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Abstract

Interference and diffraction with classical waves and quantum particles is discussed in the framework of a geometric 
model based on its own physical principle and general law. The principle is the interaction between individual 
real point emitters, that characterize the waves and particles, and the virtual point emitters, that characterize the 
setup. The law is an energy equation that involves the energy of the wave disturbance or the particle arriving to 
any detector point and the potential energy determined by the setup. In this framework, the setup is configured in a 
preparation-measurement scheme with two accessible states named the source-turned-off and the source-turned-on 
states. Two-point correlation cones are prepared which induce geometric potential cones, that distribute the energy 
of the waves or particles to be measured, once the interaction between the point emitters takes place. Wave-particle 
duality, self-interference and wave collapse are irrelevant in the framework of this model. © 2019. Acad. Colomb. 
Cienc. Ex. Fis. Nat.
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Modelo geométrico para interferencia y difracción con ondas y partículas

Resumen

Se analiza la interferencia y la difracción, tanto de ondas clásicas como de partículas cuánticas, en el marco de 
un modelo geométrico basado en su propio principio y ley general. El principio es la interacción entre emisores 
puntuales reales individuales, que caracterizan a las ondas y las partículas, y emisores puntuales virtuales que 
caracterizan al arreglo experimental. La ley es una ecuación de energías que involucra a la perturbación ondulatoria 
o la partícula incidentes sobre un punto dado del detector y la energía potencial aportada por el arreglo. En esta
teoría, el arreglo se configura en un esquema de preparación-medición con dos estados accesibles, denominados
estado de fuente-apagada y estado de fuente-encendida. Así, se preparan conos de correlación espacial que inducen
conos de potencial geométrico sobre los que se distribuye la energía a ser medida, luego que la interacción entre
emisores puntuales se ha realizado. Las nociones de dualidad onda-partícula, auto-interferencia y colapso de la
función de onda son irrelevantes en este modelo. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.
Palabras clave: Interferencia; Difracción; Potencial geométrico; Emisores puntuales.
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Introduction

The wave superposition is the standard fundamental concept 
to explain interference and diffraction with classical waves 
and quantum particles. It plays the role of physical principle 
in the classical context (Born&Wolf, 1993), while in the 
quantum context, it is used as a mathematical procedure for 
the calculation of the spatial probability density associated 
to the particles (Feynman, et al., 1965).

The mathematical formalization of both contexts bases 
on the Helmholtz equations corresponding to the spatial 
or time-independent parts of the classical wave equation 
in free-space and the field-free Schrödinger’s equation, 
respectively. The term “wave” names the complex valued 
eigen-functions of the Laplacian operator in the respective 
Helmholtz equation. In addition, the same terminology and 

mathematics is used for referring the results of the experi-
ments, whose setups for waves and particles have the same 
configuration, differing only in scale.

However, the meanings of the term wave in such 
contexts are quite different. In classical optics, it describes 
the physical disturbance due to the electric field oscillations 
at each point in space. In quantum mechanics, it is called the 
complex amplitude of probability and its squared modulus 
determines the spatial probability density, i.e. it does not 
describe a physical disturbance. So, the wave superposition 
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realizes the addition of disturbances of classical waves at 
each point of space but the determination of conditional 
probabilities to find the quantum particle at a given position.

These different interpretations of the wave superposi-
tion lead to the conclusion that interference of classical 
waves and quantum particles have not been explained from 
a common and unique physical principle. Moreover, the 
standard description of interference with single quantum 
particles, from electrons (Matteucci, et al., 2013) to 
molecules (Nairz, et al., 2003) (Juffmann, et al., 2012), 
requires the assumptions of wave-particle duality, self-
interference and quantum wave collapse, which turn this 
explanation in a mystery in the heart of quantum mechanics 
(Feynman& Hibbs, 1965).

Then, the question arises on the pertinence of searching 
for a unique physical principle of interference and diffraction 
with classical waves and quantum particles. A more accurate 
mathematical model should be discarded as pertinence crite-
rion, because the high accuracy of the standard formulation 
has been corroborated by its predictions of a wide variety of 
interference and diffraction experiments. Consequently, any 
alternative formulation should maintain the mathematical 
fundamentals of the standard one. 

Technology and innovation development in both clas-
sical and quantum physics is neither a pertinence criterion. 
Contemporary nano– and micro–technologies widely use 
the so–called wave nature of matter in current applications 
(Capelli, et al., 2014). The theoretical development of quan-
tum physics has not been hampered by the necessity of an 
alternative theory of interference and diffraction. Actually, 
the difficulties and limitations of the interference and diffrac-
tion description of quantum particles have been regarded as a 
point-feature or singularity of the quantum physics, i.e. “the 
only mystery in the heart of quantum mechanics”.

Thus, the main pertinence criterion seems to be epis-
temological, that is the challenge to solve this mystery by 
taking into account that only the necessary causes should 
be taken into account to explain physical phenomena and 
effects of the same kind should be attributed to the same 
cause. A successful response to that challenge should give 
more insight on the physics of interference and diffraction.

To this aim, a new description is proposed in the cur-
rent paper. Its basic quantity is the two-point correlation, 
instead of the wave function, which is the basic quantity of 
the standard description. Although the two-point correlation 
was firstly used as basic quantity by the theory of optical 
coherence (Mandel&Wolf, 1995), an important difference 
between the new description and this theory is established. 
Indeed, the new description introduces a geometrical inter-
pretation of the two-point correlation in close connection 
with the experimental setup configuration, section 2. In this 
context, the two-point correlation is contributed by the setup 
instead of being an attribute of the classical waves and the 
quantum wave functions, as assumed in the standard descrip-
tion (Mandel& Wolf, 1995). In addition, any experiment is 

modeled according to the P&M (preparation-measurement) 
scheme with two accessible states named the source-turn-off 
and the source turn-on states. Specifically, the experiments 
prepare two-point correlations in the source-turn-off state 
and measure energy distributions in the source-turn-on state.

The physical principle of the new description of inter-
ference and diffraction is discussed in section 3. It is not the 
wave superposition and does not require support hypotheses 
like wave-particle duality, self-interference and quantum 
wave collapse. Regardless the different technology scales of 
the interference and diffraction experiments with classical 
waves and quantum particles, both the setup design require-
ments and the mathematical description of the experiments 
are essentially the same, section 4. Its non-paraxial formula-
tion can predict the spatial distribution of the wave or parti-
cle energy along distances from the source comparable to 
the wavelength (Castañeda, et al., 2016 a, b) (Castañeda, 
2017 b), including polarization effects in case of electromag-
netic waves (Castañeda, 2014) (Castañeda, 2016). So, the 
geometric model becomes an efficient tool for the develop-
ment of very compact optical and quantum devices. In sec-
tions 5 and 6 some experimental evidences of its validity 
are discussed, and the conclusions are presented in section 7.

The geometric interpretation
The conceptual sketch in Figure 1 realizes the P&M scheme 
for any interference or diffraction experiment with classical 
waves or quantum particles.

Figure 1. Conceptual sketch of the setup for field-free or free-space 
interference or diffraction. S: source plane, M: mask plane, and 
D: detector plane. The shadowed circles on each plane represent 
the structured supports of spatial coherence, and the W-functions 
are the two-point correlations at the respective planes. Reduced 
coordinates, indicated by the arrows on each plane, specify the 
pairs of point in any structured support. The solid line cone in 
the SM–stage represents the prepared correlation cone, while the 
dotted line cone in the MD–stage represents the energy cone to 
be measured.
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Reduced coordinates are adopted in order to specify the 
two-point correlation at each plane i.e. ( )DA rr ′′ ,  for the S–
plane,  for the M–plane and ( )DA rr ,  for the D–plane. 
They allow determining univocally pairs of points on the 
respective plane, equidistant from the point specified by the 
coordinate with suffix A, and with separation vectors given 
by the coordinate with suffix D, whose positions are then 

2DA rrr ′±′=′± ,  and 2DA rrr ±=±  respectively. 
Thus, ( ),SW + −′ ′r r ,  and ( ),DW + −r r  denote the two-
point correlation at the S, M and D planes respectively, of 
any pair of points symmetrically placed with respect to the 
center denoted by the coordinate suffixed A. The area around 
these centers outside which the two-point correlation values 
are negligible is called the structured support of correlation 
(Castañeda& Matteucci, 2017). Thus, the separation vectors 
of the pairs of points enclosed by any structured support 
are shorter than the support size. Such pairs of points are 
correlated in some extent, while those with longer separation 
vectors are non-correlated.

It is known that the two-point correlation is the eigen-
function of the Laplacian operators of two Helmholtz equa-
tions, with the same eigen-value (Mandel&Wolf, 1995). 
Its mathematical form can be determined by solving the 
Helmholtz equations by the Green’s function method. It 
allows expressing the two-point correlation on a plane as the 
output of a time-independent modal expansion defined in the 
volume delimited by a previous input plane and the output 
plane, with the following features: (i) the expansion kernel 
is a set of volumetric scalar geometrical modes, defined by 
the boundary conditions of that volume, and (ii) the values 
of the two-point correlation at the input plane are the input 
of the modal expansion.

It is worth noting that the two-point correlation is, in 
general, a spatial non-local function, but includes local 
values specified by the null separation vectors. These local 
values determine the spatial distribution of the energy 
at the output plane once the source of waves or particles 
is put into operation. It allows characterizing the P&M 
scheme of the experiments as follows: (i) preparation in 
the SM-stage means the determination of the output two-
point correlation at the M plane, given an input two-point 
correlation at the S plane; (ii) measurement in the MD-stage 
means the determination of the output spatial distribution 
for the energy at the D plane, given a prepared two-point 
correlation at the M plane as input. So, the mathematical 
formulation of the P&M scheme is realized by

                  
,                 (1a)

for the prepared two–point correlation at the M–plane, and

                      
,                      (1b)

for the spatial distribution for the energy to be measured at 
the D–plane. It is obtained by evaluating the two–point corre-
lation at the D–plane for 0=Dr , i.e. ( ) ( ),D A D A AS W=r r r .

The integrands of Eqs. (1) are given by the non–paraxial 
modal expansions

   
,      (2a)

and

   
,      (2b)

respectively, with ( ),SW + −′ ′r r  the two–point correlation at the 
S–plane. The integration kernels in Eqs. (2) are the scalar, 
deterministic, non–paraxial and three-dimensional modes 
(Castañeda, 2017 b) (Castañeda&Matteucci, 2017)

   (3a)

defined in the volume of the SM-stage, and

                    (3b)

defined in the volume of the MD-stage, where

and

are the complex transmissions of the S and the M–
planes respectively. The quantities  and 

 are called the absorbance of the respective 
plane and determine the amount of the incident energy 
that crosses the plane (Born&Wolf, 1993). It is worth 
noting that the mode arguments denote the geometric 
features at the input and the output planes related by the 
modes. Indeed,  relates any structured 
support of correlation on the S–plane, specified by ( ),+ −′ ′r r  to                     
each structured support on the M–plane given by ;                   
while  relates any structured support of 
correlation on the M–plane to each point Ar  on the detector 
at the D–plane. In this way, the modes in Eq.(3a) shape the 
space in the SM–stage in accordance to the stage boundary 
conditions, for the preparation of the two-point correlation 
at the M-plane; in turn, the modes in Eq.(3b) shape the 
space in the MD–stage in accordance to this stage boundary 
conditions, for the measurement of the power spectrum. It is 
worth remarking that the geometric modulation of the space 
provided by the modes in Eqs. (3) is independent from the 
physical and statistical properties of the source of waves or 
particles attached at the S-plane.
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The  parameter of the modes plays an important role 
in the geometric modulation of the space. It is related to the 
eigen-value 2k−  of the Laplacian operators in the Helmholtz 
equations solved by the two-point correlation, and can be 
expressed as λπ2=k , where λ denotes the length along 
which the exponential argument of the modes evolves 
in 2π . This length is essentially determined by the setup 
boundary conditions and explains the scale differences 
in the setup design for material particles (nanoscale) and 
waves (microscale at visible frequencies). For this reason, 
λ is called the space scale metric (Castañeda, 2017 b) 
(Castañeda & Matteucci, 2017).

Now, it is crucial to clarify the relationship of the space 
scale metric with the optical and the de Broglie wavelengths 
λ′, defined as physical attributes of waves and particles by the 
formulas c=′νλ  for a classical wave of frequency ν  and 
free–space speed c, chE =′λ  for the photon of energy E, 
with h the Planck constant, and hp =′λ  for a quantum par-
ticle momentum p. It is worth remarking that the standard 
formulation does not make difference between λ  and λ′ , 
thus labelling both symbols with the term wavelength and 
its physical meanings, and regarding its geometrical feature 
as a secondary property. In this sense, the expressions above 
involving λ′ corroborate the wave nature of the quantum par-
ticles, thus supporting the assumption that interference and 
diffraction are distinctive behaviors of wave phenomena, 
including the quantum particles. In addition, 2k π λ′= .

In contrast, the new interpretation (i) underlines the 
different meanings of λ and λ′ as equally important, and 
(ii) interprets the expression λλ =′  as a coupling condition 
of the physical object (waves and particles) to the experi-
mental setup, i.e. classical waves and quantum particles 
move according to the geometric modulation established 
by the modes of parameter 2k π λ=  only if their respective 
frequency, energy or momentum assure the achievement of 
the condition λ λ′= . Otherwise, their movement through the 
setup does not follow such geometric modulation. Because 
of these features, the new model proposes interference and 
diffraction as resulting from the geometric modulation of 
space determined by the setup configuration, instead of 
being the distinctive behaviors of wave phenomena. Further-
more, such features lead to the conclusion that interference 
and diffraction experiments should have the same configura-
tion but different scales for classical waves and quantum 
particles, as widely reported in literature, for instance the 
double slit interference experiment in optics (Born&Wolf, 
1993) and with single electrons (Matteucci, et al., 2013).

Now, let us analyze the meanings of Eqs. (2). They are 
modal expansions defined in the volumes of the SM- and 
the MD-stages respectively that describe the distributions of 
the respective input two-point correlations, ( ),SW + −′ ′r r  and 

, over the geometric modes in the stages to give the 
prepared two-point correlation at the M-plane, , 
and the spatial distribution of the energy to be measured at 
the D-plane, ( )D AS r . The input two–point correlations have 

energy units because they involve the energy distributions of 
the classical waves and the quantum particles at the corre-
sponding planes, denoted by

 
 and

 
 respectively. 

In this way, the input two-point correlations include the 
physical and statistical attributes of the waves and particles 
moving in the setup. However, it is possible to analyze 
the pure geometrical (or energy independent) feature of 
interference and diffraction as follows.

Let us begin with the preparation of the two-point cor-
relation in the SM-stage. The two–point correlation at the 
S–plane can be expressed as ( ) ( ) ( ),S S SW ψ ψ ∗

+ − + −′ ′ ′ ′=r r r r  , 
with  and the asterisk denoting ensemble average and 
complex conjugate, respectively. The functions ( )Sψ ±′r  are 
the eigen-functions of the individual Helmholtz equations 
for the spatial coordinates ±′r . They can be expressed as 

( ) ( ) ( )S S SSψ ψ± ± ±′ ′ ′=r r r , where ( )Sψ ±′r  represents the geo-
metric feature of the eigen-functions provided ( ) 2

1S Aψ ′ =r .                                                                                                                                  
So,  stands and therefore, 

 as expected. On the other hand, ( ),SW + −′ ′r r  
should fulfil the Schwarz inequality  
(Mandel&Wolf, 1995), which can be expressed as equation 
by introducing the appropriate dimensionless coefficient 

( ) 2
0 , 1Sµ + −′ ′≤ ≤r r  on the right. Consequently, the two–point 
correlation takes the mathematical form

            ( ) ( ) ( ) ( ), ,S S S SW S Sµ+ − + − + −′ ′ ′ ′ ′ ′=r r r r r r ,               (4)

provided  with                                                                                                                                 
. From Eq. (4) follows ,                                                               

which is called the complex degree of correlation (Castañeda, 
2017 b) (Castañeda&Matteucci, 2017) at S–plane. Its 
meaning can be established consistently from Eq. (4) that 
represents the spatial correlation of the emission of waves 
or particles by the source. The energy attributes of the 
emitted waves and particles are completely denoted by 
the factor ( ) ( )S SS S+ −′ ′r r , while the complex degree of 
correlation involves only the geometric component of the 
eigen-functions. So, ( ),Sµ + −′ ′r r  denotes the spatial correla-
tion between pairs of emitting points at the S plane as the 
geometrical (or energy independent) feature of ( ),SW + −′ ′r r .                                                                                                            
It is worth remarking the theoretical consistency of this inter-
pretation, because it gives new insight to the meaning estab-
lished in partially coherent optics as the measurement of the 
spatial correlation of the emitted waves (Mandel&Wolf, 1995).

The complex degree of correlation exhibits the following 
mathematical properties: (i) ( ), 1S A Aµ ′ ′ =r r  and ( ), 0S A Aα ′ ′ =r r , 
(ii) ( ) ( )*, ,S Sµ µ+ − − +′ ′ ′ ′=r r r r  and (iii) its support around a given 
point Ar′  is just the structured support of correlation centered 
at such position.

Now, let us analyze the pure geometrical (or energy 
independent) feature of the preparation SM-stage. It becomes 
apparent by setting ( ), 1SW + −′ ′ =r r  with ( ), 1Sµ + −′ ′ =r r  in Eq. 
(4), for any pair of points in the emission area of the source 
at the S plane. Thus, the energy units become irrelevant, and 
Eqs. (1a) and (2a) take the forms

        
,        (5a)
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a) b)

c) d)

and
           .       (5b)

Equations (5) realize the source-turned-off state of 
the setup. The source-turned-on state is established by 
setting Eq. (4) with the energy distribution and the spatial 
correlation properties of the physical source attached at the 
S plane. Equations (5) lead to a very important and novel 
interpretation of the source-turned-off state:

(i) The complete set of geometric modes are established 
with the same relative weight in the SM-stage volume by the 
stage configuration.

(ii) The arguments of
 

 relate each 
point A′r  on the emission area of the S plane with any 
structured support on the M plane, specified by . So, 

 can be geometrically interpreted as cones in 
the SM-stage, with vertices at each emission point on the 
S plane and with the structured supports at the M plane as 
bases. Their specific geometry is determined by the modal 
expansion (5a) and spatially modulates the SM-stage.

(iii) Equation (5a) points out that the cone value at its 
vertex A′r  is determined by the contributions of all the pairs 
of points contained in the structured support centered at the 
cone vertex, symmetrically distributed around this vertex 
with separation vectors D′r . Each pair contributes with a 
specific mode, given by Eq. (3a), to the modal expansion 
of the cone.

(iv) The modal expansion (5b) overlaps the cones 
 with vertices on all the emission points 

at the S plane and bases on the same structured support 
at the M plane, thus determining the prepared two-point 
correlation over this structured support. It means that each 
cone  describes the spatial or geometrical 
contribution of the structured support centered at a given 
point of the S plane to the preparation of the two-point 
correlation over any structured support on the M plane. For 
this reason,  is called the correlation cone, 
Figure 1 (Castañeda, 2017 b) (Castañeda&Matteucci, 2017).

So, Eq. (4) and the analysis above specify the role of 
the physical source of waves and particles in the source-
turned-on state. The energy distribution and the two-point 
correlation properties of the source cannot create more or 
different modes in the SM-stage. These source attributes 
can only select a subset of modes and change their relative 
weights, so that ( ),SW + −′ ′r r  plays the role of a modal filter.

High correlated and uniform sources select the complete 
set of modes with the same relative weight. In this case, the 
correlation cones provide the more elaborated geometric 
modulation of the SM-stage volume. The subset of modes 
selected by low correlated and/or non-uniform sources 
and their different relative weights simplify the geometric 
modulation of the stage. The simplest one is used by a 
single point source placed at any position 0A′ ′=r r , so that 

( ) ( ) ( ) ( )0 0,S S A DW S δ δ+ −′ ′ ′ ′ ′ ′= −r r r r r r  and the correlation cones 
are given by

     .  (6a)

Therefore, the prepared two-point correlation over any 
structured support at the M-plane becomes

         (6b)

Figure 2 illustrates the magnitudes of the correlation 
cone with vertex on  and basis centered at  for (a) 
quantum particles and (b) classical waves.

Non-correlated extended sources are of special interest 
because they represent most the thermal emission sources 
of light or matter particles. They are described by  

 for the points in the emission area of the source, 
so that

            (7a)

Figure 2. (a)-(b) Magnitudes of the correlation cones and (c)-(d) 
energy cones associated to a single point source at the S-plane in 
the SM-stage for (a), (c) individual quantum particles and (b), (d) 
classical waves. Vertical profiles in (a)-(b) describe the Lorentzian 
cross-section of the structured support centered on the optical axis 
at 100z λ= , while in (c)-(d) describe the Lorentzian cross-section 
of the illuminated area at 100z λ= .

4 pmλ =                                   mµλ 632.0=
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describes the correlation cones with vertices at each emission 
point of the source, and

        (7b)

describes the prepared two-point correlation over any struc-
tured support at the M plane. The paraxial approach of Eq. 
(7b) in partially coherent optics is called the Van Cittert – 
Zernike theorem (Born&Wolf, 1993). Accordingly, the 
source-turned-on state reveals that (i) a set of correlation 
cones are selected and weighted at the input plane, (ii) their 
overlapping modulates geometrically the space in the SM-
stage, thus producing the increase of the two-point correla-
tion at the output plane.

An important feature of the prepared two-point correla-
tion is that the effective size of the structured supports of 
correlation at the M plane is finite, and the biggest is the 
Lorentzian shaped support provided by the correlation 
cone associated to a single point source at the S-plane. The 
increase of the source size reduces the sizes of the struc-
tured supports, as shown in Figure 3 (a)-(b). This reduc-
tion is greater by non-correlated sources than by correlated 
sources in some extent, as illustrated in (c)-(d).

Now, let us analyze the pure geometrical (or energy 
independent) feature in the MD-stage for the energy meas-
urement at the D–plane. Let us begin by regarding the 
source-turned-off state, in which the prepared two-point 
correlation in Eq. (5b) is the input to the modal expansion 
(2b). It means that the geometric modulation of space in the 
SM-stage induces the geometric modulation of the space in 
the MD-stage.

This causal connection between the geometric modula-
tions of space in the two stages realizes the P&M scheme 
for interference and diffraction, with the following features:

(i) The modal expansion (2b) shows that the prepared 
two-point correlation described by Eq.(5b) is a modal filter 
that selects and weights a subset of the modes in the MD-
stage, given by Eq. (3b).

(ii) The arguments of  relates each point  at 
the M plane to all points  at the D plane. So,  
can be geometrically interpreted as cones in the MD-stage, 
with vertices at each point on the M plane and with the 
detection area at the D plane as bases. The specific geometry 
of the cones is determined by the modal expansion (2b) and 
specify the spatial modulation of the MD-stage.

(iii) Equation (2b) points out that the cone value at its 
vertex  is determined by the contributions of all the pair 
of points contained in the structured support centered at the 
cone vertex, symmetrically distributed around this vertex 
with separation vectors . Each pair contributes with a 
specific mode, given by Eq. (3b) to the modal expansion of 
the cone.

(iv) Equation (1b) overlaps all the cones  in 
the MD-stage, thus determining the spatial distribution of 
the energy to be measured, once the setup state changes 
to source-turned-on. It means that each cone  
describes the contribution of the structured support centered 
at a given point of the M plane to the energy distribution 
to be measured at the D plane. For this reason,  
is called the energy cone, Figure 1 (Castañeda, 2017 b) 
(Castañeda&Matteucci, 2017).

By using the Schwarz inequality as before, by the 
source-turned-on state, the prepared two-point correlation 
can be expressed as
               ,           (8)
where  represents the energy distribution of the 
waves or particles arriving to the M plane, and    

 denotes the complex degree of 
correlation at this plane, with ,    

 and similar mathematical properties to those 
of the complex degree of correlation at the S plane. There-
fore, the prepared two-point correlation filters the modes 
of the expansion (2b) with basis on the energy distribution 
and/or the degree of correlation at the M plane. Figure 2 
illustrates the Lorentzian shaped energy cones provided in 
the SM-stage by a point source placed on the optical axis 
at the S plane for (c) quantum particles and (d) classical 

Figure 3. Comparison of the shapes and sizes of the structured 
supports of correlation centered at  on the M plane. N is the 
number of emitting points of the corresponding linear source. The 
spacing of the set of points is 2a λ= , so that the arrays are under 
diffraction condition (Castañeda, 2017 a). The central maxima 
determine the effective area of the structured supports. (a) and 
(b) show that the size of the structured support diminishes as the 
number of points (i.e. the source size) increases. In (c) and (d), the 
decreasing of the structured support related to a given set of points 
is due to a reduction of the two-point correlation at the S-plane.

a) b)

c) d)
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waves. The vertical profiles describe the spatial distribution 
of the energy of the particles and waves arriving to the plane 
placed at 100z λ′ =  from the S plane.

The source-turned-off state is realized in the MD-stage 
by setting , in such a way that  
holds and is determined by Eq. (5b). By replacing it in Eq. 
(2b), the geometry of the energy cones in the MD-setup is 
revealed, i.e.
        ,    (9)

For interpretation purposes, it is very useful to separate 
the component of the cone provided by the pairs of points 

 enclosed in the structured support that determine 
the integration domain of Eq. (9), and the component 
provided by the center of the structured support 
, i.e. the contribution associated to the single point in the 
support. It is performed by introducing the dimensionless 
function , with  the Dirac’s delta, in 
the integral of Eq. (9) so that

   (10)

It follows

            (11a)

as the cone component provided by the single point at the 
support center. It is a real valued and positive definite func-
tion that describes a Lorentzian shaped cone. In addition,

,

with Re denoting the real part, by regarding  
. It leads to

     (11b)

with  the phase difference of the 
transmission function of the M plane at the pair of points 

. It is a real valued function that takes on positive and 
negative values and describes a cone whose geometry has a 
spatially oscillating modulation with a Lorentzian envelope.

An important difference between the cones  
and  is appreciable in Eqs. (11). The first one 
is defined by a single mode which is independent from 
the prepared degree of correlation at the M plane. It only 
depends on the MD-stage configuration and its geometry is 
the same for all the single points of the M plane with non-
null absorbance. In contrast, the second one is determined 
by a modal expansion weighted by the prepared degree of 

correlation, and therefore it depends on the two setup stages. 
As a consequence,  if the prepared 
degree of correlation nullifies.

Accordingly, only the cone  is actually 
induced by the preparation SM-stage and its role in the cone 
overlapping established in Eq. (10) is to modulate the cones 

, thus determining the complete geometry of the 
cone  that characterizes the space modulation 
of the MD-stage. For this reason, the cone  is 
called the modulating cone (Castañeda, 2017 b) (Castañeda 
&Matteucci, 2017).

The change of state to source-turned-on is realized by 
setting the prepared energy distribution at the M plane, 

, in Eq. (8). According to Eqs. (11), 
this energy distributes on the cones in the volume of the 
MD-stage as follows:

      (12a)

and

   (12b)

respectively. Thus, the spatial distribution of the energy 
measured at the D plane can be expressed as  

, with

      (13a)

and

      (13b)

the individual contributions of the cone components in Eqs. 
(12), obtained from Eqs. (1b) and (10). Both energy terms 
are real valued but ( ) ( ) 0R

D AS ≥r  and it is independent from the 
prepared two-point correlation at the M plane, while ( ) ( )V

D AS r  
takes on positive and negative values and depends closely 
on the prepared two-point correlation. In fact, ( ) ( ) 0V

D AS =r  
and therefore ( ) ( ) ( )R

D A D AS S=r r  if the prepared degree of 
correlation nullifies. In addition, the energy distribution in 
the MD-stage should be conservative. Specifically,

,

with

.

Then, it follows
,
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and
,

which implies,
.

The above analysis lead to the following conclusions:
(i) The coefficient  in Eq. (12a) represents 

the energy of the wave disturbance or the particle that crosses 
the M plane at the vertex of the cone . This energy 
is a physical observable and distributes over such cone, thus 
being recorded by the detector still if there are no modulating 
cones. For this reason,  is called the real cone. It is 
therefore theoretically reasonable to postulate the presence 
of a point emitter at the real cone vertex that emits the 
energy  when the wave disturbance or the 
particle crosses such point. Such emitter is called the real 
point emitter (Castañeda, 2017 b) (Castañeda&Matteucci, 
2017), and its contribution ( ) ( ) 0R

D AS ≥r  at the D plane is the 
emitted energy component of the measured energy.

The energy ( ) ( )V
D AS r  is not a physical observable but has 

the important role to modulate spatially the emitted energy 
( ) ( )R
D AS r  thus producing the measured energy distribution 
( ) 0D AS ≥r . It means that ( ) ( ) ( ) ( )R V

D A D AS S≥r r  if ( ) ( ) 0V
D AS <r

.                    It is worth noting that the modulating energy 
( ) ( )V
D AS r  is essentially provided by the experimental setup. 

Indeed, it depends on the prepared degree of correlation at 
the M plane and its modes are determined by the MD-stage 
configuration. In addition, the coefficient  
in Eq. (13b) is introduced by the mathematical condition 
named Schwarz inequality and only assures the achievement 
of the requirement ( ) 0D AS ≥r . Indeed, if the experiment pre-
paration provides high correlation and a uniform energy dis-
tribution at the M plane, then . 
Only under this condition ( ) ( )min 0D AS =r  holds at some points 

Ar  on the D plane, in accordance with the experimental obser-
vation of destructive interference. Therefore, the coefficient 

 assures the achievement of ( ) ( ) ( ) ( )R V
D A D AS S= −r r  

at those points under such condition.
The conclusions above lead to the following novel 

interpretation for the expression

                          ( ) ( ) ( ) ( ) ( )R V
D A D A D AS S S= +r r r .                   (14)

It means that the measured energy distribution results 
from the spatial modulation of the emitted energy by the 
energy contributed by the experimental setup. Therefore, the 
modulating energy plays the role of the potential energy in 
the dynamical energy equation that specifies the total energy 

( )D AS r  of the classical wave disturbance or quantum parti-
cle that arrives to each point of the detector, in the source-
turned-on sate of the setup.

In other words, Eq. (14) represents the global interac-
tion of the emitted waves or particles with the setup, and 
points out that the spatial distribution of the measured 
energy, named interference or diffraction pattern, is a direct 
result of such interaction.

Consequently, in the source-turned-on state the modu-
lating cone  plays the role of a potential, whose 
name of geometric potential is clearly justified by the 
analysis above. It is theoretically reasonable to postulate the 
presence of a point emitter at the modulating cone vertex 
that emits the correlation energies

 
 

which distributes over the modes of the expansion (12b), 
thus configuring the geometric potential in the volume of 
the MD-stage. This emitter is called the virtual point emitter, 
because of the mathematical properties of the geometric 
potential discussed above.

Now, a unique physical description of interference and 
diffraction can be formulated for classical waves and quan-
tum particles, by regarding two accessible states for the two-
stage experimental setup in the P&M scheme. Basically, it 
regards that the setup configuration establishes a geometric 
modulation in the space with the physical ability to affect 
the movement of waves and particles in the setup, thus 
producing the interference and diffraction patterns.

More specifically, once the setup is configured in the 
source-turned-off state, the correlation cones spatially modu-
late the preparation stage thus determining the prepared 
complex degree of correlation on the mask plane. In addi-
tion, real cones are established in the measurement stage 
from the mask points at which wave disturbances or parti-
cles can cross the mask after the state change of the setup. 
The prepared degree of correlation induces modulating 
cones in the measurement stage that overlap the real cones 
modulating them geometrically. When the setup state changes 
to source-turned-on, local events of emission, mask-crossing 
and detection of wave disturbances or particles take place in 
the device. It is irrelevant that several of such events occur 
simultaneously as in case of classical waves, or sequentially 
as in case of individual quantum particles, because the 
description of the pattern formation at the detector plane is 
independent of this feature.

After an emission event, the emitted wave or particle 
arrives to a point in the prepared structured support of 
correlation of the cone with vertex on the emission point. 
Wave and particle arrivals are characterized by local energy 
amounts at the arrival point on the M plane. After crossing 
the mask at this point, the wave or the particle should move 
through the geometric potential induced in the measurement 
stage by the prepared two-point correlation. Consequently, 
its energy spatially changes, thus indicating that the wave 
disturbance or the particle is driven along preferential 
directions by the geometric potential up to its detection.

This physical and geometrical description is quite 
different to the standard one, because it does not base on 
the wave superposition and not requires the wave-particle 
duality, the self-interference or the wave collapse hypotheses.

The new principle
The above description of interference and diffraction can be 
synthetized in a physical principle with the corresponding 
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law. To this aim, let us consider the simplest basic interference 
experiment, i.e. the double pinhole experiment with classical 
waves or quantum particles, named the Young’s experiment, 
Figure 4. It is sufficient to analyze the measurement MD-
stage in order to synthesize the new principle and law by 
assuming a given two-point correlation , prepared 
at the M plane. The transmission function of the double 
pinhole mask fulfils the formula

         (15)

with b the pinhole separation. The first line of Eq. (15) refers 
to the individual pinholes, characterized by the factor , 
while the second line refers to the correlated pair and include 
the two degrees of freedom in orientation of the separation 
vector. The cone  that describes the geometric 
modulation of the space can be expressed as

                       .              (16a)

It results from the overlapping of two real cones with 
vertices at the pinholes and one modulating cone with vertex 
at the midpoint between the pinholes, in the opaque segment 
of the mask.

In the source-turned-off state of the setup, the real cones 
take the Lorentzian shaped form

      (16b)

and the modulating cone has the cosine cross-section with 
Lorentzian envelope (Figure 4) given by

      (16c)

It is apparent in Eq. (16c) that the non-null spatial 
correlation of the two pinholes   is the requirement 
for the existence of the modulating cone, i.e. both pinholes 
must be included in the prepared structured support of 
correlation centered at the midpoint between them. This 
condition implies that the pinhole separation must be shorter 
than the size of the prepared structured support. Otherwise, 
the modulating cone disappears and the MD-stage contains 
only the real cones.

Once the setup state changes to source-turned-on, the 
factors ( )2MS b±  and ( ) ( )2 2M MS b S b−  appear respec-
tively in the real cone, Eq. (16b) and Figure 5 (a)-(b), and 
in the modulating cone, Eq. (16c), thus giving the geometric 
potential defined as

( ) ( ) ( ) ( ) ( )1 2 2 2 0;V
M M MD AS b S b x− W ,

and illustrated in Figure 5 (c)-(d). Consequently,  
in Eq. (16a) becomes the energy cone illustrated in Figure 
5 (e)-(f).

The coefficient ( ) ( )2 2M MS b S b−  establishes that 
both pinholes must remain open during the movement of 
the wave and the particles from the source to the detector 

( )( )2 0MS b± > . It is a necessary but not sufficient require-
ment for the existence of the geometric potential, still in 
experiments with individual particles that cross only one 
of the pinholes at a time. If any of the pinholes is blocked, 
then the coefficient ( ) ( )2 2M MS b S b−  nullifies and the 
geometric potential disappears. Summarizing, the necessary 
and sufficient condition to establish the geometric potential 
in the MD-stage is that the two pinholes must be open and 
spatially correlated. It is realized by the definition of the 
two-point correlation in Eq. (8).

The necessary and sufficient condition for the geometric 
potential has an important physical implication. When both 
pinholes are open but non-correlated, so that  
for , then the energy cone in the stage results from 
the overlapping of the two real cones associated to the 
pinholes, without the modulation of the geometric potential, 
Figure 5 (a)-(b). It confirms that the geometric potential 
cannot be obtained by overlapping real cones. It can only 
be established by the setup configuration. Therefore, the 

Figure 4. Conceptual sketch of the Young interference experiment, 
according to the P&M scheme. r and v label the real and the virtual 
point emitters. Upper graph: the source-turned-off state (the real 
cones in the MD-stage are not shown). Bottom graph: the source-
turned-on state.
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a) b)

c) d)

a) b)

c) d)

e) f)

interference modulation of the energy distribution in the 
MD-stage should be obtained by overlapping each real 
cone individually with the geometric potential, as shown in 
Figure 6.

The analysis above indicates that the meaning of spatial 
coherence should be extended. In the standard formula-
tion, it is described as an exclusive attribute of the physical 
objects (waves or particles). The new model relates two 
features to it: (i) the ability of the setup configuration to 
determine the set of geometric modes for the correlation 
cones, and (ii) the filtering ability of the source of waves 
and particles to select and to weight the subset of geometric 
modes that effectively conforms the correlation cones. It 
has been shown before that the preparation of the two-point 

correlation at the M-plane is the choice of a geometrical 
modulation, performed by the source correlation, among 
all the possible ones that can be provided by the setup. It 
means that the direct role of the source spatial coherence is 
restricted to the preparation stage.

The physical description in the last paragraph of the sec-
tion before is confirmed by Figure 6 (a)-(b), i.e. the wave dis-
turbance and the crossing particles by the pinhole at λξ 5=A  
find, in the volume of the MD-stage, the geometric potential 
provided by the virtual point emitter at 0Aξ = . Consequently, 
they must move through the spatial modulation established 
by such geometric potential. The upper region of the graphs 
with respect to the dotted lines illustrates the energy cones 
after a great enough number of crossing events. This is the 
region occupied by the corresponding non-modulated real 
cone in Figure 5 (a)-(b). The modulation of the bottom 
region is due to the geometric potential only. 

At a far enough distance from the mask, the individual 
real cones fill the whole volume of the stage. Therefore, the 
corresponding modulated energy cone fills the whole volume 
too, as shown in Figure 6 (c)-(d). Because the geometric 

mµλ 632.0=    4 pmλ =

Figure 6. Energy cones in the measurement MD-stage associated 
to the individual interaction between the real point emitter in the 
pinhole at  and the virtual point emitter at , in the 
Young interference depicted in Figure 5, with classical waves 
on the left column and with individual quantum particles on the 
right column. The vertical axes are  in (a)-
(b) and  in (c)-(d), and the horizontal axes are 

 in (a)-(b) and  in (c)-(d). Dotted lines in 
(a)-(b) delimit the region occupied by the non-modulated real cone 
associated to the real point emitter in Fig. 5 (a)-(b).

Figure 5. Measurement MD-stage of the Young interference 
experiments with classical waves on the left column and with 
individual quantum particles on the right column. (a)-(b) Real 
cones, (c)-(d) geometric potential, and (e) and (f) modulated energy 
cones. the vertical and the horizontal axes are  
and  respectively. The pinhole separation is .

mµλ 632.0=       4 p mλ =
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potential performs the same geometric modulation to the 
real cones associated to the both pinholes, the graphs (c)-(d) 
are the same for the energy coming for any of the pinholes. 
As a consequence, if the detection is realized in the far-
field region, it is not possible to distinguish the energy 
distribution contributed by each of the pinholes. However, 
this indistinguishability is removed, still maintaining some 
spatial modulation, in the very near region to the M-plane 
as shown in the graphs (a)-(b). It also means that the 
interference modulation does not require the overlapping  
of the real cones.

Figures 5 and 6 evidence the meaning of the space 
scale metric and its relationship with the wave and particle 
wavelengths in the measurement MD-stage, i.e. similar 
shaped patterns essentially differing in scale, are obtained 
with classical waves that simultaneously illuminate the two 
pinholes and with individual quantum particles that crosses 
only one pinhole at a time.

This analysis clearly departs from the description based 
on the wave superposition, in which the (classical or quan-
tum) wave contributions from the both pinholes constitute 
the necessary and sufficient cause of interference. The stan-
dard description precludes the occurrence of interference 
when only one of the two open pinholes contributes with 
wave disturbance or particle crossings. In case of interfer-
ence with individual quantum particles, this requirement 
leads to the notion of self-interference of the particles 
in order to provide the required probability amplitudes 
at the both pinholes. Self-interference is also behind the 
interference with classical waves, because the disturbances 
at the two pinholes belongs to the same wave-front. In 
contrast the geometric interpretation does not require the 
self-interference notion, because in this framework interfer-
ence is formed because of the spatial modulation of the real 
cones by the geometric potential, which forces the energy 
of the waves and the particles to be distributed on certain 
preferential regions of space.

The overlap of the individual modulated real cones 
gives the well-known interference patterns, recorded after a 
great enough number of detection events. Thus, the energy 
cone in the MD-stage can be expressed as

,   (17a)
with

      (17b)

the individual modulated real cones by the geometric 
potential. From Eqs, (1b) and (17) it follows

                        ( ) ( ) ( ) ( ) ( )D A D A D AS x S x S x+ −= + ,                   (18a)
as the energy distribution recorded by the detector at the 
M-plane, with

           
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2R V
D A D A D AS x S x S x± ±= +                (18b)

the energy distribution over the basis of each 
modulated energy cone. In addition,         

       (18c)

is the energy distribution across the basis of each 
individual real cone, provided by the wave disturbance or 
the crossing particles at the corresponding pinhole, while

     

(18d)

is the potential energy across the basis of the geometric 
potential cone provided by the stage configuration. This 
potential energy spatially modulates the energy provided by 
the individual real cones. It should be noted that:

(i)  and  but  takes on 
positive and negative values. Therefore,  
holds for .

(ii) The energy distribution provided by the real cones is 
independent from the prepared two-point correlation, while 
the potential energy does. In other words, the preparation 
of the two-point correlation in the SM-stage determines the 
potential energy distribution at the D-plane.

(iii) Because , and  
, then  it means that the 

distribution of the energy in each individual modulated real 
cone is conservative.

The analysis above leads to the following conclusions:
(i) Only three point emitters, two real and one virtual, 

are required to describe the energy measurement in the MD-
stage of the double pinhole Young interference. These point 
emitters are placed at different positions on the M-plane, 
i.e. the real point emitters are in the pinholes and the virtual 
point emitter is at the opaque segment of the mask between 
de pinholes.

(ii) Equation (18b) can be interpreted as the energy at 
the D-plane due to the interaction, at the M-plane, between 
each real point emitter that characterizes the classical waves 
or the quantum particles, and the virtual point emitter that 
characterizes the experimental setup. These interactions 
are separate and their effects are additive as expressed in 
Eq. (18a).

(iii) Because the overlap of the real cones cannot pro-
duce interference modulation, the interaction between the 
real point emitters is forbidden. This feature is an additional 
departure of the geometric interpretation from the standard 
models based on the wave superposition.

The general statement that interference is the result 
of the separate interaction between individual real point 
emitters and the virtual point emitters constitute the prin-
ciple of interference in the framework of the geometrical 
interpretation. It can be equivalently stated as follows: 
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a) b)

c) d)

e) f)

interference results from the interaction between the emitted 
waves or particles with the geometric potential determined 
by the setup configuration.

Although the geometric modulation of space in both the 
SM- and the MD-stages, arranged in a P&M scheme, occurs 
in the source-turned-off state, interference is a physical 
phenomenon occurred in the source-turned-on state. There-
fore, Eq. (18b) constitutes the general law of interference in               
this framework.

From interference to diffraction
In the framework of the geometric interpretation, the interac-
tion principle synthetized from the double pinhole interfer-
ence is the general principle for interference and diffraction. 
In the following, grating interference and diffraction are 
discussed from this point of view.

It has been proved in classical optics that a P&M 
schemed setup with space scale metric λ and a regular array, 
with spacing b and length L, of real point emitters of waves 
attached at the M-plane produces interference if b > λ and 
diffraction if b < λ and L > λ (Castañeda, 214, 2017 a). 
Now, the validity of this result is extended for interference 
and diffraction with quantum particles.

To this aim, let us assume, for simplicity and without 
loss of generality, a similarly configured setup with a 
pinhole grating at the M plane with a linear array of 2M + 
1 pinholes (M a positive integer). In the source-turned-on 
state, the pinhole grating determines a corresponding array 
of real point emitters, and the setup configuration induces 
a set of  0 4 1N≤ ≤ −M  virtual point emitters distributed 
along the segment of pinholes, whose specific number 
and strength depend on the shape and size of the prepared 
degree of correlation. They are placed at the positions 

( ) 2A m n bξ = +  which are the midpoints between pairs of 
pinholes with separations ( )bnmD −=ξ , inscribed in the 
prepared structured supports centered at the Aξ  positions.

The set of real point emitters contributes the energy 
distribution

               

( ) ( ) ( ) ( ); ; ,R
D A M MD A

m
S x S mb mb x k z

=−

= Φ∑
M

M
       (19a)

at the D plane, while the potential energy distribution there 
due to the set of virtual point emitters is given by

  , (19b)

so that the energy distribution resulting from the interaction 
between the sets of real and virtual point emitters is given 
by ( ) ( ) ( ) ( ) ( )R V

D A D A D AS x S x S x= + . It is illustrated in Figure 7 
for a great enough number of emission events of an array of 
21 identical real point emitters ( )10=M , of length L = 10λ 
and spacing b = λ/2, under the prepared correlation degree 

( ), 1M mb nbµ =  that produces the maximal number of virtual 
point emitters, i.e. 39. Accordingly, diffraction should occur 
in the measurement MD-stage when the setup is in the 
source-turned-on state.

It is remarkable that, in spite of the discreteness of the set 
of real point emitters, non-paraxial slit diffraction patterns are 
formed from relative short distances to the far–field by both 
classical waves (Castañeda, 2014 a, b) (Castañeda, 2017 a) 
and individual quantum particles (Castañeda, et al., 2016 a, 
b) (Castañeda&Matteucci, 2017), in good accordance with 
reported experimental results in light optics (Born&Wolf, 
1993) and electron optics (Matteucci, 1990) (Matteucci, 
et al., 2013). As expected, the graphs are similarly shaped 
but different in scale. So, the diffraction condition proved 
for classical waves is also fulfilled by individual quantum 
particles. It leads to the conclusion that, in the framework 
of the proposed geometric model, diffraction occurs in the 
source-turned-on state of the setups, provided that the dis-
crete set of radiant point emitters fulfils the condition b < λ                                                                             

4 pmλ =                    mµλ 632.0=

Figure 7. Diffraction in the measurement MD–stage resulting 
from the interaction between 39 virtual point emitters associated 
to 21 high correlated pinholes and the corresponding individual 
real point emitters, for single quantum particles on the left column 
and for classical waves on the right column. Vertical axes are 
corresponding to ( )mxA µ  and the horizontal axes to ( )mz µ Energy 
profiles are shown at the corresponding vertical axes. Symbols + 
and – denote the positive and negative semi–axis. Images were 
enhanced on the left part (left column) and on the right part (right 
column) to appreciate details. Delta–like peaks were truncated for 
presentation purposes.
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a) b)

e) f)

c) d)

g) h)
0.632 5Mmλ µ σ λ= → 4 0Mp mλ σ= →

0.632 Mmλ µ σ= →∞ 4 15Mp mλ σ λ= →

and L > λ, with λ the setup space scale metric, b the array 
spacing and L the array length, independently if waves or 
particles move in it.

It should be remarked that discreteness in this context 
is not a consequence of a sampling procedure for numerical 
calculations, but a physical condition for the experimental 
realization of diffraction. Indeed, it has been proved that any 
linear array of real point emitters with L < λ/10 behaves like 
a single real point emitter independently from the number 
of point emitters, the prepared two-point correlation and the 
sampling procedure to perform the numerical predictions 
(Castañeda, 2017 a). It is due to the fact that the setup 
cannot provide a geometric potential capable to modulate 
the real cones of such array. This conclusion contrasts 
with the standard notion that only continuous (classical or 
quantum) wave–fronts can produce or predict the build–
up of diffraction patterns. Continuous arrays of real point 
emitters seem to be redundant sets for diffraction.

In many cases, the attached mask at the M plane can 
gather points in separate sets, with separations longer than 
the space scale metric, but each one with b < λ and L > λ. 
These sets can be inscribed, partially or completely, in the 
prepared two-point correlation. So, in the source-turned-on 
state the setup provides a geometric potential with:

(i) An interference modulation component for the inter-
actions between the real point emitters of any set with the 
virtual point emitters that associate this set with the other sets.

(ii) A diffraction modulation component for the inter-
actions between the real point emitters of a set with the 
virtual point emitters associated to pairs with the same set.

(iii) The diffraction component of the geometric poten-
tial modulates the interference component.

Let us illustrate these features with the simplest experi-
mental situation, i.e. the double slit experiment, whose energy 
cones in the MD-stage are shown in Figure 8. The slits of 
the mask at the M plane determine two co–linear arrays of 
11 real point emitters each one, with b = λ/2 and L = 5λ. The 
arrays separation is a = 10λ. A Gaussian two-point correlation 
is prepared, whose standard deviation Mσ  determines the 
correlation length (i.e. the size of the structured supports) at 
the M plane. So, the setup induces  virtual point 
emitters within each slit, and  virtual point emitters 
at the opaque region between the slits, depending on the 
value of Mσ . The distributions of the discrete sets of real point 
emitters in the slits are represented by the energy profiles at 

0=z  in all graphs of Figure 8. The maximal number of virtual 
point emitters, 40L aN N+ = , are induced in graphs (a)-(b) for 
classical waves. The real point emitters of both slits interact 
with this set of virtual point emitters, so that the wave energy 
distributes over the geometric potential in the MD-stage as 
shown in (a) near the M plane and (b) in the far-field, after 
a great enough number of crossing events through the slits. 
The geometric potential modulates the individual real cones 
before they are completely overlapped, in the region near the 
M plane, and produces a high contrasted interference pattern 
modulated by diffraction in the far–field.

The set of virtual point emitters diminishes in (c)-(d) to 
19 40L aN N< + <  for single quantum particles, by reducing 
the correlation length in such a way that the structured 
supports centered at ach slit covers them completely but 

Figure 8. Energy cones in the MD-stage of a double slit experiment with Gaussian two-point correlation prepared at the M-plane, with 
correlation length Mσ . The setup is configured for classical waves ( )mµλ 632.0=  and for single quantum particles ( )4 p mλ = . ( )mxA µ  and 
( )mz µ  are the vertical and the horizontal axes, respectively. Energy profiles are shown at the corresponding vertical axes. Symbols + and – 

denote the positive and negative semi–axis. Graphs on the left column describe the energy cones near the slit mask, while those on the right 
column denotes the energy cones in the far–field. Images are enhanced for presentation purposes.
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the structured support centered at the midpoint between the 
two slits cover them partially. Consequently, the diffraction 
component of the geometric potential is maintained but the 
contrast of the interference component is reduced. It means 
that the real point emitters realize the interaction with the 
maximal set of virtual point emitters within each slit, but 
with a smaller set of virtual point emitters between the slits.

The correlation length is reduced to the slit width in (e)-
(f) for classical waves, so that N = NL = 19. It means that                                                                                                                         
the interference component of the geometric potential is 
filtered out and only the diffraction component remains. 
Therefore, the sets of real point emitter of each slit interact 
only with the virtual point emitters within the slit. The energy 
cones near the M plane as well as in the far field do not 
exhibit interference modulation, so that the energy distribu-
tion of the wave at the D plane in the far-field reproduces the 
diffraction pattern associated to each individual slit.

Finally, the correlation length becomes M bσ <<  in (g)-
(h) for single quantum particles, so that N = 0. Both compo-
nents of the geometric potential are filtered out and there are 
no interactions. So, the overlapping of the Lorentzian shaped 
real cones gives Lorentzian shaped energy cones too.

The results above point out a worthy feature of the 
structured supports of correlation: each virtual point emitter 
interacts only with the pairs of radiant point emitters 
inscribed in its structured support. Accordingly, there is no 
interaction between the real and the virtual point emitters 
placed at the same point.

The complete map of interactions can be determined 
by using the spectrum of classes of point emitters, a novel 
and very effective tool reported in (Castañeda, 2016) for 
classical waves and (Castañeda&Matteucci, 2017) for 
quantum particles.

Non-paraxial Talbot carpets
They are interference patterns that repeat at given axial 
positions in the region near the M plane in the MD-stage 
(Wen, et al., 2013). They are produced when b λ>> , so 
that the geometric potential contains mainly high spatial 
frequency modes. Consequently, the interference patterns 
will be highly contrasted and sharply localized along the 
z-axis, and their main maxima will be extremely narrow.

Figure 9 illustrates similar shaped non-paraxial Talbot 
carpets with light waves and single quantum particles. It is 
remarkable that the vertical patterns with the highest main 
maxima are not equidistant along the propagation axis nor 
have the same spacing. It is due to the non-linear argument 
of the geometric potential modes. This non-paraxial fea-
ture, predicted by the geometric model, is crucial in tech-
nological applications, in which the stringent tolerances for 
the substrate positioning is definitive to build molecular 
nano–wires. Specifically, by using molecules, a real time 
adjustment of the thin film patterning is not feasible so 
that a precise design of the experimental setup is strictly 
needed. In this sense, the far-field paraxial approach is not 

a suitable methodology for the calculation of Talbot carpets 
with single particle interference, required by technological 
developments.

Reported experimental evidences
Remarkable experimental evidences of the validity of the 
geometric model were recently reported (Castañeda, et 
al., 2016 a, b). Indeed, it provided accurate predictions 
of experimental interference patterns performed by other 
authors, with single electrons (Matteucci, et al., 2013), sin-
gle molecules of Phthalocyanine (PcH2) and its derivative 
(F24PcH2) (Juffmann, et al., 2012), and Fullerene C60 
(Nairz, et al., 2003). These beautiful experiments open new 
basic and practical perspectives, not only to test the wave 
nature of massive particles, but also to develop technological 
applications regarding the scaling down of molecule based 
devices as transistors and diodes used in organic electronics 
(Cappelli, et al., 2014).

The validity of the geometric model has been evidenced 
in case of interference and diffraction of electromagnetic 
waves too (Castañeda, 2014 a). Furthermore, two-dimen-
sional arrays of real and virtual point emitters have been 
used for modelling diffraction and interference with light 
wave-fronts (Castañeda, 2014 b). Such arrays can be 

mµλ 632.0=                          5pmλ =

a) b)

c) d)

Figure 9. Talbot carpets with classical waves (left column) and 
individual quantum particles (right column). The prepared corre-
lation degree is equal to one. Five real point emitters with spacing 
of 104 λ are considered in (a)-(b), and 21 emitters with spacing 105 

λ are considered in (c)-(d). ( )mxA µ  and ( )mz µ  are the vertical 
and the horizontal axes, respectively, with  and 

 in (a)-(b) and with  
and  in (c)-(d).
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decomposed in a finite number of additive one-dimensional 
distributions, so that the geometric model can be applied 
with mathematical simplicity and without lack of generality.

Conclusion and summary
The physical description of interference and diffraction with 
classical waves and quantum particles has been discussed 
in the framework of a geometric model based on a unique 
principle and the same general law. The principle is the 
interaction between real point emitters that characterize 
the waves and particles moving in the setup, and the virtual 
point emitters that characterize the setup. It is quite different 
from the wave superposition, the fundamental notion of the 
standard description, not only in form but also in meaning. 
It has been proved, for instance, that the overlapping of real 
cones, which is the geometrical simile of the wave super-
position, cannot produce the spatial distribution of energy 
called interference.

The fundamental features of the principle were discussed 
in detail, and the corresponding general law of interference 
was established by regarding that any interference or diffrac-
tion setup is configured in a P&M (preparation-measure-
ment) scheme and has two accessible states named the source-
turned-off and the source-turned-on states, determined by 
the operation of the source of waves or particles. In this 
context, the emission, mask crossing and detection events 
of the wave or particle energy are assumed as local events.

In addition, in the source-turned-off state the setup con-
figuration provides a geometric modulation of the space by 
determining a set of geometric modes in the setup volume. 
Once the state changes to source-turned-on, a subset of 
specific modes is selected and weighted to configure corre-
lation cones in the preparation SM-stage as well as cones 
of geometric potential in the measurement MD-stage. 
Consequently, pairs of points included in the structured 
supports of correlation (i.e. the bases of the correlation 
cones) at the mask plane become correlated in some extent 
and, because of this, such points become connected to 
specific modes of the geometric potential in the MD-stage.

The wave disturbance or the individual particle that 
arrives to a crossing point of the mask in a given structured 
support is characterized by the real point emitter placed at 
such point, which individually interacts with the virtual 
point emitter at the center of the structured support. Conse-
quently, the wave disturbance or the single particle must 
move along the preferential directions determined by the 
corresponding geometric potential in the MD-stage, so that 
its energy at the detector becomes affected by the potential 
energy provided by the geometric potential.

It is expressed by the new general law for this interac-
tion, which is an energy equation that involves the energy 
of the wave or the single particle and the potential energy 
provided by the setup. This law describes the energy distri-
bution of interference and diffraction patterns depending on 
the distribution of the real point emitters at the mask plane. 

The P&M scheme is therefore realized as the preparation 
of two-point correlation and the corresponding geometric 
potential, and the measurement of energy distributions.

As a very important consequence, the standard explana-
tions of quantum interference and diffraction based on the 
wave-particle duality, self-interference and wave collapse 
are irrelevant in the framework of the geometric model, thus 
solving the mystery in the heart of quantum mechanics.

It is remarkable that the geometric model is completely 
causal and deterministic. Therefore, a subject to be analyzed 
in next papers concern the effects of the statistical features 
of the emission, the crossing and the detection events on 
this model.

Finally, the geometric model has been validated by its 
accurate prediction of interference and diffraction patterns 
with light (i.e. scalar optical fields) and electromagnetic 
waves (i.e. by including polarization states), single electrons 
and different types of single molecules.
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