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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

The fatigue behavior at high number of cycles in elastic-plastic field of quenched and tempered carbon chromium 
steel was experimentally investigated for high performance reciprocating compressors application. Fatigue tests on 
un-notched specimens were performed both under load and strain controls, by imposing different levels of 
stress/strain and for each of them different values of stress ratios R, especially high values.  Stress and strain trends 
have been monitored, during the fatigue life, and either ratcheting or relaxation, respectively, was evident. 
The stress control tests have resulted into fatigue fractures only for low values of R with significant ratcheting and 
an increasing rate during the final part of the test, thus the fracture could be considered as a synergy between fatigue 
damage and plastic failure. On the contrary, the ratcheting stabilized for high values of R and the tests were finalized 
without any fracture. Within an intermediate region, for medium/high values of R, a minor ratcheting and the 
fracture transition have been found.  Similarly, for the tests under strain control, low values of R showed fatigue 
fractures despite a considerable relaxation, conversely for high values of R, the relaxation was limited without any 
fracture. After reporting the tests on the Haigh plane, the Smith-Watson-Topper equation (SWT) provided the best 
prediction of the fatigue strength, at least until the intersection with the ultimate stress line, both under stress and 
strain control loadings. The cyclic behavior of the material was then investigated through several static and cyclic 
tests on plain specimens. A kinematic hardening Chaboche model, with three parameter couples, was proposed and 
the values of these parameters derived and discussed. Finally, other tests have been conducted on notched specimens 
with C geometry and blunt radius, again at high R values. FE analysis allowed the prediction of the stress evolution 
during the loading cycling, implementing the Chaboche model, and observing a combined effect of ratcheting and 
relaxation at the notch tip. The stabilized stresses were finally reported on the Haigh diagram and the results were 
found in agreement with the plain specimen fatigue line. 
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Peer-review under responsibility of the Scientific Committee of ECF21. 

Keywords: "Fatigue, High Ratio R, Ratcheting, Relaxation, Chaboche, notched specimens"  

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2016) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ECF21.  

21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy 

Fatigue investigation at high load ratio R of a quenched and 
tempered chromium molybdenum steel 

L. Bertinia, L. Le Bonea, C. Santusa, F. Chiesib, L. Tognarellib 

a Università di Pisa – Dipartimento di Ingegneria Civile e Industriale, Largo L. Lazzarino2, Pisa 56126, Italy 
b GE Oil&Gas – Nuovo Pignone S.p.A, Via F. Matteucci, Firenze 50127, Italy  

Abstract 

The fatigue behavior at high number of cycles in elastic-plastic field of quenched and tempered carbon chromium 
steel was experimentally investigated for high performance reciprocating compressors application. Fatigue tests on 
un-notched specimens were performed both under load and strain controls, by imposing different levels of 
stress/strain and for each of them different values of stress ratios R, especially high values.  Stress and strain trends 
have been monitored, during the fatigue life, and either ratcheting or relaxation, respectively, was evident. 
The stress control tests have resulted into fatigue fractures only for low values of R with significant ratcheting and 
an increasing rate during the final part of the test, thus the fracture could be considered as a synergy between fatigue 
damage and plastic failure. On the contrary, the ratcheting stabilized for high values of R and the tests were finalized 
without any fracture. Within an intermediate region, for medium/high values of R, a minor ratcheting and the 
fracture transition have been found.  Similarly, for the tests under strain control, low values of R showed fatigue 
fractures despite a considerable relaxation, conversely for high values of R, the relaxation was limited without any 
fracture. After reporting the tests on the Haigh plane, the Smith-Watson-Topper equation (SWT) provided the best 
prediction of the fatigue strength, at least until the intersection with the ultimate stress line, both under stress and 
strain control loadings. The cyclic behavior of the material was then investigated through several static and cyclic 
tests on plain specimens. A kinematic hardening Chaboche model, with three parameter couples, was proposed and 
the values of these parameters derived and discussed. Finally, other tests have been conducted on notched specimens 
with C geometry and blunt radius, again at high R values. FE analysis allowed the prediction of the stress evolution 
during the loading cycling, implementing the Chaboche model, and observing a combined effect of ratcheting and 
relaxation at the notch tip. The stabilized stresses were finally reported on the Haigh diagram and the results were 
found in agreement with the plain specimen fatigue line. 
 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ECF21. 

Keywords: "Fatigue, High Ratio R, Ratcheting, Relaxation, Chaboche, notched specimens"  

Copyright © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of ECF21.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2016.06.088&domain=pdf


682	 L. Bertini et al. / Procedia Structural Integrity 2 (2016) 681–6892 Author name / Structural Integrity Procedia  00 (2016) 000–000 

1. Introduction 

The effect of mean stress m  on fatigue has been extensively studied for tensile mean stress values less than 
about 60% of the ultimate strength and R ratio less than 0.5 approximately (Forrest PG (1962), Stephens et al. 
(2000)). A comprehensive literature investigation resulted in a very few papers dealing with high tensile mean 
stresses and high R ratio for un-notched or notched specimens (Howell and Miller (1955), Bell and Benham (1962), 
Morrissey et al. (1999) and Maxwell and Nicholas (1999)). However, many mechanical components experience a 
high tensile mean stress superimposed to a small alternating stress (high R ratio) such as pre-tightened axially loaded 
bolts, gas turbine blades and aircraft wings. Design engineers are expected to predict the fatigue life of components 
under a high mean tensile stress and a high R ratio despite the absence of significant research and understanding of 
these conditions. The objective of this research is to study the high mean stress effect of 42CrMo4 steel, by imposing 
different levels of stress/strain and for each of them different values of stress ratio R, especially high values (R>0.5) 
under load and strain control (Karadag and Stephens (2003) and Pals and Stephens (2004)). The material has been 
obtained from the rod of a reciprocating compressor characterized by a diameter approximately 130 mm and a length 
of 1500 mm. Stress and strain trends have been monitored, during the test for investigating either ratcheting or 
relaxation. Other tests have been conducted on notched specimens with stress concentration factor kt=1.65. The base 
material behavior was initially investigated through static and cyclic tests, and then a Chaboche model with three 
parameter couples was proposed to analyze the evolution of the stress at the tip of the notch after the first cycle and 
subsequent stabilizing initial cycles. 

2. Material characterization 

2.1. Static characterization: tensile test 

Fig. 1 show engineering stress-strain curves derived from a tensile test. This curve allows evaluating the tensile 
properties of the material and the tensile test obtained parameters are listed in Tab. 1. 

 

 
Fig. 1. (a) Engineering stress-strain curve; (b) detail of yelding “point” 

Table 1. Tensile test parameters. 

E (GPa) 0yS (MPa) supyS (MPa) infyS (MPa) utS (MPa) ut  fS (MPa) L (%) RA (%) 

209 500 511 499 700 0.123 467 32 64 

 
The stress-strain curve has been obtained from quasi-static tests conducted on standard specimens using a servo-

hydraulic machine with axial load capacity of 250 kN. The tests have been conducted in laboratory at room 
temperature with constant displacement rate. The instantaneous elongation of the sample has been measured by 
using an extensometer attached on the specimen. 
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The stress t  (true) rather was evaluated and considered, rather than the engineering stress  , for a more direct 
measure of the material’s response in the plastic flow range. Fig. 2 shows the true stress-strain curve, superimposed 
to the engineering curve, and the related parameters are reported in tab. 2. 

 

 

Fig. 2. Engineering and True stress-strain curves. 

Table 2. Parameters tensile test 

ut
tS  (MPa) f

tS  (MPa) ut
t  (%) f

t  (%) 

787 1300 12 100 

 

2.2. Cyclic characterization 

In order to cyclically characterize the material, several deformation (strain) control tests have been performed: 4 
load steps have been imposed to gradually bring the material in the plastic range. The values of stresses and strains 
in the various load steps are listed in Tab. 3 

Table 3. Stress and strain values at various steps. 

 Step 1 Step 2 Step 3 Step 4 

 (%) ± 0.2 ± 0.5 ± 1 ± 2 

 (MPa) ± 380 ± 500 ± 510 ± 580 

 

 

Fig. 3. (a) Hysteresis loops measured during the tests and cyclic curve (dashed), (b) comparison between the cyclic curve (dashed) and monotonic 
tensile curve (green). 
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     Fig. 3(a) shows the hysteretic loops obtained experimentally at the different cyclic strains then used to obtain 
the cyclic stress-strain curve of the material. A useful representation of the cyclic stress-strain curve was obtained 
with the Ramberg-Osgood equation: 
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and the values of K and n are, respectively: 1070 MPa and 0.14. 
As evident in Fig. 3 (b) the monotonic and the cyclic curves showed very similar trends, thus without any significant 
hardening of softening. 

2.3. Identification of the Chaboche’s hardening model parameters 

The model considered in the present work is a generalization of the linear kinematic rule introduced by Prager 
(Prager (1956)), where the yield surface is given by the following function: 

 
0)(  YXff                                                        (1) 

 
Chaboche (1986) and Chaboche et al. (1979) proposed their decomposed hardening rule in the following form: 
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Where iC  and i are the couples of material parameter (Chaboche’s parameters), to be identified. The number 
of parameter couples considered was m=3. Two kinds of experiments were required to perform the identification: 
one strain controlled hysteresis curve and one stress controlled. In order to find the Chaboche’s parameters three 
hysteretic loops have been take into account, Fig 3(a): max = ± 0.5 %, max = ± 1 % and max = ± 2 % , plus a stress 

controlled test at R=-0.66 with 600max  MPa as shown in Fig. 4. 

 

Fig. 4. Stress controlled test with R=-0.66 and σ max = 600 MPa for the determination of the Chaboche’s parameters. 

In this study the yield stress has been used as an extra parameter, thus differentiating the yield stress 
(engineering, 0.2% offset) obtained from the tensile test. After an optimization calculation, the Chaboche’s 
parameters obtained from these tests are listed in Tab 4. 

Table 4. Chaboche’s parameters. 

 1C  (MPa) 1  2C  (MPa) 2  3C  (MPa) 3  S’y0 (MPa) 

 Parameter 21746 16704 103651 518 7688 6.1 258 
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Fig. 5 (a) shows the mean strain as a function of the number of cycles both from the experimental data and the 
analytical model, while Figs. 5 (b) and (c) show the experimental stabilized hysteresis loops at εmax =±0.5% and 
±1.0% (only the plastic strain component is reported in the horizontal axis of figures (b) and (c)). It is evident that 
the experimental trends are accurately reproduced by the material model after finding an optimization point between 
the ratcheting (not-symmetric) and the alternating (symmetric) cyclic tests. 

 

Fig. 5. (a) Comparison between experimental data and Chaboche’s analytical model: ratcheting mean strain for not-symmetric loading (a), 
stabilized hysteresis loops at εmax=±0.5% (b) and εmax=±1% (c). 

3. Fatigue tests 

The material fatigue strength has been investigated with 42 tests on un-notched specimen, among them 31 under 
stress control to study the phenomenon of the accumulation of plastic strain (ratcheting) while the remaining 11 in 
strain control to study the relaxation (Guozheng (2009)).  

For both the tests under stress and strain control, 3 levels of maximum stress have been considered: 650 MPa; 
600 MPa and 550 MPa, between the yielding stress Sy0 and the ultimate stress Sut, and 7 levels of load ratio R (R=0; 
0.1, 0.2; 0.3; 0.4; 0.5; 0.6; 0.7 and 0.8) plus the reference case at R=-1. The experiments were conducted in a closed-
loop servo-hydraulic test machine (Schenck 250 kN) with an axial load capacity of 250 kN. The load was monitored 
through a calibrate load cell, and strain was with an extensometer controlling either the load or the extensometer 
strain. 

Finally, the notched specimen test series have been conducted to obtain the fatigue limit at five load ratios: R=-1; 
R=0; R=0.3; R=0.5 and R=0.7, obviously under load control only. 

3.1. Load control test results 

The tests performed under load control on plain specimens, as shown in Fig. 6, resulted as fatigue fractures for 
low values of R (R<0.3), given that at the high load ratios the alternating component was necessarily reduced due to 
the limitation imposed by the ultimate stress line. Comparing the results with various models, as shown in figure, 
only the Smith-Watson-Topper (SWT) equations provided the accurate prediction on the fatigue results of the 
component, at least until the intersection with Gerber’s parabola. 
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For low values of R, the fatigue test resulted in a significant ratcheting with increasing rate during the final part of 
the test, leading to a fracture after an evident necking despite σmax was lower than Sut. The fracture in this case can be 
considered as a combination of fatigue damage and plastic yielding. Some of the mean strain trends as function of 
the number of cycles, for R=0.1; 0.3 and 0.7, are reported in Fig. 7. For high values of R (R>0.5), as showed in Fig. 
7 (c)-(f), referred to the case R=0.7, the ratcheting stabilized and the tests were completed without failure. In an 
intermediate area, for medium/high values of R between 0.3 and 0.5, a minimum ratcheting and fracture transition 
was found. 

 

Fig. 6. Results of the tests under stress control on the Haigh diagram and comparison with various predicting fatigue models. 

 

Fig. 7. (a) - (b) - (c) Mean strain as function of the number of cycle for R =0.1; 0.3 and 0.7 respectively with σmax=600 MPa. (d) - (e) - (f) Stress-
strain for the same tests at different number of cycles. 

3.2. Strain control test results 

Since the strain was imposed for this kind of test to obtain a specific initial combination of maximum and 
minimum stresses, the mean stress reduced after the first cycle due to the relaxation. Fig. 8 shows the trends of the 
mean stress as function of the number of cycles for the tests with maximum stress of 600 MPa and load ratios 

 Author name / Structural Integrity Procedia 00 (2016) 000–000  7 

ranging from R=0 and R=0.8. Similarly to what happened for the load control tests, fatigue failures were found only 
for low values of R in spite of a significant relaxation, Fig. 9. No failures were obtained for high values of R along 
with a very limited relaxation. Therefore, a fracture transition zone was again found at approximately R=0.3. The 
SWT equation, again, very accurately defined the fatigue limit. Indeed, those tests below this curve ended without a 
failure, even being beyond the Goodman’s line, while the tests initially above experienced fatigue fracture though 
the relaxation moved these points approximately on the SWT line itself. 

 

 

Fig. 8. Mean stress relaxation with σmax=600 MPa and different load ratios. 

 

 

Fig. 9. Results of the strain control tests, showing relaxation, and comparison with various fatigue models. 

3.3.  Notched specimen test results and local stress prediction 

The tests conducted on notched specimens, shown in Fig. 10, with stress concentration factor kt=1.65, have been 
carried out on a resonance fatigue machine (150 Hz), testing different series to obtain the fatigue limit at R = -1; 0; 
0.3; 0.5 and 0.7.  

These fatigue limit values were then used as input in a FE model (ANSYS software), using the previously found 
Chaboche’s parameters, in order to evaluate the local stresses at the notch root and the evolution during the number 
of cycles. The notch root stresses for the fatigue limits are shown in Fig. 10. The hollow circles with larger size 
represent the mean and the alternate nominal stresses times the kt factor, while the smaller size hollow circles 
represents the stresses (mean and alternate), as calculated by the FE model at the first load cycle. Finally, the solid 
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For low values of R, the fatigue test resulted in a significant ratcheting with increasing rate during the final part of 
the test, leading to a fracture after an evident necking despite σmax was lower than Sut. The fracture in this case can be 
considered as a combination of fatigue damage and plastic yielding. Some of the mean strain trends as function of 
the number of cycles, for R=0.1; 0.3 and 0.7, are reported in Fig. 7. For high values of R (R>0.5), as showed in Fig. 
7 (c)-(f), referred to the case R=0.7, the ratcheting stabilized and the tests were completed without failure. In an 
intermediate area, for medium/high values of R between 0.3 and 0.5, a minimum ratcheting and fracture transition 
was found. 

 

Fig. 6. Results of the tests under stress control on the Haigh diagram and comparison with various predicting fatigue models. 

 

Fig. 7. (a) - (b) - (c) Mean strain as function of the number of cycle for R =0.1; 0.3 and 0.7 respectively with σmax=600 MPa. (d) - (e) - (f) Stress-
strain for the same tests at different number of cycles. 

3.2. Strain control test results 

Since the strain was imposed for this kind of test to obtain a specific initial combination of maximum and 
minimum stresses, the mean stress reduced after the first cycle due to the relaxation. Fig. 8 shows the trends of the 
mean stress as function of the number of cycles for the tests with maximum stress of 600 MPa and load ratios 
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ranging from R=0 and R=0.8. Similarly to what happened for the load control tests, fatigue failures were found only 
for low values of R in spite of a significant relaxation, Fig. 9. No failures were obtained for high values of R along 
with a very limited relaxation. Therefore, a fracture transition zone was again found at approximately R=0.3. The 
SWT equation, again, very accurately defined the fatigue limit. Indeed, those tests below this curve ended without a 
failure, even being beyond the Goodman’s line, while the tests initially above experienced fatigue fracture though 
the relaxation moved these points approximately on the SWT line itself. 

 

 

Fig. 8. Mean stress relaxation with σmax=600 MPa and different load ratios. 

 

 

Fig. 9. Results of the strain control tests, showing relaxation, and comparison with various fatigue models. 
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represents the stresses (mean and alternate), as calculated by the FE model at the first load cycle. Finally, the solid 
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circles represent the stresses provided by the numerical calculation after the relaxation predicted by the linear 
kinematic model. This stabilization settled the mean and alternate stress points very close to the SWT curve, 
intersected with the Gerber’s parabola, thus confirming the accuracy of the predictive approach. 

 

 

Fig. 10. FE simulated stress points of the notched specimens on the Haigh diagram and agreement with the SWT prediction. 

 

4. Conclusions 

This work reported a complete characterization of the material 42CrMo4 from the fatigue behavior, ratcheting 
and relaxation, especially for high R values.  

This steel, with the provided heat treatment condition, showed the yield strength at 500 MPa, defined as 0.2% 
offset, but an unstable behavior for the amplitude values of the stress lower than the elastic limit given by tensile 
test. Therefore, the Chaboche model, also introducing the yield stress as a free parameter, resulted in an elastic limit 
values significantly lower (258 MPa). 

For un-notched specimen, moving in the Haigh diagram, and not being able to exceed the ultimate stress Sut, a 
high ratcheting for low R values, slightly above zero, was observed and again for higher R values (0.7 and 0.8). In 
the first case the alternating component has a predominant role, while in the second case, the mean stress is more 
significant. In addition, for low R values, the ratcheting causes the failure of the specimen with evident necking and 
no fatigue component in the fracture surface. On the contrary, for higher R values, approximately 0.3, the necking 
disappeared and it was possible to recognize a typical fatigue surface. The results showed the validity of the Smith-
Watson-Topper model, at least until the intersection with the Gerber’s parabola. Finally, simulations carried out with 
the FE model on the notched specimen, showed stress stabilization very close to the SWT line intersecting the 
Gerber’s parabola thus demonstrating the predictive validity of the developed numerical model. 
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