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Abstract A rotating system comprising a hub and
a thin-walled laminate cantilever beam with embedded
nonlinear piezoelectric layers is analysed in the paper.
The reinforcingfibres set-up in compositematerial con-
forms to circumferentially uniform stiffness lamina-
tion scheme. This configuration exhibits the mutual
bending couplings in two orthogonal planes. Nonlinear
analytical model of a piezoelectric material embedded
onto the beam walls is postulated by considering the
higher-order constitutive relations with respect to elec-
tric field variable. Moreover, to properly model elec-
tromechanical structural behaviour, the full two-way
coupling piezoelectric effect is considered. To this aim,
the assumption of a spanwise electric field variation
is postulated in the mathematical model of the struc-
ture. Based on previous authors’ research, the systemof
mutually coupled nonlinear equations of motion is for-
mulated. In the numerical analysis the forced response
of the system under zero and nonzero mean value har-
monic torque excitation is considered. In particular, the
influence of hub inertia, excitation amplitude andmean
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rotating speed on system dynamics is investigated. The
results are presented in the form of appropriate fre-
quency response plots and bifurcation diagrams.
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List of Symbols

b̂ Effective electrostrictive constants tensor
D Electric displacement vector
E Electric field vector
e Tensor of piezoelectric coefficients
̂Jh Dimensionless inertia of the hub (calculated

with respect to the beam inertia)
a22 Chordwise bending stiffness
a25 Coupled chordwise bending—flapwise trans-

verse shear stiffness
a33 Flapwise bending stiffness
a34 Coupled flapwise bending—chordwise trans-

verse shear stiffness
a44 Chordwise transverse shear stiffness
a55 Flapwise transverse shear stiffness
b1 Translational inertia of the cross section
B4 Cross-section moment of inertia about y axis
B5 Cross-section moment of inertia about z axis
c Height of the cross section
d Width of the cross section
Jh Hub inertia
R0 Hub radius
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Text,z External driving torque applied to the hub
v0 Displacement of the cross-section origin O

along the local y axis
w0 Displacement of the cross-section origin O

along the local z axis
X0Y0Z0 Global (inertial) coordinate system
xyz Local coordinate system attributed to beam

cross-section
α Reinforcing fibres orientation angle
χ Third-order electric susceptibility tensor
ξ Second-order permittivity tensor
η Dimensionless abscissa along the beam span

(η ∈ 〈0, 1〉)
μ Dimensionless driving torque supplied to the

hub
μ0 Constant component of the dimensionless

driving torque
ψ Angular position of the rotor in the global

coordinate system X0Y0Z0

ρ Dimensionless amplitudeof thedriving torque
θ Beam presetting angle
ϑy Rotation of the beam cross section around the

local y axis
ϑz Rotation of the beam cross section around the

local z axis

1 Introduction

The continuous development of composite materials
offers a great potential for modern structural systems
that can take advantage of unique composite material
properties as well asmaterial tailoring technology. His-
torically, this later idea is exploited since late 1980s
and relies on proper laminae stacking sequence and
orientation of unidirectional (UD) reinforcing fibres.
The main objective of this technology is to reduce
weight of the structure, improve its stiffness and main-
tain static strength under compressive loads [10]. Other
applications of the material tailoring technology in
aerospace industry include the drag reduction [43],
gust response [13] and optimum aeroelastic behaviour
and flutter characteristics [1]. One of the most promi-
nent demonstrators of this technology was the test
programme of the forward swept wing experimental
fighter Grummann X-29 [3]. Further progress within
the material tailoring technology is the tow-steering
technique, where the fibres orientations within a ply
follow a predefined curvilinear path; thus the ply stiff-

ness vary continuously through the plane of each ply.
It has been demonstrated that these fibre paths can be
optimized to increase the structural performance of a
laminate beyond that of an equivalent regular UD lam-
inate [26,32,38].

Further improvement in system performance and
enhancement in its capabilities can be achieved by
incorporating multifunctional materials into structural
design. This technology offers, along with other con-
current abilities, advantages of active control, sens-
ing, self-healing and thermal functionality of the struc-
ture. Typical applications of multifunctional designs
range from civil structures, marine systems and auto-
mobiles, through machine tools and fine mechanics
to aerospace and aeronautics systems and structures.
Representative examples of active aerospace designs
might be inflatable and deployable space structures
such as solar panels or space antennas and mirrors that
often undergo large controlled rotations and position-
ing when expanding from an initially compact con-
figuration to a final geometry [25]. Referring to other
aeronautical systems like fixed-wing aircraft, appli-
cations cover active control of flutter and handling
qualities improvement. In particular, the potential of
using piezoceramic transducers to suppress or delay
the onset of panel aeroelastic instability has been stud-
ied. The conducted research have shown the possi-
bility to increase the flutter speed up to 50% com-
bined with reduction of the power-spectral density
of response. Moreover, the potential savings in con-
trol effort resulting from optimal positioning of active
elements on the wings and ailerons have been con-
firmed [34]. Further applications areas of piezoceramic
materials cover structural health monitoring and inte-
rior/exterior noise reduction. The technology of smart
material-basedSHMsensors enhances the systemflight
safety and reliability, but also results in savings in oper-
ational and maintenance/inspection costs and extends
the life cycle of an ageing aircraft [44]. For rotary-
wing aircrafts the embedded smart material sensors
can be used for rotor tracking and head health mon-
itoring, while active material actuators may induce
changes in airfoil shape, which in turn help to control
static and dynamic aeroelastic problems [6]. Numerous
studies and comprehensive research programs run in
recent years have demonstrated the feasibility of piezo-
composite materials for a helicopter active rotor design
and tilt rotor vehicles. Active twisting of blades with
embedded piezoceramic transducers and shape mem-
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ory alloy actuated tabs and flaps systems have been
examined in order to actively control vibration and
blade-vortex-induced noise. Results have shown reduc-
tions of vibratory loads of about 80%, as well as reduc-
tions up to 6 dB in blade-vortex interaction and in-plane
noise. Moreover, the impact of the active flap on rotor
performance, rotor smoothing, and control power has
been demonstrated [4,33]. Tests performed by Boeing
on V-22 tilt rotor aircraft have revealed the potential
of active flow control to minimize hover download-
lift during takeoff conditions and to improve the pay-
load lift and angle-of-attack capability [4,11]. When
compared to fixed-wing aircraft, helicopters appear to
showmuch higher potential for a major payoff with the
application of smart structures technology. The given
above numerous examples of piezo-composite beam-
like structures confirm the current relevance and time-
liness of this subject matter and give a great stimulus
and motivation to continue research in this area.

While currently there are many types of active mate-
rials available, like shape memory alloys, electrostric-
tives, and magnetorheological fluids etc. piezoelectric
materials remain the most widely used ”smart” ones.
This is primarily due to their strong voltage-dependent
actuation viability. Secondly, piezoceramics are capa-
ble of interacting with dynamic systems at high fre-
quencies ranging up to even 1MHz. Finally, the crucial
feature of piezoceramic materials is their large energy
density. Therefore, they can be effectively adapted to,
e.g. energy-harvesting devices that can generate high
electric potentials or may be used to supply power to
wireless sensors and low-power electronics [20].

Composite materials are perfect candidates for
implementing the concept of structural functionality
because of their multiphase nature, suitable manu-
facturing technology, low density and inherent direc-
tionalmechanical properties [6,28,39]. Studies onmul-
tifunctional structures started in late 1980s/early 1990s
from modelling isotropic material systems followed
next by the research on piezoelectric laminated com-
posite materials. Smith et al. [31] proposed the con-
stituent equations representing the behaviour of piezo-
electric bimorphs for arbitrary mechanical boundary
conditions. Weinberg [42] studied the piezoelectric
multimorph for sensing and actuation by means of
the Euler–Bernoulli beam model. Closed-form solu-
tions for force, displacement and charge developed in
piezoelectric beams were derived. His work was later
extended by Tadmor and Kósa [36] by accounting for

the effect of strain on the electric field in the active
material domain. This was done by a simple correction
factor to the moment of inertia of the piezoelectric lay-
ers. A review of different theories used for modelling
and analysis of piezoelectric laminates at that time was
published by Gopinathan et al. [9].

It is interesting to note the most papers studying
structural behaviour of piezoelectricmaterials and their
possible applications to multifunctional structures are
focused on the classical d33 or d31 piezoelectric effects.
This trend comes from the fact these phenomena are
easily observed and can be directly exploited in axial
and transverse deformationsmodes of structures. How-
ever, in some piezoceramics, the d15 piezoelectric shear
coefficient is much higher than the d33 and d31 ones.
Therefore, transducers based on these materials should
be operated in shear deformation modes since the elec-
tromechanical coupling coefficient of the piezoelec-
tric material is one of the most significant parameters
affecting energy conversion. Studies on this topic were
done, e.g. by Dietl et al. [7]. Authors developed amath-
ematical model of a piezoelectric sensor based on the
Timoshenko beam theory. Next, it was used to examine
the frequency response of vibration-based energy har-
vesters; finally the obtained results were compared to
ones coming from the classical Euler–Bernoulli model.
Also Malakooti and Sodano [23] studied the shear
deformationmodes of piezoelectric materials. The pro-
posed model was used to predict the electric power
output from a cantilever piezoelectric sandwich beam
under base excitations. It was shown that the energy
harvester operating in the shear mode was able to gen-
erate up-to 50%morepower if compared to the standard
transverse mode operating one. Capabilities of shear-
able beam with embedded piezoelectric actuation for
beamshape controlwere studied also byVoßandScher-
pen [41]. Also mixed theories adopting the geometri-
cally linearBernoulli–Euler hypothesis for themechan-
ical components and a first-order theory for the electri-
cal variable canbe found in the recent literature [15,35].

Conclusions summarizing these papers indicate that
the Euler–Bernoulli beammodel severely over-predicts
the structural behaviour of tested functional struc-
tures, especially at low frequencies and low length-to-
width aspect ratios. This over-prediction is of particular
importance in case of composite materials that exhibit
relatively low shear stiffness when compared to classi-
cal isotropic materials.
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Another important aspect in proper modelling the
piezoelectric functional structures ismutual interaction
of mechanical and electrical domains of the system.
The initial studies did not consider the field coupling
effects thus both mechanical and electrical domains
were treated independently.Within this framework, the
mechanical properties of the hybrid structure resulted
solely from the combination of stiffnesses of two con-
stituentmaterials. The functional nature of the structure
was captured by introducing dynamic loading acting at
the requested position on the structure. This simpli-
fied approach provides only approximate results, and
therefore, in some cases like high frequency vibrations
or thick piezoelectric material layers, significant errors
arise [37].

The coupled electromechanical model of the smart
composite materials was proposed by Mitchell et al.
[24]. Authors presented a method of enhancing plate
theory to account for the charge equations of electro-
statics. Further studies on coupled domain models of
piezoelectric composite plates were done by Li et al.
[21] and Zhou et al. [45]. Chattopadhyay et al. [5] elab-
orated a higher-order displacement field model of a
plate to investigate the behaviour of smart helicopter
rotor blades. However, the proposed theory was based
on a three-dimensional approach so the final equations
were too complicated to be solved analytically and
the finite element method was used to get the solu-
tion. Later, authors extended their model by address-
ing the nonlinear electromechanical coupling effect. To
this aim, the polarization versus electric field hystere-
sis was taken into account and a new material constant
was introduced to explicitly formulate the nonlinear
constitutive governing equations of the structure.

This paper is a continuation of the previous authors’
research on dynamics of thin-walled composite beams.
In particular, in reference [18] by Latalski et al. where
the general partial differential equations of motion of
a thin-walled composite beam clamped to the rigid
hub were derived, the nonclassical effects like mate-
rial anisotropy, rotary inertia, transverse shear, arbi-
trary pitch angle, and hub inertia were considered.
The ordinary differential equations were formulated
togetherwith the associated orthogonality condition for
the specific case of circumferential asymmetric stiff-
ness (CAS) of the cross section.

In the following research [16], Latalski proposed a
mathematical model of a beam with integrated piezo-
electric layer accounting for both full electromechani-

cal coupling effects as well as the higher-order consti-
tutive relations. The detailed derivation procedure by
means ofHamilton least actionprinciplewas presented.
With respect to former research a new governing equa-
tion was formulated representing the electric field dis-
tribution within the piezoceramic domain. It has been
shown the electromechanical coupling in the structure
comes from the shear deformation in flapwise bending
plane. Thismodel has been adopted in later research for
the analysis of a rotating thin-walled composite beam
with embedded piezoelectric layer [17]. In studies, a
specific case of circumferentially asymmetric stiffness
lamination scheme that exhibits flapwise bending and
twist mode elastic coupling was considered. Numeri-
cal results for system free vibrations were obtained to
investigate the natural mode shapes and the electrical
field spatial distribution depending on the system rota-
tion speed and laminae fibre orientation angle.

In this research, the same fully coupled mathe-
matical model of functional structure is adopted to
study the dynamics of a rotating composite beam fea-
turing bending to bending coupling. This dynamical
behaviour is achievedby adopting the circumferentially
uniform stiffness (CUS) along the profile cross section.
In the formulation, the higher-order constitutive rela-
tions with respect to electric field variable are consid-
ered. In the numerical analysis, the forced responses
of the system under zero and nonzero mean value har-
monic excitation are investigated. Regarding the ref-
erenced papers and to the best of authors knowledge,
these aspects of CUS laminated multifunctional beams
with nonlinear piezoelectrics have not been studied in
detail yet.

2 Structural model and problem formulation

Let us consider an elastic single-cell thin-walled beam
with box-shaped cross section. The beam is clamped
to the rigid hub at an arbitrary presetting angle θ—see
Fig. 1a, b. The hub has radius R0 and is driven by the
external torque Text,z resulting in rotation of a structure
about fixed vertical axis CZ0.

The considered beam is made of unidirectional
fibre-reinforced composite material obeying Hook law.
Apart from regular UD material plies, two additional
structural layers of transversely isotropic piezoceramic
material are embedded onto the beam. These ones are
placed on the outer faces of the two beamwalls that are
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(a) (b)

(c)

Fig. 1 Model of the rotating piezoelectric composite beam structure (a); clamping to the rigid hub at presetting angle θ (b); geometrical
parameters of the specimen cross section (c)

perpendicular to the flapwise bending plane (i.e. the
plane of lower specimen stiffness—the 〈xz〉 one of the
local coordinate system 〈xyz〉, see Fig. 1c), and cover
the full span of the beam. Moreover, it is assumed the
active piezoelectric material is poled in the thickness
direction. Thus, this configuration is a typical geome-
try corresponding to ’3-1’ mode operating transducers
based on active piezoelectric materials. Moreover, in
the performed analysis, it is assumed that the piezo-
ceramic layers are not covered by electrodes and the
poles of the piezoceramics are considered to be open-
circuited.

2.1 Piezoelectric material model

The equations of motion of the structure are derived
following the extended Hamilton principle of the least
action

δ J =
∫ t2

t1

(

δT − δU + δWext
)

dt = 0 (1)

where J is the action, T is the kinetic energy, U is
the potential energy including mechanical (Um) and
electrical components (Ue), and the work done by the
external loads (driving torque Text,z) is given by the
Wext term.

Detailed derivation procedure of a six-DOF model
of the beamwith an arbitrary presetting angle θ and any
circumferential lamination scheme has been presented
in former authors papers [17] and [18]. These papers
include also the list of adopted kinematic and struc-
tural assumptions to the mathematical model as well as
the discussion on their significance. In particular, the
second paper provides an efficient approach to prop-
erly model the full two-way electromechanical cou-
pling interaction observed in piezoelectric structures.
The relevance and suitability of this mathematical for-
mulation is further enhanced by postulating the higher-
order constitutive relations with respect to electric field

σ = Cε − eE − b̂ sgn(E3)E2

D = eε + ξE + χsgn(E3)E2 (2)

In the above relations C stands for the second-order
piezoceramic elasticity tensor at constant electric field,
e is the tensor of piezoelectric coefficients, ξ is second-
order permittivity tensor, b̂ is effective electrostrictive
constants tensor, χ is third-order electric susceptibil-
ity tensor. Moreover, the variables σ , ε and D stand
for stress and strain tensors and electric displacement
vector, respectively. Finally, the electric field vector
is denoted by E, and it contains just one compo-
nent E3 as results from the transducer topology and
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Fig. 2 Laminate
circumferentially uniform
stiffness (CUS) ply angle
configuration in thin-walled
beam

the posed assumption on piezoceramic material poling
through the layer thickness. To capture the two-way
electromechanical coupling effect, the electric field
variable E3 is assumed to be a spatially dependent one
E3 = E3(x). More details on the mathematical mod-
elling of piezoceramic two-way coupling effect can be
found in [37,45], as well as in previous study [16].

The considered constitutive equations postulate
second-order nonlinearities expressed in electric field
magnitude, rather than the electric field itself. More-
over, a third-order nonlinearities are not taken into
account. In this way, the proposed model is capa-
ble to predict a softening/hardening curves with their
peaks changing linearly with the excitation magnitude.
This comes from the fact the linear change in peak
response frequency with increased excitation level has
been observed in experimental research on both stiff
and soft piezoelectric materials—note papers by Usher
and Sim [40], Mahmoodi et al. [22] and Leadenham
and Erturk [19] among others.

2.2 CUS laminate configuration

One of the crucial features of structures made of
fibre-reinforced laminates is the ability to tailor their
mechanical properties to meet specific design require-
ments. This aim can be achieved by adjusting the ori-
entation of the fibres in the composite material or/and
through the use of the variable stiffness concept. This
later idea implies the stiffness properties of the struc-
ture vary spatially throughout its volume. In case of
thin-walled beam elements, this usually corresponds
to changes in material thickness or laminate proper-
ties along the specimen span or along the cross-section
midline (e.g. different orientation of reinforcing fibres
in the subsequent segments of the cross section). When

considering this second case, two designs aremost typi-
cally adopted–they are referred to as circumferentially
uniform stiffness (CUS) and circumferentially asym-
metric stiffness (CAS) configurations [30]. For a thin-
walled beam of arbitrary but rectangular cross section,
the CUS lamination scheme can be generated by skew-
ing the ply angles in the top and bottom walls (flanges)
according to the formula α(z) = α(−z) and in the lat-
eral walls (webs) as α(y) = α(−y), respectively. The
reinforcing fibres orientation angle α is measured with
respect to the in-plane axis (e.g. s) of a wall related
coordinate system 〈sxn〉; note Fig. 2 for reference.

Accepting the discussed circumferentially uniform
stiffness lamination scheme causes the general sys-
tem of six (three translations and three rotations) fully
coupled governing equations of the beam to be split
into two independent subsystems. One of these subsys-
tems describes the coupled in-plane and out-of-rotation
plane shearable bendings of the blade. The second gov-
erning subsystem represents the coupled axial (speci-
men extension) and torsional dynamics of the beam. It
should be noted that the circumferentially uniform stiff-
ness ply angle configuration is preferred in the design
of helicopter blades and tilt rotor aircraft [14].

2.3 Equations of motion

Presuming the discussed above circumferentially uni-
form stiffness of the profile as well as beam presetting
angle θ = −π

2 the system of partial differential gov-
erning equations for the structure under consideration
is as follows

– the hub

Jhψ̈(t) + (B22 + B4l)ψ̈(t)
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+
∫ l

0
b1(R0 + x)

[

2u0ψ̈(t) + 2u̇0ψ̇(t) + ẅ0
]

dx

− Text,z(t) = 0 (3)

– lateral displacement v0 (i.e. out-of-rotation plane)

b1v̈0 −a44(v
′′
0 +ϑ ′

z)−a34ϑ
′′
y −b1ψ̇

2[Rx (x)v
′
0]′ = 0

(4)

with boundary conditions

v0

∣

∣

∣

x=0
= 0, [a44(v′

0 + ϑz) + a34ϑ
′
y]

∣

∣

∣

x=l
= 0

– lateral shear ϑz

B5ϑ̈z − B5ψ̇
2ϑz − a22ϑ

′′
z + a44(v

′
0 + ϑz)

− a25(w
′′
0 + ϑ ′

y) + a34ϑ
′
y = 0 (5)

with boundary conditions

ϑz

∣

∣

∣

x=0
= 0, [a22ϑ ′

z + a25(w
′
0 + ϑy)]

∣

∣

∣

x=l
= 0

– lead-lag displacement w0 (i.e. in the plane of rota-
tion)

b1ẅ0 + 2b1u̇0ψ̇ − b1ψ̇
2w0 + b1(R0 + x)ψ̈

− a55(w
′
0 − ϑy)

′ − a25ϑ
′′
z − b1ψ̇

2[Rx (x)w
′
0]′ = 0

(6)

with boundary conditions

w0

∣

∣

∣

x=0
= 0, [a55(w′

0 + ϑy) + a25ϑ
′
z]

∣

∣

∣

x=l
= 0

– lead–lag plane shear ϑy

B4ϑ̈y − B4ψ̇
2ϑy − a33ϑ

′′
y + a55(w

′
0 + ϑy)

− a34(v
′′
0 + ϑ ′

z) + a25ϑ
′
z

− a3eE
′
3 − a3b[sgn(E3)E

2
3 ]′ − a3 f (E

3
3)

′ = 0
(7)

with boundary conditions

ϑy

∣

∣

∣

x=0
= 0, [a33ϑ ′

y + a34(v
′
0 + ϑz) + a3eE3

+ a3b sgn(E3)E
2
3 + a3 f E

3
3 ]

∣

∣

∣

x=l
= 0

– electrostatic equation E3

aE3ϑ
′
y − aEeE3 − aEb sgn(E3)(E3)

2 − aE f E
3
3 = 0

(8)

where Rx (x) = R0(l − x) + 1
2 (l

2 − x2).
In the above equations, variables v0 and w0 rep-

resent displacements of the beam cross-section origin
O along the y and z axes in the local coordinate sys-
tem 〈xyz〉—see Fig. 1b, while ϑy, ϑz are the corre-
sponding rotations. Moreover, the coefficients b1, B4

and B5 are translational (b1) and rotational inertias
(B4, B5), respectively. Terms ai j represent different
stiffness coefficients of the specimen. In particular, the
pair a22, a44 represents chordwise (local 〈xy〉 plane)
and pair a33, a55 flapwise (local 〈xz〉 plane) bending
and shear stiffnesses, respectively. Moreover, there are
two additional stiffness coefficients a25 and a34 that
lead tomutual coupling of beambending deformations.
The term a25 is chordwise bending to flapwise trans-
verse shear and a34 is flapwise bending to chordwise
transverse shear coupling stiffness. The last Eq. (8) of
the system represents the distribution of the electric
field along the span of the beam, and it is directly related
to the lead–lag plane shear variable ϑy Eq. (7).

Commentingon thegiven above equations ofmotion,
it is worth to emphasize the mutual coupling within the
system of beam governing equations is achieved by
both shear deformation angles ϑy and ϑz . Therefore,
within the framework of simplified unshearable beam
theory (like Euler–Bernoulli one), not only the shear
deformation Eqs. (5) and (7) vanish but the remaining
displacements ones get decoupled. The relations are as
follows:

– lateral displacement v0

b1v̈0−B5v̈
′′
0+a22v

′′′′
0 +B5ψ̇

2v′′
0−b1ψ̇

2[Rx (x)v
′
0]′ = 0

(9)

with boundary conditions

v0

∣

∣

∣

x=0
= v′

0

∣

∣

∣

x=0
= 0, v′′

0

∣

∣

∣

x=l
= v′′′

0

∣

∣

∣

x=l
= 0
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– lead–lag displacement w0

b1ẅ0 − B4ẅ
′′
0 + a33w

′′′′
0 + 2b1u̇0ψ̇ + B4ψ̇

2w′′
0

− b1ψ̇
2w0 − b1ψ̇

2[Rx (x)w
′
0]′

+ b1(R0 + x)ψ̈ − a3eE
′′
3 − a3b[sgn(E3)E

2
3 ]′′

− a3 f (E
3
3)

′′ = 0 (10)

with boundary conditions

w0

∣

∣

∣

x=0
= w′

0

∣

∣

∣

x=0
= 0, [− a33w

′′
0 + a3eE3

+ a3b sgn(E3)E
2
3 + a3 f E

3
3 ]

∣

∣

∣

x=l
= w′′′

0

∣

∣

∣

x=l
= 0

This formulation is derived by extracting a44(v′
0 +

ϑz) and a55(w′
0 − ϑy)

′ from Eqs. (4) and (6), respec-
tively, replacing these expressions in the remaining
equations of motion Eqs. (5) and (7) and finally substi-
tuting ϑy = −w′

0 and ϑz = −v′
0.

The definitions and ultimate formulas of the indi-
vidual stiffness coefficients are given as follows

a22 =
∫

c

[

K11 y
2 + 2K14

dz

ds
y + K44

(

dz

ds

)2
]

ds

=1

2
K (w)
11 cd2 + 2K (w)

44 c + 1

6
K (f)
11 d

3

a33 =
∫

c

[

K11 z
2 − 2K14

dy

ds
z + K44

(

dy

ds

)2
]

ds

=1

2
K (f)
11 c

2d + 2K (f)
14 cd + 2K (f)

44 d + 1

6
K (w)
11 c3

a44 =
∫

c

[

K22

(

dy

ds

)2

+ A44

(

dz

ds

)2
]

ds = 2K (f)
22 d + 2A(w)

44 c

a55 =
∫

c

[

K22

(

dz

ds

)2

+ A44

(

dy

ds

)2
]

ds = 2K (w)
22 c + 2A(f)

44 d

a25 =
∫

c

[

K12
dz

ds
y + K24

(

dz

ds

)2
]

ds = K (w)
12 cd

a34 =
∫

c

[

K12
dy

ds
z − K24

(

dy

ds

)2
]

ds − K (f)
12 cd − 2K (f)

24 d

(11)

In the above expressions, the additional superscripts
(w) or (f) at K stiffnesses correspond to the part of the
cross-section perimeter belonging to the web or to the
flange, respectively.

The coefficients Ki j are expressed in terms of
reduced two dimensional stiffnesses A, B, and D of
the classical laminate theory

K11 =
(

A22 − A12A12

A11

)

K12 =
(

A26 − A12A16

A11

)

K14 =
(

B22 − A12B12

A11

)

K22 =
(

A66 − A16A16

A11

)

K24 =
(

B26 − A16B12

A11

)

K44 =
(

D22 − B12B12

A11

)

(12)

It should be observed for the sections of the perime-
ter corresponding to lateral walls (webs) that the coef-
ficient K44 reduces just to bending stiffness D22, and
two other ones, namely K14 and K24, vanish. This is
the result of material symmetry with respect to the wall
midline that forces B12 = B22 = B26 = 0. How-
ever, in case of flanges, the present outer piezoelectric
layers break the wall cross-section symmetry and thus
respective membrane-bending coupling stiffnesses Bi j
are different from zero.

The magnitudes of stiffness coefficients depend on
reinforcing fibres orientation in UD laminae. In case
of the bending stiffnesses a22 and a33 the relation is
straightforward. They increasemonotonicallywhen the
fibre orientation angle approaches the beam span direc-
tion. However, in case of the shear stiffnesses a44 and
a55 as well as the coefficients a25 and a34 accounting
for in-plane/out-of-plane shearable bendings coupling
the relations are more complicated; see Fig. 3.

Both shear deformation coefficients a44 and a55
exhibit very similar behaviour with respect to reinforc-
ingfibre orientation. Initially, theirmagnitude increases
until α ≈ 54◦ and≈ 68◦, respectively. Next, the curves
decrease rapidly reaching global minimum at α = π

2—
i.e. when fibres are oriented along the beam span.

Regarding the coefficient of chordwise bending to
flapwise transverse shear coupling (a25), one observes
it reaches its global extrema at orientations α ≈ 74◦
or α ≈ 106◦ and stays antisymmetric with respect
to beam span direction. For limit cases of fibres ori-
ented along the cross-section circumference or along
the beam spam, it reaches zero value. However, the
qualitative behaviour of the second coupling coeffi-
cient a34 (flapwise bending to chordwise transverse
shear) is different. Apart from global extrema corre-
sponding to angles 28◦ and 152◦ and zero values at the
limits 0◦ and 90◦, one can spot two additional roots
corresponding to α ≈ 16◦ and α ≈ 114◦. It means,
at this specific orientations, the bending of the speci-
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Fig. 3 Governing equations stiffness coefficients with respect to reinforcing fibre orientation angle α (measured from circumferential
axis direction s—see Fig. 2). Data used for this analysis correspond to specimen data used in numerical studies given in Sect. 4

men in the plane of rotation, namely lead-lag bending,
do not contribute to shear deformation in the orthogo-
nal plane. The qualitative difference of the a34 curve if
compared to a25 one can be explained by the presence
of the piezoceramics within the flanges of the cross
section breaking the symmetry of material distribution
with respect to these walls midline. Due to this fact,
additional local membrane–bending couplings arise

(B12, B22, B26 �= 0) contributing to the global spec-
imen behaviour.

3 Solution procedure

To facilitate the solution and extend the generality of the
problem formulation one starts from rewriting the orig-
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inal equations of the system (4)–(8) into their dimen-
sionless form. To this aim, a dimensionless spanwise
abscissa η = x/l (η ∈ 〈0, 1〉) is introduced as well
as dimensionless time τ = ωt , where t is physical
time and ω = √

a33(0)/b1l4. The parameter a33(0) corre-
sponds to the flapwise bending stiffness presuming that
the laminate fibres are oriented at α = 0◦ with respect
to profile circumferential axis s.

Next, the reformulated system of governing equa-
tions is transformed into ordinary differential form. To
this aim the Extended Galerkin Method is used. At
the first stage the simplified linear model of a non-
rotating beamwithout piezoceramic layer is considered
and the corresponding eigenvalue problem is solved.
Within this procedure, the consistent admissible func-
tions which have to fulfil all the geometric boundary
conditions while not violating complementary bound-
ary conditions [2,29] were used. Based on previous
authors’ studies [18], Duncan polynomials modified
by Karanamoorthy have been adopted to approximate
the displacements v0,w0 and subsequent sin( 2i−1

2 πη),
i = 1 . . . k, functions to represent the rotations ϑy and
ϑz . As a solution of the eigenvalue problem, a series
of complex mode shapes V (η), W (η), Y (η), Z(η)

and corresponding natural frequencies have been deter-
mined. These mode shapes have been used to represent
the original problem unknown variables by separating
space and time dependent functions, respectively

v0(η, τ ) =
N

∑

j=1

Vj (η) q j (τ ) ϑy(η, τ ) =
N

∑

j=1

Y j (η) q j (τ )

w0(η, τ ) =
N

∑

j=1

Wj (η) q j (τ ) ϑz(η, τ ) =
N

∑

j=1

Z j (η) q j (τ )

E3(η, τ ) =
N

∑

j=1

ε j (η) q j (τ ) (13)

In the above relations, j stands for the mode order
and the variables q j (τ ) are the corresponding gener-
alized coordinates representing time dependent system
behaviour, N is the number of mode shapes obtained
from the eigenproblem.

The accuracy of this solution method, and the pro-
posed analyticalmodel has been verified in the previous
authors’ research [18] by comparing the analytically
obtained natural frequencies to the outcomes of the FE
analysis. For the discussed therein case of CAS lami-
nation configuration, the margin of error was less than
5%.

Having found the individual components of beam
modes shapes, the reduction in the system of partial
differential equations to ordinary ones can be done.
Combining all five equations representing the dynam-
ics of the beam (subsystem of Eqs. (4)–(8)) andmaking
use of the derived orthogonality condition

(

ω2
m − ω2

n

)

∫ 1

0

[

b1l
2Vm(η)Vn(η) + B5Zm(η)Zn(η)

+ b1l
2Wm(η)Wn(η) + B4Ym(η)Yn(η)

]

dη = 0

(14)

one finally arrives at the system of two dimensionless
equations

(

1 + ̂Jh + αhi2qi
)

ψ̈ + αhi1q̈i + ςhψ̇ + αhi3q̇i ψ̇ = μ

q̈i + ςi q̇i + αi2ψ̈ +
(

αi1 + αi3ψ̇
2
)

qi + αi4qi q̇i ψ̇

+ αi5sgn(qi )q
2
i = 0 (15)

whereμ is dimensionless driving torque supplied to the
hub and symbol ̂Jh denotes the relative mass moment
of inertia of the hub calculated with respect to the beam
inertia. In the general case, the torque is expressed as
a sum of a constant component μ0 and a periodic func-
tion of time t . Thus

μ(t) = μ0 + ρ cosωt (16)

where ρ and ω are the amplitude and the frequency of
the excitation, respectively.

Moreover, the factors ζh and ζi are hub and beam
viscous damping coefficients and their magnitude has
been estimated during test-stand experiments. The sub-
script i of the generalized coordinate qi indicates the
mode order to be considered in the performed analysis.

The geometric characteristics of the rotating beam
as well as composite and piezoceramic material data
used in the subsequent numerical simulations are col-
lected in Table 1. For the composite, the subscripts 1, 2
and 3 refer to parallel and transverse to the fibre direc-
tions respectively (the standard classical laminate the-
ory assignment). The embedded active element ismade
of PZT-3203HD ceramic material and its properties are
collected from the papers by Rao et al. [27] and by
Kapuria et al. [12].
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Table 1 System geometric data and materials as used in numerical simulations

Geometric properties

l = 0.254m c = 0.00508m d = 0.0254m R0 = 0.1l

hw = 0.001m hc = 0.0005m h p = 0.0005m

Material properties of the laminate

E1 = 206.75GPa E2 = E3 = 5.17GPa G23 = 3.1GPa G12 = G13 = 2.55GPa

ν21 = ν31 = 0.00625 [−] ν32 = 0.25 [−] ρc = 1528.15 kg/m3

Material properties of PZT 3203HD (transverse isotropic piezoceramic)

E1 = E2 = 60.24GPa E3 = 47.62GPa G23 = G31 = 19.084GPa G12 = 24.038GPa

ν12 = 0.253 [−] ν32 = 0.39 [−] ρc = 7800.00 kg/m3

e31 = −25.84N/mV e33 = 39.63N/mV b̂31 = 520.0 × 10−7 N/V2 b̂33 = 520.0 × 10−7 N/V2

χ31 = 0.0Nm/V3 χ33 = 0.0Nm/V3 ξ33 = 33.63 × 10−9 N/V2

Table 2 Dimensionless coefficients of the rotating structure, 40◦ CUS configuration, mode 1

Eq. (15)1 Eq. (15)1 Eq. (15)2 Eq. (15)2

̂Jh = 5 (varied) αh11 = 0.5307 α11 = 14.8262 α15 = − 7.8259

Jb1 = 1 αh12 = − 0.4025 α12 = 1.7799

ρ—varied αh13 = − 0.8049 α13 = 0.3498 ζ1 = 0.01 × √
α11

ω ∼ 5—varied around ζh = 0.1 α14 = − 1.5501

4 Numerical results

Numerical analysis of the rotating piezo-composite
blades is performed around selected resonance zones
of the rotating hub–beam system. By neglecting in
Eqs. (15) the nonlinear terms, we can determine the
first linear natural frequency of the structure. Therefore,
the fundamental frequency of the linearized hub–blade
system is approximated as

ω0 =
√

α11 + α13ψ̇2

1 − α12αh11/(1 + ̂Jh)

Studying this relation, one may notice in the limit
case of hub mass moment of inertia ̂Jh approaching
infinity the natural frequency of the rotor tends to
ω0 =

√

α11 + α13ψ̇2. In particular case when there
is no rotation it simplifies to ω0 = √

α11 which corre-
sponds to the natural frequency of a regular cantilever
beam.

We investigate dynamics of the system imposing
periodic torque μ to the hub. Solutions of the reduced
model are obtained numerically; a continuationmethod
together with bifurcation analysis is performed for
selected system parameters [8].

For the analysis two configurations of the lami-
nate corresponding to reinforcing fibres orientations
α = 40◦ and α = 70◦ ale selected; see Fig. 2 for
notation of fibre direction. For each layout, the reduc-
tion to single mode is performed and dynamics of the
system around the fundamental (mode 1) and the sec-
ond (mode 2) natural frequency is investigated. The
values of dimensionless coefficients obtained for both
configurations after a system reduction are presented
in Tables 2, 3, 4 and 5. Moreover, the shapes of investi-
gatedmodes coming from the eigenvalue problem solu-
tion are presented in Fig. 4with separation of individual
components contribution.

4.1 Fundamental frequency

At first we consider a case when the structure is excited
periodically by torque with constant component equal
to zero, μ0 = 0 (note Eq. (16) for reference). This
scenario corresponds to the case of non-fully rotating
structure but performing oscillations around its zero
position due to zero mean value excitation μ(τ) =
ρ cosωτ . The response of the blade q1 and the angular
velocity of the hub ψ̇ are computed for different torque
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Table 3 Dimensionless coefficients of the rotating structure, 40◦ CUS configuration, mode 2

Eq. (15)1 Eq. (15)1 Eq. (15)2 Eq. (15)2

̂Jh = 5 (varied) αh21 = − 0.00265 α21 = 103.06 α25 = − 0.0000362

Jb1 = 1 αh22 = − 0.0000427 α22 = − 0.00878

ρ—varied αh23 = − 0.0000854 α23 = 1.3383 ζ2 = 0.01 × √
α21

ω ∼ 10—varied around ζh = 0.1 α24 = 7.15exp − 7

Table 4 Dimensionless coefficients of the rotating structure, 70◦ CUS configuration, mode 1

Eq. (15)1 Eq. (15)1 Eq. (15)2 Eq. (15)2

̂Jh = 5 (varied) αh11 = 0.5329 α11 = 25.7652 α15 = − 3.4454

Jb1 = 1 αh12 = − 0.4003 α12 = 1.7855

ρ—varied αh13 = − 0.8005 α13 = 0.3531 ζ1 = 0.01 × √
α11

ω ∼ 5.5—varied around ζh = 0.1 α14 = − 1.5479

Table 5 Dimensionless coefficients of the rotating structure, 70◦ CUS configuration, mode 2

Eq. (15)1 Eq. (15)1 Eq. (15)2 Eq. (15)2

̂Jh = 5 (varied) αh21 = − 0.01681 α21 = 376.79 α25 = − 0.06199

Jb1 = 1 αh22 = − 0.00864 α22 = − 0.0532

ρ—varied αh23 = − 0.01728 α23 = 1.34994 ζ1 = 0.01 × √
α21

ω ∼ 19—varied around ζh = 0.1 α24 = 0.000425

amplitudes ρ and varied frequency ω in the neighbour-
hood of the resonance zone.

Results of the analysis for configuration correspond-
ing toα = 40◦ when themode1 is excited are presented
in Fig. 6a, b. The values of coefficients used in numer-
ical simulation are given in Table 2.

One can clearly observe the softening phenomenon
near the resonance zone due to the nonlinear character-
istics of the PZT layers. It should be noted the backbone
curve reveals change in peak response frequency with
increased excitation level. As commented in Section 2,
this effect is related to the presence of second-order
nonlinearities expressed in variables magnitude, rather
than the variables itself. The softening effect occurs
both for the beam Fig. 6a and for the hub Fig. 6b,
despite the fact that active layers giving rise to system
nonlinearity are embedded into the beam only. This
layout of the composite reinforcing gives significant
nonlinear effect observed even for relatively small exci-
tation level ρ = 0.1 (black curve) and is increasing if
torque amplitude is enlarged (ρ = 0.2—blue curve and
ρ = 0.4—green curve).

Changing the composite configuration into α = 70◦
layout (values of the corresponding coefficients are col-
lected inTable 4) a similar set of fundamental resonance
curves has been obtained—see Fig. 7. However, one
notices the nonlinear softening effect is now much less
pronounced comparing to the previous case α = 40◦.
To observe the nonlinear phenomenon the excitation
amplitude has to be increased up to ρ = 0.4 (green
curve); for the record also ρ = 0.5 (red curve) ρ = 0.6
(magenta curve) cases are plotted. This observation can
be easily explained by the significant difference in flap-
wise bending (in lead-lag direction, i.e. rotation plane)
stiffness a33 of the beam for these two specific cases—
refer to Fig. 3. Moreover, at the orientation α = 70◦,
there is a much stronger coupling of flapwise bend-
ing to the chordwise one (out-of-plane bending)—note
coefficient a34 when compared to α = 40◦ case. This
is accompanied by the similar strong reverse coupling
(a25 coefficient), but this modal component is barely
present—see Figs. 4 and 5.

When analysing hub responses in both fibre config-
urations one can notice a zone where the hub vibrations
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Fig. 4 Individual components (v,w, ϑy, ϑz and E3) of free vibration modes for thin-walled composite beam with integrated piezoele-
ment; CUS configuration and fibre angle α = 40◦

are close to zero (ω = 3.85 on the Fig. 6 and ω = 5.07
on the Fig. 7). This phenomenon is apparently occur-
ring for all studied levels of excitation ρ. It corresponds
to dynamic absorption of hub vibrations when the total
oscillation energy is directed to the blade and keep-
ing the hub at rest. Detailed analysis reveals the effect
occurs at the excitation frequency corresponding to the
natural frequency of the cantilever beam ω0 = √

α11.
Thedirect comparisonof bothCUS40◦ andCUS70◦

layout variants is shown in Fig. 8. Changing the orien-
tation of composite reinforcing fibres from 40◦ to 70◦
results in the shift of the resonance zone towards higher
frequencies (i.e. to the right). Moreover, this stiffening
effect is manifested in reduction of the resonance curve
inclination and the magnitude of amplitudes as well.

In order to check the influence of the hub on the
structure dynamics, we computed resonance curves for
different magnitudes of hub mass moment of inertia
̂Jh. In Fig. 9, we present resonance curves for mode 1
and CUS 70◦ configuration taking into account the rel-
atively light hub (mass moment of inertia ̂Jh = 5 –

black curve), next the cases of ̂Jh = 20—blue curve and
̂Jh = 50—green curve, and finally for the very heavy
one ̂Jh = 100—red curve.One canobserve the increase
in the hub mass moment of inertia leads to shifting of
the resonance zone into lower frequencies presuming
the driving torque magnitude imposed to the hub is
constant. The sharp decrease in the vibration ampli-
tude is to be noted and–in consequence–the reduction
in the nonlinearity effect. However, the already men-
tioned phenomenon of hub absorbtion is still present
and occurs independently of the hub mass moment of
inertia (Fig. 9b) and at the same frequency correspond-
ing to natural vibrations of the cantilever beam.

Now let us consider just for reference the black res-
onance curve (Fig. 9) computed for ̂Jh = 5 and the
excitation amplitude ρ = 0.6. We intend to study the
response of the system against ̂Jh parameter for fre-
quencies before, inside and after the resonance zone
corresponding to this curve. To this aim, the response
plots for the cases ω = 5.2 corresponding to sub-
resonance zone, ω = 5.4 and ω = 5.6 inside the reso-
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Fig. 5 Individual components (v,w, ϑy, ϑz and E3) of free vibration modes for thin-walled composite beam with integrated piezoele-
ment; CUS configuration and fibre angle α = 70◦

(a) (b)

Fig. 6 Resonance curves of the blade (a) and the hub (b) for selected values of excitation amplitude ρ = 0.1 (black), ρ = 0.2 (blue),
ρ = 0.4 (green), laminate configuration with fibres orientation α = 40◦, numerical data given in Table 2. (Color figure online)
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(a) (b)

Fig. 7 Resonance curves of the blade (a) and the hub (b); val-
ues of excitation amplitude ρ = 0.1 (black), ρ = 0.2 (blue),
ρ = 0.4 (green), ρ = 0.5 (red), ρ = 0.6 (magenta), laminate

configuration with fibres orientation α = 70◦, numerical data
given in Table 4. (Color figure online)

(a) (b)

Fig. 8 Comparison of resonance curves of the blade (a) and the hub (b) for CUS 40◦—green curve (data in Table 2) and CUS 70◦—blue
curve (data in Table 4); amplitude of excitation ρ = 0.4, μ0 = 0. (Color figure online)

nance zone as well as ω = 6.0, ω = 6.5, ω = 9.0 after
the resonance have been computed. Appropriate plots
are presented in Fig. 10. We note that the dynamics
of the system changes qualitatively passing from the
softening to hardening nature when the ̂Jh parameter is
decreased. Moreover, the amplitudes of hub response
(Fig. 10b) are higher for lower ̂Jh values and also if
excitation frequencies are higher. In the case of beam
response (Fig. 10a), the tendency is slightly different.
Beam amplitudes increase as well, but for very low

hub inertia, the tendency is opposite (orange curve in
Fig. 10a).

4.2 Second natural frequency

The next mode of our interest is the second mode
(mode 2). Coefficients of the discretised equations of
motion corresponding to the α = 40◦ layout are gath-
ered in Table 3 and for 70◦ configuration in Table 5.

We start the analysis from plotting the response
curves for five different driving torque amplitudes,
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(a) (b)

Fig. 9 Resonance curves of the blade (a) and the hub (b) for
selected values of mass moment of inertia ̂Jh = 5 (black),
̂Jh = 20 (blue), ̂Jh = 50 (green), ̂Jh = 100 (red), excitation

amplitude ρ = 0.6, μ0 = 0, mode 1 of CUS 70◦ configuration.
(Color figure online)

(a) (b)

Fig. 10 Influence of relative mass moment of hub inertia ̂Jh on
the response of the blade (a) and the hub (b) obtained for fixed
excitation amplitude ρ = 0.6 and selected excitation frequency

external torques; ω = 5.2 (black), ω = 5.4 (blue), ω = 5.6
(green), ω = 6.0 (red), ω = 6.5 (magenta), ω = 9.0 (orange),
μ0 = 0, mode 1 of CUS 70◦ configuration. (Color figure online)

namely ρ = 0.1, ρ = 0.2, ρ = 0.4, ρ = 0.6 and also
for the highest one ρ = 1.1. The curves are presented
in Fig. 11 for layout CUS α = 40◦ and in Fig. 12 for
CUS 70◦ case. It can be easily observed the amplitudes
for the second mode are a few orders of magnitude
smaller then those obtained for mode 1. Furthermore,
the resonance curves demonstrate tendency to harden-
ing effect which can be visible for very large, although
non-realistic, external excitations which are not plotted

here. Moreover, the dynamic absorption effect charac-
teristic for fundamental frequency is not present any
more since the resonate curves of the hub response
decline monotonically.

Comparison of the mode 2 resonance curves gener-
ated for CUS 40◦ and CUS 70◦ configurations is pre-
sented in Fig. 13. Since this mode can be activated
in system response for higher excitation frequencies,
therefore, in order to have comparison with fundamen-
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(a) (b)

Fig. 11 Resonance curves of the blade (a) and the hub (b) for
selected values of excitation amplitude ρ = 0.1 (black), ρ = 0.2
(blue), ρ = 0.4 (green), ρ = 0.6 (red), ρ = 1.1 (magenta);

CUS 40◦ configuration, numerical data given in Table 3. (Color
figure online)

(a) (b)

Fig. 12 Resonance curves of the blade (a) and the hub (b) for selected values of excitation amplitude ρ = 0.1 (black), ρ = 0.2 (blue),
ρ = 0.4 (green), ρ = 0.6 (red), ρ = 1.1 (magenta), CUS 70◦ configuration, numerical data given in Table 5. (Color figure online)

tal mode 1, the analysis is performed for the same exci-
tation level ρ = 0.6. In contrast to the similar com-
parison prepared for mode 1 in the resonance zone of
mode 2, amplitudes are higher for CUS 70◦ configura-
tion. This behaviour can be explained by studying the
mode plots in Figs. 4 and 5. For both configurations,
the dominating deformation is related to out-of-plane
bending (v(η) and ϑz(η)), and thus the normalization
of mode shapes to 1 has been done with respect to ϑz

in both cases. However, for the layout corresponding to
α = 70◦, there is an additional component coming from

lead–lag bending that is barely present for α = 40◦
set-up. When comparing the response of the hub, both
configurations reveal almost the same behaviour, and
the curves overlap as presented in Fig. 13b.

4.3 Influence of rotating speed: full rotation case

In all the analysis performed so far the rotor has been
excited by periodic torque with zero mean value. To
capture a full rotation impact, we add the constant com-
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(a) (b)

Fig. 13 Comparison of resonance curves of the blade (a) and the hub (b) for CUS 40◦—green curve (data in Table 3) andCUS 70◦—blue
curve (data in Table 5); amplitude of excitation ρ = 0.6, μ0 = 0. (Color figure online)

(a) (b)

Fig. 14 Resonance curves of the blade (a) and the hub (b) for
selected values of constant torque component μ0 = 0 (black),
μ0 = 0.2 (blue), μ0 = 0.4 (green), μ0 = 1.0 (red); a CUS 40◦

configuration,bCUS70◦ configuration;ρ = 0.1,mode 1. (Color
figure online)

ponentμ0 which results with an increase of mean value
of angular speed. The resonance curves of the blade for
selected angular velocities μ0 = 0, μ0 = 2, μ0 = 0.4
and μ0 = 1.0 are presented in Fig. 14. Commenting
these plots, one observes the evident centrifugal stiff-
ening effect resulting in shift of resonance curves to
the right. Moreover, due to the nonlinear properties
of the PZT layers, the resonance curves still demon-
strate a softening effect; however, it is less pronounced
at higher rotating speeds (higher μ0 value), again due
to centrifugal stiffening of the blade. The softening,

however, is much better demonstrated for mode 1 and
CUS 40◦ configuration and as expected less visible for
CUS 70◦ configuration.

The change of nature of constant componentμ0 and
for fixed amplitude ρ and excitation ρ are shown in
Fig. 15a for beam response and in Fig. 15b for angu-
lar velocity of the hub. The increased value of constant
component μ0 makes a shift of the response; however,
the nonlinear nature of the solution is clearly demon-
strated.
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(a) (b)

Fig. 15 Influence of constant torque component μ0 on dynamics the rotor with piezo-blade; a blade and b hub response, ω = 5.2
(black), ω = 5.4 (blue),ω = 5.5 (green), ω = 5.8 (red), ω = 8.0 (magenta); CUS 70◦ configuration. (Color figure online)

5 Conclusions

The analysed model of the rotating hub with the
composite thin-walled beam with embedded nonlin-
ear piezoelectric layer demonstrates softening effect
near its resonance zones. The nonlinear phenomenon
is observed for the beam aswell as for hub response due
to the coupling of the hub to the blade by inertia terms.
The intensity of the nonlinearity depends on the stud-
ied mode and the layout of reinforcing fibres within the
discussed CUS configuration framework. Referring to
the fundamental resonance zone the nonlinear nature
of the response curve is much more pronounced for
CUS 40◦ layout than for the CUS 70◦ case. This dis-
crepancy comes from the significant difference in spec-
imen bending/shear stiffness. In case of the second res-
onance zone, the oscillations are a few orders smaller
if referred to fundamental resonance response. Further-
more, for the second mode, a small stiffening effect is
observed with larger oscillation for CUS 70◦ configu-
ration, in contrast to the results obtained for first mode.
The mass moment of hub inertia changes the dynam-
ics of the rotating system. Depending on the excitation
frequency response of the beam and hub as a function
of hub inertia may vary from softening to hardening as
presented in Fig. 10.

Another interesting phenomenon observed for the
first mode and both configurations is the absorption
of hub oscillations by beam motion. This dynamic
absorption takes place for frequency equal to natural

frequency of cantilever beam ω ≈ √
α11. In this singu-

lar zone oscillations of the hub are close to zero with
vibration localized in the beam. For the second mode,
the absorption is not present. The presented reduced
model allows fast and efficient parametric analysis
and optimal design of the rotating composite struc-
ture with active blades comparing to for example high-
computational cost and time consuming finite element
studies.
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