
ORIGINAL RESEARCH
published: 03 August 2015

doi: 10.3389/fict.2015.00011

Edited by:
Nicola Zannone,

Eindhoven University of Technology,
Netherlands

Reviewed by:
Santiago Escobar,

Universitat Politècnica de València,
Spain

Yannick Chevalier,
Université de Toulouse, France

*Correspondence:
Luca Viganò,

Department of Informatics, King’s
College London, Strand,
London WC2R 2LS, UK
luca.vigano@kcl.ac.uk

Specialty section:
This article was submitted to

Computer and Network Security,
a section of the journal Frontiers in ICT

Received: 10 December 2014
Accepted: 29 June 2015

Published: 03 August 2015

Citation:
Fiazza M-C, Peroli M and Viganò L
(2015) Defending vulnerable security

protocols by means of attack
interference in non-collaborative

scenarios.
Front. ICT 2:11.

doi: 10.3389/fict.2015.00011

Defending vulnerable security
protocols by means of attack
interference in non-collaborative
scenarios
Maria-Camilla Fiazza1, Michele Peroli1 and Luca Viganò2*

1 Dipartimento di Informatica, Università di Verona, Verona, Italy, 2 Department of Informatics, King’s College London,
London, UK

In security protocol analysis, the traditional choice to consider a single Dolev–Yao attacker
is supported by the fact that models with multiple collaborating Dolev–Yao attackers are
reducible to models with one Dolev–Yao attacker. In this paper, we take a fundamentally
different approach and investigate the case of multiple non-collaborating attackers. We
formalize a framework for multi-attacker scenarios and show, through a detailed case
study, that concurrent competitive attacks can interfere with each other. It is then possible
to exploit interference to provide a form of defense to vulnerable protocols.

Keywords: non-collaborative attackers, attack interference, attacker personality, attack mitigation, security
protocols

1. Introduction

1.1. Context and Motivation
The typical attacker adopted in security protocol analysis is theDolev–Yao (DY) attacker (Dolev and
Yao, 1983), who can synthesize, send, and intercept messages at will but cannot break cryptography
(i.e., the DY model follows the perfect cryptography assumption). He is thus in complete control of
the network – he is often formalized as being the network itself – and is actually stronger than any
attacker that can be implemented in real-life situations. Hence, if a protocol is proved to be secure
under the DY attacker, it will also withstand attacks carried out by less powerful attackers; aside from
vulnerabilities introduced in the implementation phase, the protocol can thus be safely employed in
real-life networks, at least in principle.

Symbolic approaches for security protocol analysis typically consider a single DY attacker since
models with multiple collaborating DY attackers are reducible to models with one DY attacker
[see, e.g., Caleiro et al. (2005) for a proof, Syverson et al. (2000) for an equivalent reduction for
Machiavelli-type attackers, and Syverson et al. (2000), Comon-Lundh and Cortier (2003), and Basin
et al. (2011) for general results on the reduction of the number of agents to be considered]. However,
different models have been recently proposed that consider multiple attackers. For instance, Basin
et al. (2009) and Schaller et al. (2009) extend the DY model to account for network topology,
transmission delays, and node positions in the analysis of real-world security protocols, in particular
for wireless networks. This results in multiple distributed attackers, with restricted, but more
realistic, communication capabilities than those of the standard DY attacker.

Multiple attackers are also considered in Bella et al. (2003, 2008) and Arsac et al. (2009, 2011),
where each protocol participant may behave as a DY attacker, without colluding nor sharing
knowledge with anyone else. The analysis of security protocols under this multi-attacker model

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 111

http://www.frontiersin.org/ICT
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/editorialboard
http://dx.doi.org/10.3389/fict.2015.00011
https://creativecommons.org/licenses/by/4.0/
mailto:luca.vigano@kcl.ac.uk
http://dx.doi.org/10.3389/fict.2015.00011
http://www.frontiersin.org/Journal/10.3389/fict.2015.00011/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2015.00011/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2015.00011/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2015.00011/abstract
http://loop.frontiersin.org/people/198922/overview
http://loop.frontiersin.org/people/171995/overview
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

considers scenarios of agents competing with each other for per-
sonal profit. Agents may also carry out retaliation attacks, where
an attack is followed by a counter-attack, and anticipation attacks,
where an agent’s attack is anticipated, before its termination, by
another attack by some other agent.

The features of the models of Basin et al. (2009) and Schaller
et al. (2009) and of Bella et al. (2003, 2008) and Arsac et al. (2009,
2011) rule out the applicability of the n-to-1 reducibility result for
theDY attacker, as the attackers do not necessarily collaborate, and
might actually possess different knowledge to launch their attacks.
They might even attack each other. Retaliation and anticipation
allow protocols to cope with their own vulnerabilities, rather than
eradicating them. This is possible because agents are capable of
doing more than just executing the steps prescribed by a protocol:
they can decide to anticipate an attack, or to counter-attack by
acting even after the end of a protocol run in which they have
been attacked. Retaliationmay nevertheless be too weak as honest
agents can retaliate only after an attack has succeeded, and cannot
defend the protocol during the attack itself.

1.2. Contributions
In this paper, we take a fundamentally different approach: we
show that multiple non-collaborating DY attackers may interfere
with each other in such a manner that it is possible to exploit
this interference to mitigate protocol vulnerabilities, thus pro-
viding a form of protection to flawed protocols. To investigate
non-cooperation between attackers, we have devised a (protocol-
independent) model in which (i) a protocol is run in the presence
of multiple attackers, and (ii) attackers potentially have different
capabilities and different knowledge, and can interfere with each
other. This, ultimately, allows us to consider the creation of a
benign attacker for protocol defense: agents can rely on a network
guardian, an ad hoc agent whose task is hindering dishonest
agents (i.e., attackers) from attacking vulnerable protocols. In
other words, we look for defenses against discovered attacks.

This paper continues our research endeavor on defending
vulnerable protocols: we defined a suitable model for non-
collaboration (Fiazza et al., 2011a,b), discussed the conceptual
implications of treating protocols as environments (Fiazza et al.,
2011c), and presented amethodology to systematize the construc-
tion of guardians (Fiazza et al., 2012) and their placement in the
network topology (Peroli et al., 2014).

In this paper, we refine and slightly extend our models and
techniques to consider the fine details of a refined case study.With
this case study, we illustrate that non-collaborative mechanisms
(and attacker reasoning) can vary tremendously across protocol
types. We proceed as follows. In Section 2, we formalize models
for the network and the agents, including agent attitude, goals,
and disposition. More specifically, we formalize (i) sets for honest
agents and attackers that are used in the analysis with the purpose
of filtering those messages that the attackers pay attention to; (ii)
datasets thatmodel the knowledge of all agents and the contents of
the network; (iii) themessages that transit on the network (i.e., are
contained in the network dataset) in the form of triplets ⟨sender-
ID, message, receiver-ID⟩; and (iv) a network handler that regu-
lates the execution of the actions of honest agents and attackers.
Then, in Section 3, we consider the SRA3P protocol, focusing on

attack procedures interacting in manners that cannot be observed
in classical settings. In Section 4, we discuss the lessons learned,
focusing on success criteria for competitive attackers and how
these criteria can be prioritized in order to define attack strategies.
In Section 5, we explain how interference between attacks leads
to a methodology that can be used for defending vulnerable
protocols against attacks. In Section 6, we summarize and discuss
future work.

2. Models: Network, Agents, Attitude

2.1. Goals of Modeling and Approach
Our approach is general and abstracts away from the specific
security properties for which protocols were designed. Still, for
concreteness, when considering a particular protocol, the spe-
cific properties must be taken into account. For brevity, in this
paper, we restrict our attention to confidentiality and to two non-
collaborative attackers (E1 and E2), in addition to honest agents A
and B. Let Eves= {E1, E2} be the set of attackers, Agents= {A, B,
E1, E2} the set of all network agents (honest and dishonest), X, Y,
Z, andW variables varying over Agents and E a variable over Eves.

To focus on the interference between two attackers directing
their attacks toward the same target, it is important for all attackers
to have access to the same view of what is taking place with honest
agents and possibly different views of what is taking place with the
other attacker(s). If attackers do not all have the same information,
it is possible to conceive of strategies in which some attackers can
be misled by others on purpose. If the knowledge1 available to an
attacker affects his view, attacker capabilities and effectiveness can
be diversified, without needing to construct asymmetric attackers
or hardwire constraints that may hold for some attackers and
not for others. Besides reflecting this stance, a network model
for non-collaborative scenarios should also support a form of
competition for access to messages, especially if attacks rely on
erasing messages.

We diversify the activity of our attackers by admitting that they
may choose to selectively ignore some messages, on the basis of
the sender’s and receiver’s identifiers. This choice reflects actual
situations in which attackers pay attention to only a subset of
the traffic through a network, focusing on the activity of some
agents of interest. Regardless of whether this selection is caused
by computational constraints or by actual interest, real attackers
filter messages on the basis of the sender’s or receiver’s identity.

We use the predicate ofInterestE (X) (defined by DecisionalPro-
cess inTable 1) to specify that attacker E decides to pay attention to
the network traffic generated by an agentX, which gives rise to the
set AttendE = {X ∈Agents | ofInterestE (X)} of the agents to which
E is attentive. How and why this decision is taken will be based on
decisional processes that can bemodeled in different ways accord-
ing to the attacker strategies that we discuss in Section 3. The
characteristic feature of the attackers we consider is their attitude.
Dishonest agents wish to attack a protocol and are ready, should

1We do not attach any epistemic interpretation to the knowledge we consider, but
rather we simply consider the information initially available to the agents, together
with the information they acquire during protocol executions.

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 112

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

TABLE 1 | Dolev–Yao attacker model for non-collaborative scenarios: inter-
nal operations (synthesis and analysis of messages), network operations
(spying, injecting, erasing; messages transit on the network dataset in the
form of triplets ⟨sender-ID, message, receiver-ID⟩) and system configura-
tion (True-Sender-ID, DecisionalProcess, NetHandler).

m1 ∈ Di
E m2 ∈ Di

E
(m1,m2) ∈ Di

E
(Comp)

m ∈ Di
E k ∈ Di

E
{m}k ∈ Di

E
(Encr)

(m1,m2) ∈ Di
E

mj ∈ Di
E for j ∈ {1, 2}

(Proj)
{m}k ∈ Di

E k−1 ∈ Di
E

m ∈ Di
E

(Decr)

< X,m, Y> ∈ Di
net sender(< X,m, Y>) ∈ Di

E Y ∈ Di
E ψ

m ∈ Di+1
E

(Restricted-Spy)

< X,m, Y> ∈ Di
net ofInterestE(X) Y ∈ Di

E ψ
m ∈ Di+1

E ∧ sender(< X,m, Y>) ∈ Di+1
E

(Inflow − Spy)

< X,m, Y> ∈ Di
net sender(< X,m, Y>) ∈ Di

E ofInterestE(Y) ψ
m ∈ Di+1

E ∧ Y ∈ Di+1
E

(Outflow-Spy)

where ψ =E∈ canSee (<X, m, Y >, i)

m ∈ Di
E X ∈ Di

E Y ∈ Di
E

< E(X),m, Y> ∈ Di+1
net

(Injection)

< X,m, Y> ∈ Di
net sender(< X,m, Y>) ∈ Di

E

< X,m, Y> /∈ Di+1
net

(Erase)

sender(< X,m, Y>) =

{
E if there exists Z such that X = E(Z)
X otherwise

(True-Sender-ID)

ofInterestE(X) =

{
true if E decides to pay attention to X
false otherwise

(DecisionalProcess)

canSee(< X,m, Y>, i)= {Z ∈ Eves | Z can spy < X,m, Y> onDi
net} (NetHandler)

NetHandler describes the set of attackers who are allowed to spy by applying one of the
*-Spy rules. We omit the usual rules for conjunction.

they encounter unforeseen interference, to take countermeasures
with respect to the interference as well. In a sense, each attacker is
exclusively focused on attacking the protocol and becomes aware
of other attackers through their effect on his success.

Our target is capturing the behavior of equal-opportunity dis-
honest agents who do not cooperate in the classical sense but have
the same attack power and differ with respect to the information
content of their knowledge. Such differentiation arises out of
attentional choices and not out of intrinsic constraints. Strategic
and attitude considerations (see Sections 4.2 and 4.3 for further
discussion) should not be derivable explicitly from the attacker
model; rather, they should configure it. To support this, we extend
the usual notions of protocol and role by introducing a control,
a mechanism to regulate the execution of the steps prescribed
by the attack trace in accordance with the attacker’s strategy. For
concreteness, in Section 2.2, we first discuss howwemodel honest
and dishonest agents statically, i.e., howwemodel their knowledge
and how they synthesize, analyze, and spy messages. Then, in
Section 2.3, we discuss the formalization of the dynamics of the
network model.

2.2. Agent Model
In this section, we discuss the agent model, focusing in particular
on the datasets for honest and dishonest agents and the network.

More specifically, the knowledge of each honest or dishonest agent
X is characterized by a proprietary datasetDX, which is monoton-
ically non-decreasing as agents never forget. We write Di

X when
it is important to highlight that the dataset is to be considered at
a particular state i. The network net is also formalized through
a dataset Dnet, also possibly indexed. In Section 2.3, we discuss
how datasets evolve and how indexing and evolution are related
to actions and message transmission.

We adapt the notion of DY attacker to capture a non-
collaborative scenario. Table 1 shows how one such attacker E
may be formalized within our model, with rules with respect
to DE and Dnet. The rules in Table 1 are transition rules, rather
than deduction rules: taken altogether, they construct a transition
system, which describes a computation by describing the states
that are upheld as a result of the transition. We do not carry out
logical inference to identify defenses against attacks; rather, we
recognize in the system’s evolution what in our eyes corresponds
to a defense.

Like honest agents, attackers can send and receive messages,
where they can derive new messages by:

• synthesizing messages via the rules Comp (for concatenation of
messagesm1 andm2) and Encr (for encryption of a messagem
with a key k),

• analysis messages via the rules Proj (for projection of a message
pair into its components) andDecr (for decryption of amessage
m with a key k–1).

Attackers can also eavesdrop messages transiting on the net-
work (via the *-Spy rules, which deserve a more detailed expla-
nation that we give below) and remove them, so that they do
not reach their intended receiver (via the rule Erase). Attackers
can also partially impersonate other agents by injecting messages
under a false identity (via the rule Injection); we write E(X) to
specify that E impersonatesX. Further rules can be easily added to
those in Table 1 for other forms of encryption, digital signatures,
hashing, creation of nonces, and other fresh data.

Messages transit on the network dataset in the form of triplets
⟨sender-ID, message, receiver-ID⟩. For conceptual clarity, we
explicitly pair an Erase rule with the Injection rule, to emphasize
that an attacker canmodify messages (by erasing them and inject-
ing a substitute) or send messages under a false identity (partial
impersonation). The most significant feature concerns spying,
represented through three different *-Spy rules formalizing that
attackers do not pay attention to all of the traffic on the network.
The *-Spy rules rely on an interpretation for “send” that is mod-
ified with respect to the denotational semantics in Caleiro et al.
(2006), to reflect the attentional focus of attackers. The default
is Restricted-Spy: only the messages involving known agents in
both sender and receiver roles, regardless of their honesty, become
part of the attacker’s dataset. In our model, what matters is the
actual sender and not the declared sender (as formalized by the
ruleTrue-Sender-ID inTable 1). This prevents total impersonation
and allows filteringmessages on the basis of the agent’s attentional
choices.

The attentional filter is meant as a choice of the agents and
not as a constraint to which they are subject; therefore, it must be
possible to expand the set of agents of interest. This is achieved by

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 113

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

the rules Inflow-Spy and Outflow-Spy. Attackers have the option
of accepting or rejecting the newly discovered identifier X, on the
basis of the predicate ofInterestE (X), which models the decisional
process for attention.

An attacker cannot apply any of the *-Spy rules to obtain the
message m without knowing the identifier of m’s sender or m’s
intended receiver. By not providing a “generalized spy” rule to
waive this requirement, we ensure that D0

E ∩ Agents = ∅ implies
Di

E ∩Agents = ∅ for all i. AlthoughE can augmentDE indefinitely
(through internal message generation and the synthesis rules
Comp and Encr), E’s network activity is in fact null.

An attacker’s dataset DE consists of (i) messages derived from
the messages received or spied and (ii) identifiers of the agents to
whom the attacker is attentive. AttendE is further partitioned into
three sets: the set HE of agents believed2 to be honest, the set AE
of agents believed to be attackers, and the set UE of agents whose
attitude is unknown in E’s eyes. Differently from Dnet (defined
later), agent datasets do not contain triplets ⟨sender-ID, message,
receiver-ID⟩, but only messages or identifiers.

Once a new identifier X enters DE, E establishes a belief about
the honesty of X and places the identifier in one of HE, AE, or UE.
We do not specify how the agents initially build their knowledge
base and establish or update their belief about the attitude of other
known agents. Agents are on the watch for suspicious messages,
which may indicate that an attack is ongoing or reveal that a cer-
tain agent is dishonest. Dynamically adapting their beliefs about
the honesty of other agents allows the agents to gather important
information during single protocol runs. The agents we consider
are smart: they always employ the available strategic information,
and different strategies might be defined and grafted onto our
approach.

Attackers do not have automatic access to triplets relating
sender, message, and receiver. They must infer key pieces of infor-
mation on the basis of the identifiers of the agents to which they
are attentive, and attempt to relate the identifiers to the messages
they spy. Inference is easier if attackers use only the Restricted-
Spy rule and keep the set of known agents small. The difficulty of
inference rises with the number of attackers in the set AttendE.

2.3. Network Model
We now consider the evolution of the datasets. All the operations
that can change the state of the network dataset Dnet (sending,
receiving, injecting, and erasing message) are termed actions,
whereas we consider spying simply as an operation: although
it requires interacting with the network, it does not change its
state. Messages in transit are inserted in Dnet, where attackers can
spy them before they are delivered to their intended receivers.
Contextual to delivery, the message is removed from the dataset.
As a consequence of message delivery or deletion, Dnet is non-
monotonic by construction.

The sequence of actions that takes place during a protocol run
is enumerated and used to index the evolution ofDnet; the index of
Di

net is shared with all the proprietary datasetsDi
X, whose states are

synchronized accordingly. Di
net is the state of the network dataset

after the i-th action.

2Wedonot attach any doxastic interpretation to the beliefs we consider in this paper.

Customarily, evolutions are indexed per transition (per rule
application), rather than per action. Our chosen indexing strategy
reflects three needs: (1) allowing agents to fully analyze newly
acquired messages without having to keep track of the number of
internal operations performed; (2) supporting a form of competi-
tion between attackers for access to the network; (3) supporting a
form of concurrency.

Attackers act concurrently. However, the state transitions for
the network must be well-defined at all times, even if attackers
try to perform conflicting actions, such as spying and deleting
the same message in transit. We introduce a network handler
[formalized by (NetHandler) in Table 1], whose task is to regulate
the selection of the next action and implement the dependencies
between the selected action and the knowledge available to each
attacker; the network handler also keeps the system evolution in
accordance with additional constraints, modeling, for example,
information-sharingwithin specific subsets of agents and network
topology.

When the state of the network changes (e.g., as a result of injec-
tion or sending), the network handler passes the new triplet to
each attacker, who then simulates spying and decides on whether
to request erasing the message or injecting a new one as a con-
sequence, in accordance with his strategy. The network handler
interprets the application of the spy rules, the inject rule and the
erase rule as requests and selects the next action from the set
of requests. Message deletion, when requested by any attacker, is
always successful.

The outcome of the process governed by the network handler
is described through the function canSee, which takes a message
triplet and the state and returns the identifiers of the attackers who
can spy “before” the message is erased fromDnet. canSee returns at
least the identifier of the attacker whose erase request was served.

If the network handler does not receive any erase requests, all
attentive attackers can acquire the message. If one or more erase
requests are present, the network handler erases the message and
confirms success in spying only for a subset of attentive attackers.
If an attacker is not in canSee, the prior (simulated) spy is subjected
to rollback, along with all internal operations that have occurred
since the last confirmed action. If no requests are received from
attackers, the network handler overseesmessage delivery or selects
actions requested by honest agents.

Although the formulation of canSee in terms of access time is
intuitive, the reason why we favor this mechanism is that time-
dependent accessibility is not the only situation it can model. The
function can be instantiated to model strategic decision-making
and information-sharing, or to capture a particular network topol-
ogy. In realistic attack scenarios, knowledge of a message that has
been erased may depend more on cooperation and information-
sharing than on timing. For example, if Ej is sharing information
with Ek (but not vice versa), whenever Ej’s erase requests are
served, Ek is automatically in canSee.

The network handler is not an intelligent agent. Specifying
its behavior and instantiating the function, canSee corresponds
to configuring the particular network environment in which the
agents are immersed (i.e., canSee is a configurable parameter of
our model).

As a result of the network handler and of our chosen indexing
strategy, several internal operations can occur in a proprietary

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 114

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

dataset between consecutive states, whereas only a single action
separates consecutive states of the network dataset. Attackers
determine the next state of the network dataset with priority with
respect to the actions of honest agents.

In Table 2, we formalize within our model operations in the
Alice&Bob notation used in Section 3; we write EI (Y) to denote
the subset of Eves who spy a message m addressed to Y, at least
one of which has requestedm to be erased. Note that the (i+ 1)th
action is requested when the state of the network isDi

net and agent
datasets are Di

X; thus, the sender X must already know in Di
X both

the message m and the identifier of the intended recipient Y. The
message correctly transits on Di+1

net , immediately after being sent.
The (i+ 2)th action is either receive (first two cases) or erase (last
case); the availability ofm to attackers is conclusively decided after
the network handler selects the (i+ 2)th action, and thus pertains
to Di+2

W .

3. A Case Study

A dishonest agent, aware that other independent attackers may be
active on the network, will seek to devise suitable novel attacks, so
as to grant himself an edge on unsuspecting competitors. As the
mechanics of interaction and interference between attackers have
not been exhaustively studied in literature yet, it is not known how
to derive systematically an attack behavior of this type.

In the following case study, we start from a simple protocol
for which a vulnerability is known and describe a possible rea-
soning for a competitive attacker in the context of the protocol’s
main features; as a result, we devise for the known (“classical”)
attack a variant that explicitly considers the possibility of ongoing
independent attacks.

The visibility of the last message to the attackers makes a huge
difference on the outcome. By erasing messages, through the
mechanism normed by canSee, attackers can deny information
to their competitors and manipulate their ability to succeed. In
Section 3.1, we discuss the scenario under the assumption that all
attackers see the last message sent by the honest initiator, so as to
focus our attention on behavioral choices during the protocol run.
We then explore (in Section 3.2) the general case, in which the last
message is not trivially visible to all attackers; here we focus on the

TABLE 2 | Representation of operations in Alice&Bob notation.

(i+++ 1)th action Formalization

X→Y : m m ∈ Di
X and Y ∈ Di

X

< X,m, Y >∈ Di+1
net and < X,m, Y >/∈ Di+2

net

m /∈ Di+2
W , where W /∈ canSee (<X, m, Y >, i+ 1)

m ∈ Di+2
Y

E(X)→Y : m m ∈ Di
E and X ∈ Di

E and Y ∈ Di
E

< E(X),m, Y >∈ Di+1
net and < E(X),m, Y >/∈ Di+2

net

m /∈ Di+2
W , where W /∈ canSee (<X, m, Y >, i+ 1)

m ∈ Di+2
Y

X→EI (Y) : m m ∈ Di
X and Y ∈ Di

X

< X,m, Y >∈ Di+1
net and < X,m, Y >/∈ Di+2

net

m ∈ Di+2
W , where W ∈ I and I⊆ canSee (<X, m, Y >, i+ 1)

attacker’s reasoning, emphasizing what can be learned during the
protocol run.

We examine the outcome of attacks carried out in a non-
collaborative environment in six cases, corresponding to different
conditions of knowledge and belief for attackers, E1 and E2:

• Case 1: E1 and E2 know each other as honest. E1 and E2 know
each other’s identifiers (i.e., they are paying attention to each
other: E1 ∈ DE2and E2 ∈ DE1), but they are both mistaken
in that they have labeled the other as honest (E1 ∈ HE2 and
E2 ∈ HE1).

• Case 2: E1 and E2 know each other as attackers. E1 ∈ DE2 and
E2 ∈ DE1 and they have correctly understood that the other is
behaving as a dishonest agent (E1 ∈ AE2 and E2 ∈ AE1).

• Case 3: E1 and E2 are unaware of each other. E1 and E2
are unaware of the other’s presence, i.e., they are not paying
attention to the other’s activity (E1 /∈ DE2 and E2 /∈ DE1).

• Case 4: E2 knows E1 as honest. Only one of E1 and E2 is paying
attention to the other, say E1 ∈ HE2 and E2 /∈ DE1 .

• Case 5: E2 knows E1 as dishonest. Only one of E1 and E2 is
paying attention to the other and knows his identifier, say E1 ∈
AE2 and E2 /∈ DE1

• Case 6: E2 knows E1, but he is unsure of E1’s honesty. Only
one of E1 and E2 is paying attention to the other and knows his
identifier, say E1 ∈UE2 and E2 /∈ DE1 .

We now consider a detailed case study, pointing to Fiazza et al.
(2011a,b) and Peroli et al. (2014) for other case studies.

3.1. The Shamir–Rivest–Adleman Three-Pass
Protocol
The Shamir–Rivest–Adleman Three-Pass protocol [SRA3P (Clark
and Jacob, 1997)] consists in three message exchanges, as shown
in Table 3(A), and it assumes commutative cryptography, i.e., that
{|{|M|}KA

|}KB
= {|{|M|}KB

|}KA
holds. The goal is confidentiality; if

the message transmitted is interpreted as a session key, then the
protocol can be considered as a key transport protocol.

TABLE 3 | Attacks against SRA3P.

(A) SRA3P (B) Classical Attack

(1) A → B : {|M|}KA
(2) B → A : {|{|M|}KA

|}
KB

(3) A → B : {|M|}KB

(1) A → E(B) : {|M|}KA
(2) E(B) → A : {|M|}KA
(3) A → E(B) : M* = M

(C) Strong attack (D) Subtle attack

(1) A → E1,2(B) : {|M|}KA
(2) E1(B) → A : {|M|}KA
(3′) E2(A) → E1 : Mfake
(3) A → E1,2(B) : M*

(1) A → E1,2(B) : {|M|}KA
(2) E1(B) → A : {|M|}KA
(3′) E2(A) → E1(B) : Mfake
(3) A → E1,2(B) : M*

KA and KB are private keys, and cryptography is commutative.
(A) Protocol followed by honest agents. (B) Classical attack on SRA3P, employed by
attackers when unaware of active competitors. (C) Strong competitive attack, employed
by attackers when the competitor’s identifier is known (E2 knows that his competitor is
E1). (D) Subtle competitive attack, employed by attackers when aware of the existence
of an active competitor but unsure of the competitor’s identity (E2 knows that he has a
competitor but does not know that it is E1).

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 115

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

The classical attack to SRA3P exploits A as an oracle for the
content of the message [Table 3(B)]. The attacker E replaces
the intended recipient B in receiving the message and pretends
to perform step (2), actually sending back the message {|M|}KA
without further encryption.A continues according to the protocol
and removes his key from the message, thus sending back the
secret M without any encryption. We writeM* to emphasize that
M transits in the clear without Ameaning it.

The classical attack is successful; however, it prevents the
intended recipient B from receiving any messages at all. In case
the honest agents had prior agreement that an exchange was to
take place, B can detect that something has gone wrong. The
classical attack is very strong against detection even in this case:
after discovering M, the attacker E impersonates A and performs
the protocol with B, de facto carrying out a complete man-in-the-
middle attack (completely undetected).

Provided that some attacker answered A in step (2) by sending
{|M|}KA

, it is sufficient to spy the message in step (3) to acquire the
secret. In our set-up, any attacker attempting to erase a message
is always successful in preventing honest agents from receiving
it, but he is not necessarily successful in hiding it from other
attackers [only attackers in canSee (⟨A, M*, B⟩, i) have access
to M]. In this situation, a second attacker E2 can prevent his
competitors from acquiring the secret only by weakening their
ability to identify the messageM* as the true response ofA in step
(3). A competitive attacker will therefore attempt to mislead his
competitors by sending on the network fake messages that are not
related to the information coming from A.

If the recipient of a fake message is expecting to receiveM*, he
may be led into thinking that he has successfully carried out his
attack. He may then stop spying the current run of the conversa-
tion between A and B and conclude that he has succeeded when
in fact he has acquired the wrong “secret” Mfake. If, instead, the
competitor E1 is not following the classical attack and chooses to
keep listening in on the conversation, he receives more than one
message M* and does not know which one has been sent by the
honest agent A.

The competitor faces a degree of uncertainty in identifyingM*
that is not present in the classical attack. The degree of uncertainty
(i.e., between how many fake messages he has to choose the real
one) to which E1 is subject can be increased arbitrarily by E2, who
can send multiple and unrelated fake messages, both before and
afterM* transits on the network.

The success of such a non-collaborative behavior in securing
sole ownership of the secret depends critically on the listening
behavior of the competitor: if E1 stops spying network traffic as
soon as a response is received, then it is critical for E2 to send a
fake message before A’s reply; in case of success, the competitor
fails to acquire the secret. If the competitor is actively listening
past the reception of the first response, then M* is eventually
acquired – but not by itself: a situation of uncertainty arises.

In classical settings, uncertainty does little more than affect
the probability that an attack will be successful; however, if hon-
est agents are immersed in a retaliatory framework, when an
attacker guesses the wrong M* and uses it as a session key to
communicate with A, he may incur in significant consequences.
Therefore, attackers in non-collaborative scenarios should be

careful to evaluate the probability of correctly guessingM* against
the added costs of failure – either in terms of retaliation or
of the strategic risks of being detected or identified by honest
agents.

As a result of this discussion, for competitive scenarios
involving SRA3P, we propose two competitive variants of the
classical attack, employed by attackers who are aware of the
presence of active competitors. We term the variants strong and
subtle attack, differing with respect to attacker knowledge. If the
attacker is aware of the identity of the competitor, he will employ
the strong attack, whereas he will resort to the subtle attack
when only the competitor’s presence is known. These new attack
behaviors are also oracle-type [transmission step, see Carlsen
(1994) for a taxonomy of flaws and attacks] and are shown in
Table 3(C,D).

The main difference between the two non-collaborative attack
behaviors lies in the method of delivery of fake messages to E1.
If the competitor’s identity is known, E2 can ensure that the fake
message is seen even if E1 is not paying attention to E2’s traffic:
E2 sends the fake message directly, using the network primitive
send. If, on the other hand, E1’s identity is unknown, E2 is forced
to rely on a reasonable prediction of E1’s behavior and thus injects
the fake message, impersonatingA. The misleadingmessageMfake
is successfully delivered if E2 is present in E1’s dataset and E1
spies it. If E1 does not gain Mfake, E2 fails to pollute the com-
petitor’s knowledge but does not compromise his own ability to
observeM*.

SRA3P is such that all attentive attackers can potentially acquire
the secret if an attack on the initiator A is carried out. Exclusive
knowledge of the secret can only occur through two mechanisms:
through the outcome of erase requests (which is not under the
control of network agents) or by misleading other attackers into
interpreting a fake message asM*.

An attack is successful if it goes undetected by the initiator A,
who then transmits M in the clear as M*. Our agents are intelli-
gent and they make use of all information available to perform
in-protocol detection of attacks. With respect to SRA3P, a clear
indication for A consists in receiving a duplicate response from
agents posing as B; under this circumstance, A concludes that
there has been a security violation and halts the execution of the
protocol to protect the secretM.

From the attackers’ perspective, an ongoing attack can be
detected by observing that the message transiting on the network
in step (2) is equal to the message {|M|}KA

transiting on step (1).
The attack trace is unambiguous to spying attackers. SRA3P is very
unfriendly for attacker labeling: identifiers do not transit on the
network, neither in the clear nor encrypted (the attackers do not
see the IDs). Decisional processes cannot rely on any conclusive
information concerning the identity of the agents involved in a
given protocol run and must resort to inference on the basis of
their current knowledge.

3.1.1. Attacker Configuration and
Outcomes of Interaction
We examine the outcome of attacks for the six cases above. Refer
to Table 4 for a synthetic view of the message exchanges in each
configuration.

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 116

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

TABLE 4 | Traces for non-collaborative attacks against SRA3P.

T1: cases 1, 4, 5, 6 T2: case 2

(1) A → E1,2(B) : {|M|}KA
(21) E1(B) → A : {|M|}KA
(32) E2(A) → E1 : Mfake
(3) A → E[1],2(B) : M*

(1) A → E1,2(B) : {|M|}KA
(2) E2(B) → A : {|M|}KA
(31) E1(A) → E2 : M′

(32) E2(A) → E1 : M′′

(3) A → E1,2(B) : M*

T3: case 3 T4: cases 4, 5 and 6

(1) A → E1,2(B) : {|M|}kA
(21) E1(B) → A : {|M|}kA
(22) E2(B) → A : {|M|}kA

(1) A → E1,2(B) : {|M|}kA
(22) E2(B) → A : {|M|}kA
(21) E1(B) → E2(A) : {|M|}kA
(32) E2(A) → E1 : Mfake
(3) A → E1,[2](B) : M*

Traces are exhaustive aside for order of attackers.
Case 1: E1 and E2 know each other as honest. Case 2: E1 and E2 know each other as
dishonest. Case 3: E1 and E2 are unaware of each other. Case 4: E2 knows E1 as honest.
Case 5: E2 knows E1 as dishonest. Case 6: E2 knows E1 but has not yet established a
belief on E1’s honesty.

In order to completely specify agent behavior, we state the
following:

1. An attacker who, before starting his own attack, spies {|M|}KA
(part of an attack trace) transiting on the network moves on
to step (3) of his chosen competitive attack (strong or subtle).
If the attacker spies the attack trace after sending {|M|}KA
himself, then he requests that the message be erased. In our
set-up, erase requests always prevent messages from reaching
honest recipient, although attackers cannot deterministically
be prevented from spying it. This behavioral rule accounts for
attackers being aware that duplicate messages can be exploited
to perform attack detection.

2. An attacker who is employing a competitive attack (as he is
aware of the presence of active competitors) continues spying
on the network even after receiving the first message.

3. An attackermay learn that he has incorrectly classified an agent
as honest. We do not focus here on decisional processes for
agent classification and therefore we posit that these processes
serve as oracles for the identifiers of honest agents involved
in the protocol run and also for the identity of the mislabeled
agent. Whenever evidence that an agent has been mislabeled
arises, the decisional processes of the agents allow relabeling in
A the dishonest agent who has triggered the anomalous situa-
tion detected. For completeness, we explicitly mention in case
1.T1-B which choices would be available to the agent, should
the decisional process yield incorrect answers. The reliability
of deductive processes related to identifiers determines to what
degree an attacker can be confident in choosing the strong
attack over the subtle attack in Table 3.

4. We posit that canSee for A’s opening message comprises both
E1 and E2; otherwise, only one attacker would be active in the
run of the protocol examined.

5. We initially posit that canSee yields the entire attacker set for
the message sent by the honest agent A in step (3); otherwise
only some (one) of the intruders could acquireM*. Section 3.2
discusses how outcomes are affected by canSee.

Case 1: E1 and E2 know each other as honest: Initially, E1 and E2
are unaware of active competitors and mount the classical attack.
The first between E1 and E2 to send the message at step (2) reveals
to the other that he has incorrectly classified an agent. LetE1 attack
first. E2 employs his decisional process to identify the mislabeled
attacker.

• (1.T1-A) E1 is identified as an attacker by E2. E2 switches to
the strong attack, with the goal of gaining exclusive access to
M. In step (32), E2 sends a fake message to the unsuspecting
competitor E1, who is expecting a message from A containing
M* on the clear. E1 may now think that he has successfully
completed the attack, but in fact he did not acquire the secret
M. After receiving Mfake, E1 stops monitoring the network,
according to the classical attack behavior.

If E1 continues to spy, he will also acquire M*. However,
E1 finds himself in a situation of uncertainty, as he is not able
to determine if it is Mfake or M* (or neither) that comes from
A. E1 can at most determine that there is an unlabeled active
competitor, one that he has not previously identified in AE1 .

• (1.T1-B) E2 fails to identify E1 as a dishonest agent. E2 has two
strategies available: risk revealing himself as an attacker and
employ the strong attack against all agents he is attentive to
(except the protocol initiator), or employ the subtle competitive
attack with partial impersonation.

Case 2: E1 and E2 know each other as attackers: Both E1 and
E2 know the competitor’s identity and thus both follow the strong
attack. The attack trace prescribes waiting for a competitor to start
the attack procedure, by sending {|M|}KA

to A. Both attackers are
waiting for the other to take action. The situation could result in
a deadlock, but the attackers know that a message has been erased
and that A is waiting for an answer.

The attackers wait for a reasonable amount of time (depending
on the real set-upwhere the protocol is utilized) and thenone takes
the initiative, say E2 first answers A. The strong attack consists in
polluting the knowledge of the competitor with a fake message.
Both attackers send their fake messages (M’ and M”), thereby
recreating the uncertainty of the previous case. This time the
uncertainty spreads over both attackers and none dominates the
other.

Case 3: E1 and E2 are unaware of each other: hence, both
employ the classical attack. The attackers, not paying attention to
the other’s communications, do not realize that an attack trace is
transiting on the network. A receives a duplicate message that he
correctly interprets in terms of an ongoing attack. The attackers
are detected, even if not explicitly identified. A abandons the
protocol to keepM secret.

Case 4: E2 knows E1 as honest: E2 is not aware of other attackers
and can choose to attack right away or wait for a reasonable time
to try detecting a mislabeled attacker.

• (4.T1) E2 waits and E1 starts the classical attack. E2 has the
chance of detectingE1 as an attacker and starts the strong attack.
The situation is reduced to case 1. If E1 continues to listen
on the network after the end of his (unsuccessful) attack, he
realizes that he is in a situation of uncertainty, not knowing
which between M* and Mfake is A’s secret. E1 is now certain

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 117

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

that an attacker is present but he does not know who, because
the identifier E2 is not in E1’s proprietary dataset. E1 can thus
switch to an exploratory strategy, using the inflow-spy rule for
the subsequent runs of the protocol.

• (4.T4) E2 starts the classical attack.Not having E2’s identifier in
his dataset, E1 does not pay attention to the message and does
not notice the attack. E1 continues his attack and sends {|M|}kA .
In step (21), E2 detects the dishonesty of E1 and switches to
the strong attack. There is an important difference with respect
to case 4.T1: E2 erases the message sent by E1 to A, thereby
preventingA fromdetecting a duplicatemessage and protecting
his own attack.

Case 5: E2 knows E1 as dishonest: E2 knows his competitor’s
identifier.WhenA initiates the protocol,E2 waits forE1 to start the
attack and prepares to send a fake message in step (32), employing
the strong attack (case 5.T1). If E1 does not send {|M|}kA within
a reasonable time (case 5.T4), E2 performs the attack in step (22).
This message goes undetected by E1, who will send his message
later. E2 is aware that another attacker is present and is on the
watch for a replicate attack message, which he erases. If E1 acts
first, the sequence of messages is the same as in case 1; otherwise,
the sequence is the same as in case 4.T4.

If E1 continues to spy after receiving Mfake, he can realize that
he is uncertain with respect to M and can therefore deduce the
presence of an unknown attacker. E1 employs exploratory versions
of the *-Spy rules to try gaining information about the competitor’s
identity.

Case 6:E2 knowsE1 but he is unsure ofE1’s honesty: this reduces
to cases 5.T1 and 5.T4, according to who first initiates the attack
by sending {|M|}kA , be it E1 (case 6.T1) or E2 (case 6.T4). In all
cases, E2 has a clear advantage because he is paying attention to
E1’s messages but his own messages are not being attended to.
In addition to what happens in case 5, E2 has the opportunity to
correctly label E1: E2 moves E1’s identifier from UE2 into AE2 .

3.2. The General Case for SRA3P
We now move on to a more thorough view, examining the full
range of outcomes emerging from two simultaneous independent
attacks against SRA3P. Attack traces are the same as those reported
in Table 4.

With reference to Tables 5 and 6, for each of the six cases, we
identify the following subcases:

• E1 is using the classical attack and stops spying on the network
after receiving the first message that can play the role ofM (“E1
stops”). In case 2, this situation does not occur as attackers who
are aware of competitors keep spying after the first message
received.

• E1 continues to spy even after receiving the first message that
can be interpreted asM; we treat separately the different values
of canSee for A’s response in step (3). Note that if an attacker
is not in canSee, he fails regardless of the number of fake
messages dispatched. In case 3, the honest initiator detects an
ongoing attack and withdraws from the protocol; as a result,
step (3) is not carried out and we do not distinguish subcases in
Table 5.

For each attacker role, we describe:

• “Attack”: which attack has been used (“classical” or “strong”) or
if there has been a switch from the classical to the strong attack
during the protocol run (“Cl→ Str”).

• “Detection”: the ability to acquire further information on com-
petitors. Possible values are: none performed (“none”); none
possible, because the agent already has a correct understanding
of the situation [“none (c)”]; in-protocol detection, by spying
the attack trace when no competitor is known [“(in) trace”];
post-protocol detection, by realizing that more than one candi-
dateM has been spied and an unknown competitor is responsi-
ble for the uncertainty [“(post) uncertainty”] – with the variant
(“post ∃”) uncertainty to also signal that the identifier of the
previously unknown competitor is not in Attend.

• “Messages”: the set of messages that can be interpreted as M.
M! indicates that only M has been spied; M+ indicates that
more than onemessage, includingM, has been spied;Mfake that
only fakemessages have been spied; “none,” that nomessage has
been spied during the protocol run.

• “Result”: the result of the protocol run. Possible results are: “full
failure” (the attacker does not acquireM and takes a fake mes-
sage for the secret), “failure” (the attacker does not acquire M
and realizes it), “uncertainty” (the attacker acquires the secretM
along with other fake messages), “success” (the attacker knows
M without uncertainty), “dominance” (the attacker succeeds
and all his competitors fully fail).

For honest agents, we show only the result: either security
failure or attack detection through duplicate messages. For ease
of reference, the last two rows of each subtable pertain to the
outcome of interaction when a guardian G is introduced in the
network, along with a single (competitive) attacker E. Refer to
Section 5 for an introduction to guardians.

GE1 plays the role of E1 against E playing E2, and GE2 plays the
role of E2 against E1. Similarly to attackers, we show for G the
possible conclusions that can be drawn on the actual security of
the protocol run and what can be deduced about attacker identity.
Security can be: compromised, if E knowsM with certainty; uncer-
tain E, if E knowsM but cannot identify it with certainty; restored,
if E fails to acquireM; enforced, if thanks to G being present, flags
were raised forA that allowA to detect an ongoing attack and abort
the protocol to protectM.

4. Lessons Learned

4.1. Some General Comments
First of all, let us observe that classical attacks rely on rather simple
mechanisms, such as replacing part of a message (to force a wrong
binding between a public key and the agent it is believed to belong
to) or replaying part of a message (e.g., an old session key, which
is wrongly accepted as new). Aside for a general interest in flaw
taxonomy, the classical view on protocol security typically pays
little attention to the basic mechanism upon which all security
rests; it is taken for granted that it is there and that, since it is
so basic, it is trivially possible to attack it. On the other hand,
moving from single to multiple attackers brings to the fore that

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 118

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

TABLE 5 | Overall SRA3P results, detailed view of cases 1, 2 and 3.

Case 1 E1 stops E1 continues and canSee(M*)=

Agent Feature {E1, E2} {E1} {E2}

E1 Attack Classical Classical Classical Classical
Detection None (Post) uncertainty (Post) uncertainty None
Messages Mfake M+ M+ Mfake

Result Full failure Uncertainty Uncertainty Full failure

E2 Attack Cl→Str Cl→Str Cl→Str Cl→Str
Detection (In) trace (In) trace (In) trace (In) trace
Messages M! M! None M!
Result Dominance Success Failure Dominance

A Result Failure Failure Failure Failure

GE1 Detection None (Post) label (Post) label None
Security Compromised Compromised Restored Compromised

GE2 Detection (In) label (In) label (In) label (In) label
Security Restored Uncertain E Uncertain E Restored

Case 2 E1 stops canSee(M*)=

Agent Feature {E1, E2} {E1} {E2}

E1 Attack — Strong Strong Strong
Detection — None (c) None (c) None (c)
Messages — M+ M+ Mfake

Result — Uncertainty Uncertainty Full failure

E2 Attack — Strong Strong Strong
Detection — None (c) None (c) None (c)
Messages — M+ Mfake M+

Result — Uncertainty Full failure Uncertainty

A Result — Failure Failure Failure

GE1 Detection — None (c) None (c) None (c)
Security — Uncertain E Restored Uncertain E

GE2 Detection — None (c) None (c) None (c)
Security — Uncertain E Uncertain E Restored

Case 3 — —

Agent Feature

E1 Attack — Classical
Detection — (Post, ∃) failure
Messages — None
Result — Failure

E2 Attack — Classical
Detection — (Post, ∃) failure
Messages — None
Result — Failure

A Result — Detection (duplicates)

GE1 Detection — (Post) ∃
Security — Enforced

GE2 Detection — (Post) ∃
Security — Enforced

Case 1: E1 and E2 know each other as honest. If E1 is no longer listening on the network, only E2 can place an erase request in step (3) and thus can acquire the message M* with
certainty. If the competitor E1 continues to eavesdrop, the dominant intruder can fail to acquire M* whenever E2 /∈ canSee. If, on the other hand, it is the attacker at disadvantage (E1)
that is not in canSee, then E1 fails regardless of the number of fake messages.
Case 2: E1 and E2 know each other as dishonest.
Case 3: E1 and E2 are unaware of each other.

accessibility to the basic building block of the security mecha-
nism is not granted but rather fought for. Competitive attackers
deal with their competitors precisely by attempting to secure a
privileged position with respect to the basic mechanism.

In Fiazza et al. (2011a,b), we considered the Boyd–Mathuria
Example (BME), a deliberately vulnerable protocol introduced in
Boyd and Mathuria (2003). For completeness, Table 7 shows the
definition of the protocol and a classical attack against it, and

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 119

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

TABLE 6 | Overall SRA3P results, detailed view of cases 4, 5 and 6.

Case 4A: E1 starts the attack

Case 4B: E2 starts the attack

Agent Feature E1 stops canSee(M*)=

{E1, E2} {E1} {E2}

E1 Attack Classical Classical Classical Classical
Detection None (Post ∃) uncertainty (Post ∃) uncertainty None
Messages Mfake M+ M+ Mfake

Result Full failure Uncertainty Uncertainty Full failure

E2 Attack Cl→Str Cl→Str Cl→Str Cl→Str
Detection (In) trace (In) trace (In) trace (In) trace
Messages M! M! none M!
Result Dominance Success Failure Dominance

A Result Failure Failure Failure Failure

GE1 Detection None Post (∃) Post (∃) None
Security Compromised Compromised Restored Compromised

GE2 Detection (In) label (In) label (In) label (In) label
Security Restored Uncertain E Uncertain E Restored

Case 5A: E1 starts the attack

Case 5B: E2 starts the attack

Agent Feature E1 stops canSee(M*) =

{E1, E2} {E1} {E2}

E1 Attack Classical Classical Classical Classical
Detection None (Post ∃) uncertainty (post ∃) Uncertainty None
Messages Mfake M+ M+ Mfake

Result Full failure Uncertainty Uncertainty Full failure

E2 Attack Strong Strong Strong Strong
Detection None (c) None (c) None (c) None (c)
Messages M! M! None M!
Result Dominance Success Failure Dominance

A Result Failure Failure Failure Failure

GE1 Detection None Post (∃) Post (∃) None
Security Compromised Compromised Restored Compromised

GE2 Detection None (c) None (c) None (c) None (c)
Security Restored Uncertain E Uncertain E Restored

Case 6A: E1 starts the attack

Case 6B: E2 starts the attack

Agent Feature E1 stops canSee(M*) =

{E1, E2} {E1} {E2}

E1 Attack Classical Classical Classical Classical
Detection None (Post ∃) uncertainty (Post ∃) uncertainty None
Messages Mfake M+ M+ Mfake

Result Full failure Uncertainty Uncertainty Full failure

E2 Attack Strong Strong Strong Strong
Detection (In) label (In) label (In) label (In) label
Messages M! M! None M!
Result Dominance Success Failure Dominance

A Result Failure Failure Failure Failure

GE1 Detection None Post (∃) Post (∃) None
Security Compromised Compromised Restored Compromised

GE2 Detection (In) label (In) label (In) label (In) label
Security Restored Uncertain E Uncertain E Restored

Case 4: E2 knows E1 as honest.
Case 5: E2 knows E1 as dishonest.
Case 6: E2 knows E1 but has not yet established a belief on E1’s honesty.

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 1110

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

TABLE 7 | The Boyd–Mathuria example protocol and amasquerading attack
against it.

BME Classical attack

(1) A → S : A, B
(2) S → A : {|kAB|}kAS

, {|kAB|}kBS
(3) A → B : {|kAB|}kBS

(1) A → E(S) : A, B
(1′) E(A) → S : A, E
(2) S → A : {|kAE|}kAS

, {|kAE|}kES
(3) A → E(B) : {|kAE|}kES

TABLE 8 | Traces for non-collaborative attacks against BME. Traces are
exhaustive: E1 and E2 have priority over honest agents and S is honest.

T1: cases 1, 3, 4, 6 T2 and [T3]: cases 1, 3, 4, 6

(1) A → E1,2(S) : A, B
↓ (11) E1(A) → S : A, E1
↑ (12) E2(A) → S : A, E2
(21) S → A : M1

(22) S → A : M2

(1) A → E1,2(S) : A, B
↓ (11) E1(A) → S : A, E1
↑ (12) E2(A) → S : A, E2
(21) S → A : M1

(3) A → E1,2(B) : {|kAE1 |}kE1S
[(22) S → A : M2]

T4: case 2 T5: case 5

(1) A → E1,2(S) : A, B
↓ (11)+ E1(A) → E2(S) : A, E1
↑ (12) E2(A) → E1(S) : A, E2

(1) A → E1,2(S) : A, B
↓ (11) E1(A) → E2(S) : A, E1
↑ (12) E2(A) → S : A, E2
(2) S → A : M2

(3) A → E1,2(B) : {|kAE2 |}kE2S

Where: M1 = {|kAE1 |}kAS
, {|kAE1 |}kE1S

, M2 = {|kAE2 |}kAS
, {|kAE2 |}kE2S

Arrows: relative order between (11) and (12) is irrelevant in determining the outcome.

Table 8 shows the non-collaborative attacks against it (the com-
plete outcome of the interaction between two non-collaborative
attackers can be found in Fiazza et al. (2011a,b). We can actually
see the BME case study and the SRA3P case study [presented in
Fiazza et al. (2012) and extended in this paper] as key-exchange
protocols: BME by design and SRA3P by considering M to be
used as a key. Still, there are fundamental differences between the
results of our analyses of the case studies. This is kind of natural as,
depending on the type of the protocol, there is a different type of
competitive attack situation that we have to consider; in the case
of BME, the result is basically yes or no, meaning that the attack
succeeded or not, whereas in the case of SRA3P, an attacker must
actually reason on the outcome of the attack that he carried out,
i.e., whether he was really able to succeed or not. In fact, SRA3P
differs significantly from BME in that success is not necessarily
exclusive and in that it requires interacting with a second honest
agent (S) to carry out a masquerading attack.

Moreover, in BME, attackers attack three things simultane-
ously: A as the target of the attack, B as the agent to masquerade,
the key as the means to acquire information. All the pieces of
meta-information in the opening message (meaning of the two
fields and expected answer) are attacked. In SRA3P, the only
known meta-information is that the message is encrypted with
commutative cryptography. With less meta-information, it is far
harder to move effectively in the SRA3P environment.

We learn from SRA3P that attackers can face, according to the
protocol in use, a multiplicity of factors and that BME only gave

a window over a rather simple case. Attackers who are successful
in the SRA3P scenario have a success criterion that is far more
complex thanwhat could be suitable for BME: the panorama looks
a bit more involved.

4.2. Success Criteria for Competitive Attackers
and Honest Agents
The best result for a competitive attacker consists in violating
security without the honest agent realizing it, and making it
such that the other attackers conclude their attacks with false
information (e.g., Mfake taken for M* in SRA3P) without real-
izing it. However, as shown with SRA3P, in competitive sce-
narios with equal-opportunity attackers, it is not possible, in
general, to ensure a complete victory under all circumstances.
Hence, the result of an attack depends on the strategy and on
the knowledge conditions of all the active agents. A compet-
itive agent will try to secure the best result (compatibly with
his knowledge) and he will strategically evaluate if it is prefer-
able, for example, to risk being identified as an attacker by
other agents or to increase the degree of uncertainty of the
competitors.

For competitive agents (in particular, for SRA3P) any of the
following factors can form part of the success criterion:

F1 success in gaining the secret M protected by the security sys-
tem (or, more generally, in invalidating the target properties
of the protocol). For vulnerable protocols, a single attacker
without competition always succeeds. The first priority of our
competitive attackers is preserving the success of their own
attacks, even in the presence of competitors.

F2 absence of uncertainty on the secret messageM.
F3 effects on competitors: denying competitors access to the

secret so that the attacker gains exclusive access to M, ide-
ally also inducing the competitors into thinking they have
succeeded.

F4 effects on competitors: denying competitors certainty or rec-
ognizability of the secret.

F5 post-protocol detection of the attacker’s identity: in-protocol
detection (of attacks) by honest agents thwarts the attack and
corresponds to failing the goal at point 1.

F6 possible identification as an attacker by other attackers. Know-
ing the dishonesty of an agent is an advantage, therefore
attackers seek to limit the situations in which they can be
detected or identified through an explorative spy rule. A good
example of this strategy is the difference between the two
non-collaborative attacks against SRA3P: employing a direct
send to the competitor or relying on the prediction that the
competitor will spy.

F7 possible identification of competitors, thereby acquiring a
strategic advantage for later protocol runs.

For honest agents, we can distinguish five relevant conditions,
each associated to a different level of alarm:

1. No attacker has gained the secret, which has correctly reached
the intended recipient (security). This does not hold for SRA3P
as it is attackable.

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 1111

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

2. No attacker has succeeded in gaining the secret, but the secret
has not reached its intended recipient (stalemate, deadlock).
For SRA3P, this occurs whenever the initiator detects duplicate
messages before step (3), e.g., in case 3.

3. One or more attackers have gained the secret but the honest
agent has detected the attack (restart).

4. One or more attackers have gained the secret, the honest
agent has detected the attack, and acquired knowledge on the
attacker’s identity (retaliate and restart).

5. One or more attackers have gained the secret but the attack has
not been detected (security failure).

4.3. Priorities and Attacker Strategies
The strategy he employs determines to what extent the goals of a
competitive attacker can be accomplished. The foundation of an
attacker’s strategy is the way he weighs the different success factors
to configure his own success criterion: the priorities with which an
attacker is configured make up the “attacker’s personality.” Let us
examine two concrete cases as examples.

4.3.1. Contact Information for Social Engineering
Consider a network environment in which each data are sensitive
and can yield a profit. Here, we consider privacy violations in
which attackers can acquire contact information of individuals
with particular characteristics (e.g., influential, rich, or informed);
attackers wish tomake use of the contacts either to engage in social
engineering or in telemarketing.

The bonus associated to exclusive access to the secret is
expressed in terms of a secondary resource, such as the waiting
time before the line is free or the time necessary to gain the victim’s
trust in social engineering. If others are attempting to do the same,
the attacker has to invest more effort. The secondary resource can
be more or less precious; in telemarketing, it is worth very little,
whereas for social engineering practices, such as identity theft, it
is important that the victim not be alarmed.

In this scenario, the cost of uncertain or wrong information
can range from extremely high to near-zero. If a telemarketer
is not certain of which of the n messages contains a candidate’s
phone number, he can simply try them all, at the cost of a phone
call’s time each. However, social engineering may demand a large
personal investment in terms of time and effort for each victim.
When an attacker in this scenario successfully acquires a secret
without uncertainty, he has realized a gain; clearly, he will try to
do so asmany times as possible.What wewish to emphasize is that
succeeding in any one given run is worth something per se in the
eyes of the attacker.

The prioritization of success factors typical of an aggressive
attacker (fit for the situation we have described) is:

F1 or F2 > F5 > F6 or F7 > F3 or F4

where on the left, we find the highest priority; for as long as the
goals in the lower priorities are reachable, attackers will pursue
them – disregarding all actions that could lead to pursuing lesser
goals at the expense of higher-priority ones. Although priori-
ties may be changed dynamically within a sequence of protocol
runs, in the scenario, we have described that attackers have no
convenience in switching to other strategies.

4.3.2. Access to Project Documentation in Industrial
Espionage
For a more cautious attacker, gaining the credentials to access the
network environment of the target industry required a consider-
able prior effort. It is thus a priority for attackers to avoid needing
new credentials: attackers have a vested interest in avoiding detec-
tion, most notably by honest agents, as they could report to the
system administrator.

Consider the case in which keys protected by the protocol
are used to encrypt individual digital documents containing the
design documentation of a large project, e.g., the plans for a car,
a helicopter, a system made of multiple ad hoc components. It is
acceptable to succeed in acquiring the secret key only sometimes,
for as long as the possibility is kept open to continue attacking the
protocol.

In industrial or military espionage, even scraps of information
are worth it. Breaking a single protocol run is only partial success,
in that it gives access to a small part of the documentation. The
goals are fully met when the number of stolen pieces rises: the
attacker can then progressively build the bigger picture.

A second factor to consider is that monitoring the progress
of the project can lead to identifying the moment in which one
is willing to risk his cover to attempt gaining conclusive or key
information, switching to the strategy of an aggressive attacker.
Cautiousness is meant to preserve the possibility of acquiring
information aggressively in the future.

The cost of uncertainty on information is extremely limited:
if in doubt on which one is the decryption password for a given
document, try themall. The cost is so low that factors F2 andF4 are
not even a priority. The success criterion of a cautious attacker is:

F5 > F1 > F6 > F3 or F7

5. Defending Vulnerable Protocols
Against Attacks

As shown in the case studies, we considered here and in our
other papers, in competitive scenarios with equal-opportunity, it
is not possible for an attacker to ensure that an attack is successful
under all circumstances. The outcome depends on the strategy
and knowledge conditions of all the active agents, on the visibility
of erased messages to other attackers (canSee ̸= {E1, E2}) and on
protocol-specific features.

The presence of an independent active attacker constrains the
success of otherwise sure-fire attacks, so, to make use of the
emergent interference between concurrent attacks, it is necessary
to ensure that attacks mounted by an attacker are immersed in
a competitive environment. To this end, we can construct an
additional non-malicious attacker, who carries out attacks against
the protocol, discards the data acquired during the protocol run
(whenever he acquires any), and reasons on the basis of what he
can observe, to assist honest agents in detection tasks.

The presence of a non-malicious agent that behaves as an
attacker can be exploited to facilitate detection of attacks against
vulnerable protocols. Honest agents should not, in principle, be
informed of the specific attack trace to which they are vulnerable.
Hence, if honest agents can perform detection at all, it should be

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 1112

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

on the basis of flags that are independent of the specific attack
trace and, in general, of the protocol in use. Such flags encode local
defense criteria and can be as simple as realizing that no answer
has arrived within a time considered reasonable or realizing that
two (different) answers have been sent in response to a single
request.

The basic idea is constructing a network agent that causes
protocol-independent flags to be raised, via deliberate interfer-
ence with ongoing attacks. Such a guardian agent is formally an
attacker and can therefore be configured with knowledge of the
attack trace(s). By using such an ad hoc competitor as defense,
it is possible, in some cases, to allow detection of otherwise-
undetectable attacks. If no flag is raised forA, the guardianmay be
the only attacker at work. In this case, no ill-intentioned attacker
has successfully concluded an attack; from the standpoint of A,
actual security is not affected. A guardian is a practical solution
even when it is not all-powerful: any attack detected by A thanks
to the guardian’s active presence is an improvement in security. It
is not necessary to demand that the guardian monitor all traffic,
which is unrealistic at best; on the other hand, all monitored traffic
enjoys partial protection.

Attacks failing are, by themselves, markers that there are other
dishonest agents at work; this fact can be used by the guardian
G as a basis for further detection, possibly on behalf of honest
agents. Then guess-and-test strategies can be used to acquire an
understanding of the second attacker’s identity.

Guardians are introduced as means to implement active
defenses. Although their presence is beneficial to honest agents,
guardian agents are formally attackers and are configurable as
such. As we have seen in Section 4.3, attackers can have different
concrete takes onwhich features of the information are important;
because of the specific ways attackers intend to use the infor-
mation, they will treat differently the success factors. The two
tasks entrusted to a guardian are defending data and discovering
malicious agents, so as to be better equipped to defend data in
later protocol runs. Any attacker who is unwilling (or incapable)
to exploit the data protected by the protocol (e.g., M in SRA3P)
can serve as a guardian, because by its presence, he induces
interference and mitigates the success of malicious attackers. Just
like attackers come in different flavors, guardians can also have
different “personalities.”

For concreteness, let us discuss how a guardianmay be effective
with respect to the factors presented in Section 4.2. The highest
priority is F3: exclusive access to the data protected by the protocol
means that no competitors can succeed in violatingA’s communi-
cations. Detection of competitors (F7) is also important, because
knowledge of their presence or identity helps in establishing the
dominance that is needed for exclusivity, and thus contributes
to better performance in subsequent runs. For F4: if it is not
possible to dominate the competitors, the guardian will at least
strive to make competitors pay the consequences of uncertainty.
Finally, F6: avoiding detection so that competitors cannot attempt
to circumvent the effectiveness of the guardian. All the other
factors are irrelevant in the decisional processes of a guardian.

Table 9 shows the effects of introducing a guardian G
for SRA3P, configured as one of the competitive attackers
described in the case study. Compared to the guardian for BME

TABLE 9 | Effects of introducing a guardian G for SRA3P when attacker E is
active.

canSee Case 2 Case 3 Cases 1+++4,5,6 Cases 4,5,6
E∈∈∈AttendG G∈∈∈AttendE

{E, G} ~+ √
~

{G}
√ √ √ √

{E} ~+ √
~

G’s active interference results in E failing to acquire the secret (
√
), in being sometimes

uncertain (~) or in being always uncertain (~+).
G operates according to the same strategy as the attackers in the corresponding case
study. G is progressively more effective the more his beliefs and knowledge reflect the
actual set of attackers. G can be effective even when he is not aware of E’s presence.

TABLE 10 | Effects of introducing a guardian G for BME when attacker E is
active.

canSee
step (3)

Cases 1,3,4,6 Case 2 Cases 5:
E∈∈∈AG

Case 5:
G∈∈∈AE

{E, G} ~+ √ √

{G}
√ √ √ √

{E} ~+ √ √

G operates according to the same strategy as the attackers in the case study. G’s active
interference results in A detecting attacks always (

√
), sometimes (~), always if A commits

to listening after step (3) (+). The guardian is progressively more effective the more his
beliefs and knowledge reflect the actual set of attackers. G can be effective even when he
is not aware of E’s presence.

(Table 10) shows the results of Fiazza et al. (2011a,b), a guardian
for SRA3P appears to be less effective, in that it prevents E from
successfully carrying out his attack in fewer cases. However, it
must be noted that SRA3P is a much harder protocol to defend
because it does not entail that attacker success is mutually exclu-
sive. Remarkably, G can be effective even when he is not aware
of E’s presence. The effectiveness of a guardian for SRA3P is
comparable to the case of BME, if honest agents can detect and
mount retaliatory attacks whenever attackers guess the wrong
secret and use it to communicate with honest agents.

We refer to our other publications for discussions on how
to construct guardians for other protocols and where to place
guardians in network configurations.

6. Conclusion and Future Work

With vulnerable protocols, in a single-attacker situation, there is
no protocol-independent indicator that could be used by honest
agents to become aware that security has been compromised. If
there is a single attacker, no simple defense is possible and the
protocol inevitably fails its security goals. On the other hand,
by deploying an additional ad hoc competitor (the guardian) as
defense, in certain conditions, we can successfully raise protocol-
independent indicators of ongoing attacks and protect the system.
Introducing an appropriate guardian procedure as soon as new
attacks are discovered canmitigate the consequences of vulnerable
protocols still being in use.

Along the line of work presented in this paper, we have
extended the investigation of the SRA3P protocol, which differs
significantly fromBME in that success is not necessarily exclusive.
The goal of this additional investigation is to bring into focus

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 1113

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Fiazza et al. Defending vulnerable security protocols

how the salient features of each protocol are reflected in the
possible mechanisms of interference and thus in the identification
of potential attacks and in the development of defenses against
such attacks.

Our case studies show that in a non-collaborating two-attacker
scenario, it is possible to build a defense against an attack that was
not possible in the standard one-attacker scenario. This statement
is the counterpart of the classical result on n-to-1 reducibility
for collaborating attackers, and the counterexamples show that
exhaustive searches for (guardian-based) defenses cannot be car-
ried out in reduced-complexity settings, as they require at least two
attackers.

In our publications so far, we have formalized a framework for
non-collaboration, described the notion of competitive attacker,
shown a number of results on concurrent attacks giving rise
to interference, delineated a strategy for defending protocols,
and presented results on the effectiveness of a network guardian
configured as a competitive attacker.

We are currently working at applying our approach for the
analysis of more complex security protocols and properties than
those we considered here. We are also working at implementing

our approach. One of the key issues is how to systematically
generate competitive attack behaviors, given a vulnerable protocol
and a base (“classical”) attack. In the case studies we have explored
so far, this step was addressed by taking the point of view of an
attacker and observing our reasoning. The ability to construct
competitive attack behaviors rests on our intuitive understanding
of key features in both the protocol and the attack, as well as on
our ability to reason at a high level of abstraction to anticipate
the consequences of an action. For a successful implementation,
we plan, as we proposed in Fiazza et al. (2011c, 2012), to recruit
techniques from AI and robotics (fields that traditionally have a
complex notion of agent) and to identify network topologies that
allow for effective guardians as we started doing in Peroli et al.
(2014).

Acknowledgments

This work was partially supported by the EU FP7 Project no.
257876, “SPaCIoS: Secure Provision and Consumption in the
Internet of Services” (www.spacios.eu), and by the PRIN 2010-
2011 Project “Security Horizons”.

References
Arsac, W., Bella, G., Chantry, X., and Compagna, L. (2009). Validating Security

Protocols Under the General Attacker, in ARSPA-WITS, Vol. 5511. York, UK:
Springer, LNCS, 34–51.

Arsac, W., Bella, G., Chantry, X., and Compagna, L. (2011). Multi-attacker protocol
validation. J. Automat. Reas. 46, 353–388. doi:10.1007/s10817-010-9185-y

Basin, D., Caleiro, C., Ramos, J., and Viganò, L. (2011). Distributed temporal logic
for the analysis of security protocol models. Theor. Comp. Sci. 412, 4007–4043.
doi:10.1016/j.tcs.2011.04.006

Basin, D., Capkun, S., Schaller, P., and Schmidt, B. (2009). Let’s get Physical: Models
and Methods for Real-World Security Protocols, in TPHOLs, Vol. 5674. Munich:
Springer, LNCS, 1–22.

Bella, G., Bistarelli, S., and Massacci, F. (2003). A Protocol’s Life After Attacks, in
Security Protocols XI, Vol. 3364. Cambridge, UK: Springer, LNCS, 3–18.

Bella, G., Bistarelli, S., and Massacci, F. (2008). Retaliation against protocol attacks.
J. Inform. Assur. Secur. 3, 313–325.

Boyd, C., and Mathuria, A. (2003). Protocols for Authentication and Key Establish-
ment. Springer. doi:10.1007/978-3-662-09527-0

Caleiro, C., Viganò, L., and Basin, D. (2005).Metareasoning about security protocols
using distributed temporal logic. Electron. Notes Theor. Comput. Sci. 125, 67–89.
doi:10.1016/j.entcs.2004.05.020

Caleiro, C., Viganò, L., and Basin, D. (2006). On the semantics of Alice & Bob
specifications of security protocols. Theor. Comp. Sci. 367, 88–122. doi:10.1016/
j.tcs.2006.08.041

Carlsen, U. (1994). Cryptographic Protocol Flaws, in CSFW-7. Franconia, NH: IEEE
CS, 192–200.

Clark, J., and Jacob, J. (1997).A Survey of Authentication Protocol Literature: Version
1.0. Citeseer.

Comon-Lundh, H., and Cortier, V. (2003). Security Properties: Two Agents are
Sufficient, in ESOP, Vol. 2618. Warsaw: Springer, LNCS, 99–113. doi:10.1016/
j.scico.2003.12.002

Dolev, D., and Yao, A. C. (1983). On the security of public key protocols. IEEE Trans.
Inform. Theory 29, 198–208. doi:10.1109/TIT.1983.1056650

Fiazza, M.-C., Peroli, M., and Viganò, L. (2011a). Attack Interference: A Path to
Defending Security Protocols, in E-Business and Telecommunications, Vol. 314.
Seville: Springer, CCIS, 296–314. doi:10.1007/978-3-642-35755-8_21

Fiazza, M.-C., Peroli, M., and Viganò, L. (2011b). Attack Interference in Non-
Collaborative Scenarios for Security Protocol Analysis, in SECRYPT. Seville:
SciTePress, 144–156.

Fiazza,M.-C., Peroli, M., andViganò, L. (2011c). Security Protocols as Environments:
A Lesson from Non-collaboration, in TrustCol. Orlando: IEEE CS Press.

Fiazza, M.-C., Peroli, M., and Viganò, L. (2012). An Environmental Paradigm for
Defending Security Protocols, in CTS. Denver, CO: IEEE, 427–438. doi:10.1109/
CTS.2012.6261087

Peroli, M., Viganò, L., and Zavatteri, M. (2014). Non-Collaborative Attackers and
How and Where to Defend Flawed Security Protocols (Extended Version), in
Security Protocols XXII. Cambridge, UK: Springer, 69–90.

Schaller, P., Schmidt, B., Basin, D., and Capkun, S. (2009). Modeling and Verifying
Physical Properties of Security Protocols for Wireless Networks, in CSF. Port
Jefferson, NY: IEEE CS.

Syverson, P., Meadows, C., and Cervesato, I. (2000). Dolev-Yao is No Better than
Machiavelli, in WITS. Geneva. Available at: http://www.dsi.unive.it/IFIPWG1_
7/wits2000.html

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Fiazza, Peroli and Viganò. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in ICT | www.frontiersin.org August 2015 | Volume 2 | Article 1114

www.spacios.eu
http://dx.doi.org/10.1007/s10817-010-9185-y
http://dx.doi.org/10.1016/j.tcs.2011.04.006
http://dx.doi.org/10.1007/978-3-662-09527-0
http://dx.doi.org/10.1016/j.entcs.2004.05.020
http://dx.doi.org/10.1016/j.tcs.2006.08.041
http://dx.doi.org/10.1016/j.tcs.2006.08.041
http://dx.doi.org/10.1016/j.scico.2003.12.002
http://dx.doi.org/10.1016/j.scico.2003.12.002
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1007/978-3-642-35755-8_21
http://dx.doi.org/10.1109/CTS.2012.6261087
http://dx.doi.org/10.1109/CTS.2012.6261087
http://www.dsi.unive.it/IFIPWG1_7/wits2000.html
http://www.dsi.unive.it/IFIPWG1_7/wits2000.html
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

	Defending vulnerable security protocols by means of attack interference in non-collaborative scenarios
	1. Introduction
	1.1. Context and Motivation
	1.2. Contributions

	2. Models: Network, Agents, Attitude
	2.1. Goals of Modeling and Approach
	2.2. Agent Model
	2.3. Network Model

	3. A Case Study
	3.1. The Shamir–Rivest–Adleman Three-Pass Protocol
	3.1.1. Attacker Configuration and Outcomes of Interaction

	3.2. The General Case for SRA3P

	4. Lessons Learned
	4.1. Some General Comments
	4.2. Success Criteria for Competitive Attackers and Honest Agents
	4.3. Priorities and Attacker Strategies
	4.3.1. Contact Information for Social Engineering
	4.3.2. Access to Project Documentation in Industrial Espionage

	5. Defending Vulnerable Protocols Against Attacks
	6. Conclusion and Future Work
	Acknowledgments
	References

