mastering a concurrent solution due to
complex action interleavings.

The paper argues that the proposed approach is of interest today in the software
engineering domain because it helps the development of correct concurrent systems
which can exploit the execution performance of multi-core machines.

The remainder of this paper is organized as follows. First the basic concepts,
concurrency model and specification language of UPPAAL are summarized. Then the
proposed modelling approach for mutual exclusion algorithms is presented. After
that the Dekker’s algorithm for 2 processes [8], the Peterson’s algorithm for N ≥ 2
processes [9] and a new algorithm for N ≥ 2 processes are modelled and thoroughly
analyzed. Finally, conclusions are presented with an indication of on-going and
future work.

2 An Overview to UPPAAL

A timed automaton [5, 6] is a finite automaton augmented with a set C of
real-valued variables named clocks. Clocks model the time elapsing and are
assumed to grow synchronously at the same pace of the hidden system time.
Constraints, of the form x∼ k or x− y∼ k where x and y are clocks, k is a
non-negative integer and ∼ ∈ f≤ , < , = , > , ≥ g, are called clock constraints and
can be introduced to restrict the behavior of the automaton. The set of all possible
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constraints over a set of clocks C is denoted by BðCÞ. A set of clock constraints
used to label an edge it is called a guard. Clock constraints of the type x∼ k can also
be used to label locations and are called invariants. An automaton can stay in a
location as long as the clocks satisfy the location invariant. Additionally, edges can
be labeled by a set of clocks which are reset as the corresponding transition is taken,
and by an action label ranging over a finite alphabet Σ.

Formally, a timed automaton A is as a tuple ðL, l0,E, IÞ, where:
• L is a finite set of locations,
• l0 ∈ L is the initial location,
• E∈L×BðCÞ×Σ×2C × L is a set of edges and
• I: L→BðCÞ is the invariant function.

The notation l → g, a, rl′ stands for ðl, g, a, r, l′Þ∈E, where g is a guard, a is an
action, r is a set of clocks to be reset. The state of a timed automaton is a pair ðl, uÞ
where l is a location and u is a clock valuation, i.e., a function that associates a
non-negative real value to each clock, and ðl0, 0jCjÞ is the initial state. Let u be a
clock valuation on a set of clocks C, and d∈R+ a delay; u+ d denotes the clock
assignment that maps all x∈C to uðxÞ+ d and r⊆C, ½r↦ 0�u denotes the clock
assignment that maps to 0 all clocks in r and agree with u for the other clocks. The
semantics of a TA is defined by two state transition rules, namely delay and action
transitions:

•

ðl, uÞ → dðl, u+ dÞ if ðu+ dÞ∈ IðlÞ for any d∈R+

•

ðl, uÞ → aðl′, u′Þ if l → g, a, rl′, u∈ g, u′ = ½r↦ 0�u and u′ ∈ Iðl′Þ.

In the general case, for a given state ðl, uÞ there are a continuous infinity values of
d for which the first rule can be applied and hence, while the first state component
l can assume only a finite set of values, the possible clock valuations are continuous
infinity. Therefore, the state-space of a TA is infinite and uncountable. Despite this,
reachability analysis of TA is decidable [5] because the infinite states of a TA can
be partitioned into a finite set of equivalence classes called zones. A zone is a
solution of a set of clock constraints.

TA can be composed to form a network of concurrent TA whose semantics
depends on action interleavings and hand-shake synchronizations. UPPAAL adopts
the notion of a channel for input and output action synchronization and uses a
CSP-like notation. The edge of automaton labeled with ch! (output action), where
ch is a channel, matches with an edge of another automaton labeled with ch?
(input action). At a given time it may exist more than one pair of enabled and
matched edges in which case a choice is made non-deterministically. Taking a
transition (edge) in an automaton denotes an atomic action in the TA concurrent
model. Moreover, the update of a sender is executed before that of a receiver.
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The UPPAAL model-checker generates on-the-fly the zone graph of a network of
TA for checking a subset of TCTL (Timed Computation Tree Logic) formulas [10]
as in the following:

• E<>∅ (Possibly ∅, i.e., a state exists where ∅ holds)
• A½�∅ (Invariantly ∅, equivalent to: not E<> not∅)
• E½�∅ (Potentially Always ∅, i.e., a state path exists over which ∅ always holds)
• A<>∅ (Always eventually ∅, equivalent to: not E½� not∅)
• ∅− − >ψ (∅ always leads-to ψ , equivalent to: A½� ð∅ imply A<>ψÞ)
where ∅ and ψ are state properties (formulas), e.g., clock constraints or boolean
expressions over predicates on locations. Verification of properties expressed by the
above formulas reduces to reachability analysis, which is accomplished by
traversing the zone graph associated with a TA network, and intersecting the zone
associated with the formula with the zone of visited state nodes.

To facilitate the modelling task, integer variables with a bounded set of values
and array of integers, clocks or channels can be introduced. A notion of automata
templates which can be instantiated with different values for their parameters is
supported. Integer variables, clocks and channels can be declared globally into a TA
network, locally to a template, or used as template parameters. Locations can also
be labeled as being committed (C) or urgent (U) both of which must be abandoned
with no time passing. The exits from simultaneous committed locations are inter-
leaved to one another, as well as the exits from urgent locations are interleaved each
other, but committed locations have precedence over urgent locations. Channels can
be declared to be urgent. An enabled synchronization on a urgent channel is
required to occur without time passage.

UPPAAL consists of an editor, a simulator and the model checker. It is worth
mentioning the possibility of building a counterexample (or diagnostic trace) of a
not satisfied property, which can be analyzed in the simulator. The diagnostic trace
furnishes evidence of a sequence of transitions bringing the model in a state not
fulfilling the property.

3 Modelling Approach Based on UPPAAL

The common structure of processes regulated by a given mutual exclusion algo-
rithm is assumed to be the following:

process(i) = loop NCS; try-protocol; CS; exit-protocol;
endloop.

The parameter i identifies the generic instance of the process abstracted by an
UPPAAL template. The critical section is modelled by a normal location (CS) with an
associated clock invariant to enforce a maximum duration (C constant). The used
clock is a local variable of the process. The non critical section is mapped to a
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normal location (NCS) which acts as the initial one for the process automaton. The
absence of a clock invariant for NCS ensures an arbitrary time can elapse before the
next arrival of the process competing for entering its CS.

A critical point of process modelling is the representation of the actions of the try
and exit protocols. To reproduce action interleaving and non determinism among
processes, each elementary action (a variable assignment or a single condition test)
is mapped onto an atomic action of the UPPAAL model, i.e., an update or a guard of a
command of an edge exiting from a location. In order to ensure the finite-delay or
weak-fairness property of the concurrent model [1], that is an action which is
continuously enabled eventually fires, one could attach to the source location of an
action a clock invariant mirroring its maximal duration. For simplicity, though,
without any generality loss, the source location of an action is modelled as an
urgent one. Therefore, each basic action is supposed to consume a negligible time
with respect to the CS. However, to enable time advancement of a process, e.g., in
the try-protocol, a critical point is the modelling of busy-waiting loop structures of
the type: while (cond) body, where cond can be a complex condition and
body can be void. Such loops are achieved by using a normal location (where time
is allowed to pass) whose exiting is forced by an edge with guard !cond (cond is
thus evaluated atomically and can exploit a user-defined function or the basic
operators exists, forall, and sum which UPPAAL offers for checking arrays)
and an urgent channel synchronization (see the unicast channel synch in Fig. 4).
To preserve action interleaving and non determinism of processes during a complex
condition evaluation, though, the exiting from a busy waiting location represents a
tentative exit, thus it is followed by a detailed evaluation of !cond split into its
component parts. During the detailed evaluation, the control can be transferred
again to the busy-waiting location would cond be found still satisfied.

The worst case waiting time for a competing process can then be evaluated by
observing the (hopefully bounded) number of CS s which are executed on behalf of
competing processes, before the current one is enabled to enter its CS. Such a
number (overtaking factor) can be determined either by counting the number of
by-passes experimented by a competing process or by bounding the process clock
during the try protocol.

The following properties will be verified on a modelled mutual exclusion
algorithm.

Mutual exclusion (safety)–One and only one process can enter its CS at one
time.

Deadlock free (safety)–The execution of the try/exit protocols in no case would
induce a deadlock among processes.

Progress (liveness)–A process executing into its NCS would not forbid other
processes to enter their CS.

Starvation free (bounded liveness)–A process competing for entering its CS
eventually succeeds; that is, the number of by-passes of other competing processes
is bounded.
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4 Dekker’s Algorithm

It has been the first algorithm proposed in 1962 for solving the mutual exclusion
problem [8] for N = 2 processes. Three globals are used: boolean b½0�, b½1� and the
integer k. Figure 1 shows the code of process i (j=1− i denotes the partner pro-
cess). b½i�= true expresses willingness of process i to entering its CS. Process i can
actually enter its CS when the turn variable k evaluates to i. The initial value of
k can be either 0 or 1.

Figures 2, 3 and 4 show a corresponding UPPAAL model achieved according to
the approach described in Sect. 3. The template process in Fig. 3 is named Process
and admits one single const parameter i of type pid, the integer subrange type of
process identifiers. Clock x serves to measure the elapsed time during the CS, or the
waiting time during the try-protocol. Global declarations of the model and the local
declarations of the ProcessðiÞ template are collected in Fig. 2. Also the system
configuration with implicit instantiation controlled by the pid parameter of Process
(the two instances have names Processð0Þ and Processð1Þ) is portrayed in Fig. 2.
The Synch automaton is depicted in Fig. 4. It is always ready to send a signal on the
urgent synch channel.

Absence of deadlocks was checked by the query A½�!deadlock (deadlock is an
UPPAAL keyword) which is satisfied. Mutual exclusion was checked by the query:
A½�forallði: pidÞ forallðj: pidÞProcessðiÞ.CS&&ProcessðjÞ.CS imply i= = j which is
satisfied (would two processes be simultaneously in their CS, then the two pro-
cesses are necessarily the same process). The progress property was checked by a
query like E<>Processð0Þ.CS&&Processð1Þ.NCS which is satisfied (it should be
noted that being identical the two processes, one query suffices).

General liveness of the model was checked by query:
Processð0Þ.while− − >Processð0Þ.CS which is not satisfied. This in turn mirrors
the model (and the algorithm) has a zeno-cycle, which means any process can

Fig. 1 Dekker’s algorithm
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enter/exit its critical section consecutively an infinite number of times and in 0 time
(both CS and NCS are exited in 0 time). Therefore, the overtaking factor is theo-
rically infinite. The zeno-cycle disappears by assuming the critical section has a
duration strictly greater than zero (time-dependent behavior). As a consequence, the
guard x>0 was added to the model in Fig. 3 on the edge exiting the CS location
and the remaining properties were verified on this modified model.

Fig. 2 UPPAAL declarations

synch!
Home

Fig. 4 The Synch automaton

Fig. 3 Dekker’s ProcessðiÞ automaton
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The starvation-free property was assessed by finding the supreme value of the
clock x using the query: sup Processð0Þ.whilef g:Processð0Þ.x. Clock x is reset
when the process starts competing, i.e., it reaches the while location. Similarly, it is
reset when entering the CS location, i.e., abandoning the Enter location with
b½j�= = false. The maximum value of the waiting time was found to be 2*C, i.e.,
there are, in the worst case, two by-passes of Processð1Þ whereas Processð0Þ is
competing and vice versa.

The worst case can happen when both processes are in the while location and
b½0�= true∧ b½1�= true∧ k=1. As a consequence Processð0Þ reaches the BW
location waiting for k! = 1. One time Processð1Þ enters its CS and consumes C time
units. On exiting the CS location, it executes k= j (where j denotes Processð0Þ) and
resets its b½i� then enters its NCS which is immediately abandoned, i.e., in 0 time,
then starts again competing by raising b½i�= true. Always in 0 time Processð1Þ
reaches again Enter and being b½j�= = false it re-enters CS, thus consuming another
critical section. The problem is that, for non determinism, Processð0Þ in BW cannot
immediately benefit of the update k= j executed by Processð1Þ. But before exiting
the second CS certainly Processð0Þ reaches its while location. Now being k=0 the
next access to critical section will be granted only to Processð0Þ. The above
behavior was confirmed by UPPAAL by answering to the query E< >Processð0Þ.
while&&Processð0Þ.x= =2*C and by generating a corresponding diagnostic
trace. It is worth noting that the worst case waiting time of processes also holds on
the original model in Fig. 3.

5 Peterson’s Algorithm

The algorithm was proposed in [9] to handle both the case N = 2 and the more
general case of N >2 processes. Figure 5 portrays the general version of the
algorithm and the declarations of a corresponding UPPAAL model.

Processes are numbered 1, 2, . . . ,N. They have to climb a ladder in order to
enter the CS. The ladder has N-1 levels numbered from 1 to N-1. The process who
reaches the N-1 highest level enters its CS. In the case more processes try to step a
same level, at least one of them stops moving. Two arrays are used: q½pid� and
turn½level�. q½i� contains the level occupied by ProcessðiÞ. turn½j�, where j is a level,
stores the identifier of a process at level j.

The UPPAAL model of Peterson’s algorithm was studied for N ∈ ½2..5�. First of all
the query Processð1Þ.for− − >Processð1Þ.CS was found not satisfied, testifying,
as in the Dekker’s algorithm, the existence of a zeno-cycle which disappears by
adding the guard x>0 to the edge exiting the CS location (see Fig. 6). Using
queries similar to the Dekker’s model, it was found the Peterson’s model satisfies
the mutual exclusion and the progress properties. In addition the model is both
deadlock and starvation free. The overtaking factor was determined using the query:
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Fig. 5 Peterson’s algorithm
and UPPAAL declarations

Fig. 6 Peterson’s ProcessðiÞ
automaton
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sup Processð1Þ.forf g:Processð1Þ.x. Table 1 shows the collected results for
N ∈ ½2..5�. WCWT denotes the emerged worst case waiting time for a trying process
in the for location, OF =WCWT C̸ is the corresponding overtaking factor, where
C = 4 time units is the maximum duration of the critical section.

It emerged that in the Peterson’s algorithm a trying process has a worst case
overtaking factor of ððN − 1Þ*NÞ 2̸. This result agrees with the calculation reported
in [11] but contrasts with the indications contained in [12, 13] which predicted a
worst case number of by-passes of N−1.

The size and possible values of the arrays q½�andturn½� critically affect the
dimension of the state graph and the model checking activities. To favor the model
checker, provisions were taken in Fig. 6 to assign a default value to a variable as
soon as it gets unused (see the integer variables j and k). Checking the overtaking
factor in the case N = 5 required about 31 min of wall clock time with a peak of
used memory of about 19 GB. Experiments were carried out using UPPAAL version
4.1.19 64bit on a Linux machine, Intel Xeon CPU E5-1603@2.80 GHz, 32 GB.

6 Proposed Algorithm

As a further demonstration of the application of the proposed modelling and ver-
ification approach, the following describes an example of a new algorithm1 for
N ≥ 2 processes (see Figs. 7, 8, 9) which uses fewer variables and it is more
efficient than, e.g., the Peterson’s algorithm. The processes are numbered
0, 1, . . . ,N − 1.

The algorithm uses an array b½pid� of N booleans, two boolean variables lock and
cs busy, and a turn integer variable. Initially all the booleans are set to false and
turn=0. To access CS, ProcessðiÞ must “climb a ladder” of three steps.

ProcessðiÞ starts competing by putting true in b½i�. Climbing can fail at each of
the first two steps (denoted respectively by the actions turn= i and lock= true) thus
forcing ProcessðiÞ to restart trying (from the label L). The last step is signaled by
the action cs busy= true. After CS, ProcessðiÞ puts false in b½i�, then it makes a
modular search in the b array looking for the first process j, if there are any, which
is trying. The critical section grant is then transferred to it by assigning false to b½j�,

Table 1 Overtaking factor
versus N

N WCWT OF

2 4 1
3 12 3
4 24 6
5 40 10

1The contribution of Domenico Spezzano to the design of this algorithm is acknowledged.
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otherwise the trying protocol is re-initialized. Figure 9 portrays the ProcessðiÞ
template automaton.

The model was verified for a number of processes N ranging in the interval
½2..5�. It satisfies all the required properties without assumptions about the CS
duration. The algorithm has no zeno-cycle and the overtaking factor is linear
(although waiting processes are not FIFO managed) in the number of processes,

Fig. 7 Proposed algorithm

Fig. 8 UPPAAL declarations
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i.e., in the worst case, a competing process has to wait for one by-pass of each of
the remaining N−1 processes. For N = 5, a verification query is responded in
about 1min of wall clock time with a memory peak of about 950MB.
Starvation-free behavior was checked by the satisfied queries: A½�Processð0Þ.Enter
implyProcessð0Þ.x< = ðN − 1Þ*C and Processð0Þ.L− − >Processð0Þ.CS.The first
query fails when the clock Processð0Þ.x is compared with ðN − 1Þ*C− 1 or a lower
quantity. The second query ensures bounded waiting for a trying process, and
absence of zeno-cycles.

7 Conclusions

The analysis of concurrent systems is notoriously hard for the complex action
interleavings occurring among the involved processes. All of this can introduce
subtle errors in a concurrent program which cannot be dominated by informal
reasoning or by program testing.
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lock

cs_busy

turn==i !lock

lock
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j!=i
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Fig. 9 Proposed ProcessðiÞ automaton

214 F. Cicirelli et al.



Mutual exclusion algorithms represent an active area of concurrency since the
sixties, and some errors are famous about the characterization of their properties [7].
Nowadays, the availability of mature and powerful model checkers like UPPAAL [6]
has the potential to improve the situation by enabling formal modeling and
exhaustive exploration of a concurrent program.

This paper proposes a model checking approach based on Timed Automata and
UPPAAL for the systematic analysis of mutual exclusion algorithms. With respect to
proof-theoretic approaches (e.g., [1]) the proposal facilitates an in-depth verification
of an algorithm also in the presence of the time dimension.

The approach was successfully applied to many existing algorithms of which
known properties were confirmed and new properties disclosed in doubt situations.
The article contributes to a better understanding of two historical algorithms like
Dekker [8] and Peterson [9]. The approach was also exploited in the design and
analysis of a new algorithm for N ≥ 2 processes, which fulfils all the required
properties. Prosecution of the work is geared at improving the approach and to
experiment with its application to other algorithms.
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