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Abstract
For electron devices that make use of innovative materials, a basic step in the
development of models and simulation computer aided design (CAD) tools is the
determination of the mobility curves for the charge carriers. These can be obtained
from experimental data or by directly solving the electron semiclassical Boltzmann
equation. Usually the numerical solutions of the transport equation are obtained by
Direct Simulation Monte Carlo (DSMC) approaches with the unavoidable stochastic
noise due to the statistical fluctuations. Here we derive the mobility curves
numerically solving the electron semiclassical Boltzmann equation with a
deterministic method based on a discontinuous Galerkin (DG) scheme in the case of
monolayer graphene. Comparisons with analytical mobility formulas are presented.
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1 Introduction
Graphene is a gapless semiconductor made of a single layer of carbon atoms arranged
into a honeycomb hexagonal lattice []. In view of applications in graphene-based electron
devices, it is crucial understanding the basic transport properties of this material.

An important step in the analysis of the electrical features of graphene is the determina-
tion of the mobility curves that can then be inserted in the simulation CAD tools already
available for several semiconductor materials, e.g. Silicon and GaAs. The mobilities are
functions of the electric field and depend also on factors like Fermi level, temperature and
presence of impurities. The direct way to determine the mobility curves is by experiments.
However the measurements are rather delicate and very sensible to the specific specimen
one is dealing with. In particular the determination of the low field mobility is subject to
a rather wide uncertainty, for example see [] for Silicon.

An indirect theoretical way is instead based on the solutions of the transport equation;
in fact once the distribution of electrons has been obtained, one can evaluate the current
as a suitable average quantity.

Usually the numerical solutions of the transport equation are obtained by DSMC ap-
proaches with the unavoidable stochastic noise due to the statistical fluctuations. Here,
in the case of monolayer graphene, we derive the mobility curves numerically solving the
electron semiclassical Boltzmann equation with a deterministic DG method [, ]. At last
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the numerically obtained mobility is fitted with some analytical formulas which are widely
used for other semiconductors such as Si or ZnO.

A remarkable point is that the low field mobility is obtained without the intrinsic huge
noise in DSMC simulation at very low electric fields.

The plan of the paper is as follows. In Section  the transport equation for charge carriers
in graphene is presented along with the derivation of the mobility expressions from the
electron distribution functions. In Section  we illustrate the DG method for solving the
Boltzmann equation and in the last section the numerical results of the mobilities are
shown and fitted with analytical expressions.

2 Semiclassical transport equation for graphene and mobilities
The electron energy in graphene depends on a two dimensional wave-vector k belonging
to a bi-dimensional Brillouin zone B which has a hexagonal shape.

Most of the electrons are in the valleys around the vertices of the Brillouin zone, called
Dirac points or K and K ′ points. Usually the K and K ′ valleys are treated as a single equiv-
alent one.

In a semiclassical kinetic setting, the charge transport in graphene is described by four
Boltzmann equations, one for electrons in the valence band (π ) and one for electrons in
the conduction band (π∗), that in turn can belong to the K or K ′ valley,

∂f�,s(t, x, k)
∂t

+ v�,s · ∇xf�,s(t, x, k) –
e
�

E · ∇kf�,s(t, x, k) =
df�,s

dt
(t, x, k)

∣
∣
∣
∣
e–ph

, ()

where f�,s(t, x, k) represents the distribution function of charge carriers, in the band π or
π∗ (s = – or s = ) and valley � (K or K ′), at position x, time t, and with wave-vector k.
We denote by ∇x and ∇k the gradients with respect to the position and the wave-vector,
respectively. The group velocity v�,s is related to the band energy ε�,s by

v�,s =

�
∇kε�,s.

With a very good approximation [] a linear dispersion relation holds for the band energies
ε�,s around the equivalent Dirac points; so that ε�,s = s�vF |k–k�|, where vF is the (constant)
Fermi velocity, � the Planck constant divided by π , and k� is the position of the Dirac
point �. The elementary (positive) charge is denoted by e, and E is the electric field, here
assumed as external. The right hand sides of Eqs. () are the collision terms representing
the interactions of electrons with acoustic, optical (with wave-vector close to the � point of
the first Brillouin zone) and K phonons (with wave-vector close to the zone edge of the first
Brillouin zone). Acoustic phonon scattering is intra-valley and intra-band. Optical phonon
scattering is intra-valley and can be longitudinal optical (LO) and transversal optical (TO);
it can be intra-band, leaving the electrons in the same band, or inter-band, pushing the
electrons from the initial band toward another one. Scattering with optical phonons of K
type pushes electrons from a valley to a nearby one (inter-valley scattering). We assume
that phonons are a bath at thermal equilibrium. Hence, the general form of the collision
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term can be written as (see [, , ] for more details)

df�,s

dt
(t, x, k)

∣
∣
∣
e–ph

=
∑

�′ ,s′

[∫

B
S�′ ,s′ ,�,s

(

k′, k
)

f�′ ,s′
(

t, x, k′)( – f�,s(t, x, k)
)

dk′

–
∫

B
S�,s,�′,s′

(

k, k′)f�,s(t, x, k)
(

 – f�′ ,s′
(

t, x, k′))dk′
]

,

where the total transition rate S�′ ,s′ ,�,s(k′, k) is given by the sum of the contributions of the
several types of scatterings described above

S�′ ,s′ ,�,s
(

k′, k
)

=
∑

ν

∣
∣G(ν)

�′ ,s′ ,�,s
(

k′, k
)∣
∣
[(n(ν)

q + 
)

δ
(

ε�,s(k) – ε�′ ,s′
(

k′) + �ω(ν)
q

)

+ n(ν)
q δ

(

ε�,s(k) – ε�′ ,s′
(

k′) – �ω(ν)
q

)]

. ()

The index ν labels the νth phonon mode. The |G(ν)
�′ ,s′ ,�,s(k

′, k)|’s are the electron-phonon
coupling matrix elements, which describe the interaction mechanism of an electron with
a ν-phonon, from the state of wave-vector k′ belonging to the valley �′ and band s′ to the
state k belonging to the valley � and band s. The symbol δ denotes the Dirac distribu-
tion, ω(ν)

q is the νth phonon frequency, n(ν)
q is the Bose-Einstein distribution for the ν-type

phonons

n(ν)
q =



e�ω
(ν)
q /kBT – 

, ()

where kB is the Boltzmann constant and T the graphene lattice temperature. If, for a ν∗-
type phonon, �ω(ν∗)

q � kBT , then the corresponding scattering can be assumed elastic. In
this case, we eliminate in Eq. () the term �ω

(ν∗)
q inside the delta distribution and we use

the Laurent approximation n(ν∗)
q ≈ kBT/�ω(ν∗)

q – 
 + O(�ω(ν∗)

q /kBT).
It is preferable to treat the electrons in the valence band as holes for insuring the inte-

grability of the corresponding distribution function. However, in this paper we consider
the case of a high value of the Fermi energy, which is equivalent for conventional semicon-
ductors to a n-type doping. Under such a condition, electrons belonging to the conduction
band do not move to the valence band and vice versa. Therefore the hole dynamics is ne-
glected. A reference frame centered in the K-point will be used and in order to simplify
the notation the indices s and � will be omitted.

Under the above hypotheses the scattering rates read as follows.
For acoustic phonons, we consider the elastic approximation according to which

(

n(ac)
q + 

)∣
∣G(ac)(k′, k

)∣
∣
 =


(π )

πD
ackBT

�σmv
p

( + cosϑk,k′ ), ()

where Dac is the acoustic phonon coupling constant, vp is the sound speed in graphene,
σm is the graphene areal density, and ϑk,k′ is the convex angle between k and k′.

The electron-phonon matrix elements related to the longitudinal optical (LO), the
transversal optical (TO) and the K phonons are (see for example [])

∣
∣G(LO)(k′, k

)∣
∣
 =


(π )

πD
O

σmωO

(

 – cos(ϑk,k′–k + ϑk′ ,k′–k)
)

, ()
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Table 1 Physical parameters for the scattering rates

σm 7.6× 10–8 g/cm2

vF 106 m/s
vp 2× 104 m/s
Dac 6.8 eV
�ωO 164.6 meV
DO 109 eV/cm
�ωK 124 meV
DK 3.5× 108 eV/cm

∣
∣G(TO)(k′, k

)∣
∣
 =


(π )

πD
O

σmωO

(

 + cos(ϑk,k′–k + ϑk′ ,k′–k)
)

, ()

∣
∣G(K )(k′, k

)∣
∣
 =


(π )

πD
K

σmωK
( – cosϑk,k′ ), ()

where DO is the optical phonon coupling constant, ωO the optical phonon frequency, DK

is the K phonon coupling constant and ωK the K phonon frequency. The angles ϑk,k′–k

and ϑk′ ,k′–k denote the convex angles between k and k′ – k and between k′ and k′ – k,
respectively.

In the literature there are several values for the coupling constants entering into the
collision terms. For example for the acoustic deformation potential one can find values
ranging from . eV to  eV. A similar degree of uncertainty is found for the optical and K
phonon coupling constants as well. In our numerical simulations of monolayer graphene,
the parameters proposed in [, ] have been adopted. They are reported in Table .

From the semiclassical transport equations, using a procedure developed for other semi-
conductors (see for example [–]), one can formulate macroscopic models that are more
suited for CAD purposes because they avoid the numerical solutions of the Boltzmann
equations, even if introduce some approximations for the needed closure relations, see
e.g. [, , ].

Macroscopic quantities can be defined as moments of the distribution functions with
respect to some suitable weight functions {ψ(k)}, assuming a sufficient regularity for the
existence of the involved integrals. Of particular relevance are the following two moments

average density ρi =


(π )

∫

R
fi(t, x, k) dk, ()

average velocity ρiVi =


(π )

∫

R
fi(t, x, k)v dk ()

(i = electrons, holes), where the factor  arises from taking into account both the spin
states and the two equivalent valleys. The term /(π ) is the standard normalization of
the elementary cell in the phase space for a two-dimensional crystal lattice [].

By integrating the Boltzmann equations with respect to k, one has the following balance
equation involving the above-defined macroscopic quantities

∂

∂t
ρi + ∇x · (ρiVi) = ρiCi, ()

where the terms at the right hand sides are the density productions (the reader is referred
to [] for details).
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If we introduce the current densities

Ji = eiρiVi, i = e, h, ()

with ei equal to –e for electrons and e for holes, from Eqs. (), one gets the celebrated
drift-diffusion equations

∂

∂t
(eiρi) + ∇x · Ji = ei(G – R), i = e, h, ()

where the collision term eiρiCi has been splitted as the sum of the generation and recom-
bination terms G and R .

In Eq. () closure relations for the current and the recombination-generation terms
must be prescribed. The classical approach models the currents as the sum of the diffusive
and the drift part

Je = De∇xρe + eρeμnE, ()

Jh = –Dh∇xρh + eρhμpE, ()

with the introduction of the diffusion coefficients Di and the mobilities μi, i = e, h. If one
considers as valid the Einstein relations, then Di = μikBT . The mobilities μi are assumed
to be functions of the electric field and can parametrically depend also on other physi-
cal quantities. We will investigate their dependence on the Fermi level εF or equivalently
on the electron density. Moreover we will assume that the mobility is isotropic that is it
depends only on the modulus of the electric field E. Therefore we will take as mobility
functional dependence

μi = μ̃i(E,ρi). ()

More sophisticated models could take into account also a dependence on the lattice tem-
perature and its gradient or the electron temperature.

In the sequel, as said, we will limit our analysis to the case of positive Fermi energies and
therefore only the electrons contribute significantly to the current but it is straightforward
to extend the analysis to holes as well.

In order to obtain the expression of the electron mobility, it is enough to consider the
homogeneous case where

Je = eρeμnE. ()

In the space-homogeneous case the Boltzmann equation relative to the K valley reduces
to (we drop the valley and band indices for the sake of simplifying the notation)

∂f (t, k)
∂t

–
e
�

E · ∇kf (t, k) =
∫

S
(

k′, k
)

f
(

t, k′)( – f (t, k)
)

dk′

–
∫

S
(

k, k′)f (t, k)
(

 – f
(

t, k′))dk′. ()
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A similar equation holds for the K ′ valley. As initial condition we take the Fermi-Dirac
distribution

f (, k) =


 + exp( ε(k)–εF
kBT )

,

where εF is the Fermi energy, which is related to the initial charge density by

ρ() =


(π )

∫

f (, k) dk. ()

As said, in () the factor  arises because we are considering both the two states of spin and
the degeneracy (equal to ) of the valley. As alternative one can consider the population
of a single valley, and put equal to one the valley degeneracy and take in () ρ()/ for
the electron density. Note that in the unipolar case ρ remains constant, ρ(t) = ρ(), as a
consequence of the charge conservation.

If one fixes the electric field, the Fermi energy and the lattice temperature, as t �→ +∞ the
solution of () gives the stationary distribution function which, inserted in relationship
(), allows us to evaluate Je. Therefore, if we are able to solve numerically the semiclassical
Boltzmann equation, it is possible to get in a rather simple way the numerical values of
the mobility as function of the electric field once the lattice temperature and Fermi energy
have been assigned.

3 Application of the DG method to the electron transport equation in
graphene

Lately several efficient numerical schemes have been applied for getting deterministic so-
lutions of the Boltzmann equation for charge transport in semiconductors. Several works
based on weighted essentially non oscillatory (WENO) schemes can be found in the lit-
erature about simulation of Silicon and Gallium Arsenide electron devices [, ] and
recently also for suspended monolayer graphene []. Here we adopt the DG method for
discretizing Eq. ().

We choose a bounded domain � ⊆ R
 such that f (t, k) ≈  for every k /∈ � and t > ,

and introduce a finite decomposition {Cα}N
α= of �, with Cα appropriate open sets having

a regular boundary, such that

Cα ∩ Cβ = ∅ if α �= β , and
N
⋃

α=

Cα = �.

The distribution function is assumed to be constant in each cell Cα . If we denote by χα(k)
the characteristic function over the cell Cα , then the approximation of the distribution
function f is given by

f (t, k) ≈ f α(t) ∀k ∈ Cα ⇐⇒ f (t, k) ≈
N

∑

α=

f α(t)χα(k) ∀k ∈
N
⋃

α=

Cα .

This assumption replaces the unknown f , which depends on the two variables t and k,
with a set of N unknowns f α , which depend only on time t. In order to obtain a set of N
equations for the new unknowns f α , we integrate Eq. () with respect to k over every cell
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Cα and replace f with its approximation. The derivative of f with respect to the time is
treated easily. We have

∫

Cα

∂f (t, k)
∂t

dk ≈ Mα

df α(t)
dt

,

where Mα is the measure of the cell Cα . It is clear that the numerical method yields a
system of ordinary differential equations by discretizing the collision operator and the
drift term as discussed below. The final set of ordinary differential equations in time can
be integrated by using a total variation diminishing (TVD) Runge-Kutta scheme [].

3.1 Discretization of the collision operator
Since for each k ∈ Cα

∫

S
(

k′, k
)

f
(

t, k′)( – f (t, k)
)

dk′ –
∫

S
(

k, k′)f (t, k)
(

 – f
(

t, k′))dk′

≈
N

∑

β=

[∫

Cβ

S
(

k′, k
)

f β (t)
(

 – f α(t)
)

dk′ –
∫

Cβ

S
(

k, k′)f α(t)
(

 – f β (t)
)

dk′
]

=
N

∑

β=

[

f β (t)
(

 – f α(t)
)
∫

Cβ

S
(

k′, k
)

dk′ – f α(t)
(

 – f β (t)
)
∫

Cβ

S
(

k, k′)dk′
]

,

if we define

Aα,β =
∫

Cα

[∫

Cβ

S
(

k, k′)dk′
]

dk, ()

we obtain
∫

Cα

[∫

S
(

k′, k
)

f
(

t, k′)( – f (t, k)
)

dk′ –
∫

S
(

k, k′)f (t, k)
(

 – f
(

t, k′))dk′
]

dk

≈
N

∑

β=

[

Aβ ,α(

 – f α(t)
)

f β (t) – Aα,β f α(t)
(

 – f β (t)
)]

.

In doing so, the integral collision operator is replaced by quadratic polynomials. We note
that the numerical coefficients Aα,β depend only on the scattering terms and the domain
decomposition and can be evaluated analytically. The interested reader is referred to []
for the detailed calculations.

3.2 Discretization of the drift term
We must approximate the term

–
e
�

E ·
∫

Cα

∇kf (t, k) dk = –
e
�

E ·
∫

∂Cα

f (t, k)n dσ ,

where n is the external unit normal to the boundary ∂Cα of the cell Cα . Since, due to
the Galerkin method, the approximation of f is not defined on the boundary of the cells,
we must introduce a numerical flux, that furnishes reasonable values of f on every ∂Cα ,
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Figure 1 Low field mobility. Low field mobility versus the electron density. The circles represent the results
obtained by the DG scheme, the crossed line the fitting function.

Table 2 Values of the fitting coefficients

ρ (1012cm–2) β1 β2 β3 γ

0.5 2.5203 3.5728 1.0382 32.4631
1 2.7357 3.4656 1.1659 22.2200
2 3.1256 3.6552 1.1625 12.6928
5 2.0462 1.2446 1.2395 7.9534
8 1.7225 1.2159 1.2154 7.5381
10 1.7846 1.6393 1.2186 7.5336

depending on the values of the approximation of f in the nearest neighborhoods of the
cell Cα and on the sign of E · n. The simplest numerical flux is given by the upwind rule,
that uses only the nearest adjacent cells. For the sake of shortness we refer the interested
reader to [, ] for the details.

4 Electron mobility in monolayer graphene
By using the numerical scheme outlined in the previous section, we have numerically
solved Eq. () and evaluated the electron mobility in monolayer graphene. The robust-
ness and accuracy of the scheme has been investigated in [], where a cross comparison
with DSMC solutions has clearly validated both the approaches for a wide range of electric
fields and Fermi energies.

The case of room lattice temperature ( K ) has been considered, for electron densities
ρe = ., , , , , ×/cm. First of all, by extrapolation we have evaluated the low field
mobility μ defined as

μ = lim
E �→+

μ(E,ρ).
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Figure 2 ρe = 0.5 × 1012/cm2. Mobility versus the electric field. The circles represent the results obtained by
the DG scheme, the crossed line the fitting function.

Figure 3 ρe = 1 × 1012/cm2. Mobility versus the electric field. The circles represent the results obtained by
the DG scheme, the crossed line the fitting function.
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Figure 4 ρe = 2 × 1012/cm2. Mobility versus the electric field. The circles represent the results obtained by
the DG scheme, the crossed line the fitting function.

Figure 5 ρe = 5 × 1012/cm2. Mobility versus the electric field. The circles represent the results obtained by
the DG scheme, the crossed line the fitting function.
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Figure 6 ρe = 8 × 1012/cm2. Mobility versus the electric field. The circles represent the results obtained by
the DG scheme, the crossed line the fitting function.

Figure 7 ρe = 10 × 1012/cm2. Mobility versus the electric field. The circles represent the results obtained by
the DG scheme, the crossed line the fitting function.
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The results, reported in Figure , show that the low field mobility decreases with the rise
of the carrier density as happens for graphene on SiO []. The data are well fitted by the
following empirical function, already used for Si device mobility [],

μ = μ(ρ) =
μ̃

 + (ρ/ρref )α
, ()

with ρref = . ×  cm–, α = . and μ̃ = μ(ρref ) = . ×  cm/V s.
The low field mobility is then used in a formula, suitably adapted from that of Arora et

al. [], to fit the dependence of the mobility on the electric field at the considered values
of the Fermi energy

μ(E) =
μ + vF

E ( E
Eref

)β

 + ( E
Eref

)β + γ ( E
Eref

)β
, ()

where Eref = k V/cm and μ is given by ().
The values of the fitting coefficients are reported in Table . The data are well approxi-

mated for each value of ρ as can be seen from Figures -.
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