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Measuring C and N stable isotopes at natural abundance can provide information on the

role of fungi associated with litter decay in the nutrient cycle of freshwater ecosystems.

However, uncertainty regarding isotopic fractionation by decomposer fungi during uptake

or metabolic turnover is a serious limitation, weakening the description of taxon-specific

ecological differences in nutrient transfer in aquatic detritus-based systems. We per-

formed two laboratory experiments to assess C and N isotopic changes during leaf litter

colonization by: (1) mixed fungal communities on three different leaf litter species, and (2)

four different fungal strains growing on the same leaf litter. Our approach served to

decouple the isotopic effects of different fungal taxa from those arising from structural

changes occurring in leaf litter during decomposition. N isotopic changes were directly

related to fungal biomass accrual on litter, whereas carbon isotopic changes were mainly

dependent on the remaining lignin fraction. Isotopic mixing model equations enabled us to

calculate strain-specific isotopic fractionation, indicating that fungi were enriched in 15N

by 3.6e5.9& with respect to bulk N litter.

ª 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction temperature (Sabetta et al., 2000; Koide and Malcom, 2009;
Fungi play a fundamental role in N and C cycles in ecosys-

tems. By promoting nutrient circulation between different

ecosystem compartments, they are important contributors to

overall ecosystem functioning and productivity. Fungi asso-

ciatedwith litter-decay in lotic systems represent a key step in

the transition from primary production to detritus-based

systems (Moore et al., 2004), playing a critical role in nutrient

transfer between terrestrial and freshwater environments.

Fungal biomass and growth depend on the availability and

quality of substrates, as well as on water chemistry and
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Boberg et al., 2011; Calizza et al., 2012; Sterflingler et al.,

2012; Jabiol et al., 2013). Decomposer fungi are predominant

contributors to leaf litter-based food-webs, representing

70e99% ofmicrobial biomass on decomposing leafmaterial in

freshwaters (Kuehn et al., 2000; Hieber and Gessner, 2002).

Fungal colonisation modifies the attractiveness and palat-

ability of detritus for detritivores (Rossi et al., 1983;

Suberkropp, 1992; Asplund and Wardle, 2012) and influen-

ces, both directly and indirectly, litter decomposition rates

and nutrient recycling, depending on species identity and

interactions (B€arlocher, 1985; Costantini and Rossi, 2010;
i@uniroma1.it (M.L. Costantini).

an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:marialetizia.costantini@uniroma1.it
mailto:loreto.rossi@uniroma1.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.funeco.2014.05.008&domain=pdf
www.sciencedirect.com/science/journal/17545048
http://www.elsevier.com/locate/funeco
http://dx.doi.org/10.1016/j.funeco.2014.05.008
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.funeco.2014.05.008
http://dx.doi.org/10.1016/j.funeco.2014.05.008


Stable isotope variation during fungal colonisation 155
Cabrini et al., 2013; Calizza et al., 2013a). The physiology and

feeding ecology of litter-associated fungi are, thus, key factors

to understanding nutrient cycling and ecosystem functioning

at the terrestrial-aquatic interface.

A useful technique to assess the role of fungi in C and N

dynamics is to measure stable isotopes at natural abundance

(Mayor et al., 2009; Hobbie and H€ogberg, 2012). Due to differ-

ences in isotopic composition between various natural com-

pounds, the isotopic signature of fungal biomass can provide

information on the substrates used by fungi (Gebauer and

Taylor, 1999; Hobbie et al., 2004, 2012). Specifically, the N

stable isotope ratio (15N/14N, expressed as d15N) differs

between organic and inorganic N sources and between dif-

ferent N forms (Takebayashi et al., 2010; Hobbie et al., 2012),

making it possible to clarify internal N transformations and

fungal discrimination between different available N pools. In

the same way, there are differences in the C stable isotope

ratio (13C/12C, expressed as d13C) between different plant litter

compounds, and differences can arise following carbon

incorporation into different fungal structural compounds

(Hobbie, 2005; Hobbie et al., 2012). For instance, cellulose is

richer in 13C than lignin (Benner et al., 1987; Ngao and Cotrufo,

2011), and chitin has less 13C than proteins (Hobbie et al.,

2012). However, the interpretation of natural N and C iso-

topic patterns is still limited by a number of considerations.

Species-specific differences in isotopic fractionation (i.e. dis-

crimination against one stable isotope during substrate

transformation) during uptake or internal reactionswithin the

fungi could, potentially, complicate the use of stable isotopes

at natural abundance. Limited knowledge of these differences

makes it hard to infer the role of fungi in ecosystem nutrient

cycles and to detect taxon-specific ecological differences

(Henn and Chapela, 2004; Hobbie and H€ogberg, 2012).

The majority of studies using stable isotopes in fungal

ecology have focused on basidiomycete sporocarps (Griffith,

2004; Hobbie et al., 2001, 2004, 2012; Mayor et al., 2009) and,

to a lesser extent, on fungal communities below ground in

terrestrial environments (Abraham and Hesse, 2003; Lindahl

et al., 2007; Semenina and Tiunov, 2010, Espa~na et al., 2011).

On the other hand, stable isotope-based studies of nutrient

dynamics in freshwaters have focusedmainly on bacteria and

microalgae (Rysgaard et al., 1993; De Brabandere et al., 2002;

McCallister et al., 2004) or addressed the microbial compart-

ment as a whole, with no distinction between fungi and bac-

teria (Peterson et al., 2001; Hall and Tank, 2003; Webster et al.,

2003). Field studies have compared the isotopic signature of

fungi and their principal resources, describing the overall

isotopic enrichment from substrates to fungi and identifying

differences in isotopic patterns between different fungal life

forms (i.e. ectomycorrhizal vs saprotrophic fungi). Laboratory

studies have relied on fungus cultivation on simple growth

media, allowing control over nutrient limitation, nutrient

forms, growth conditions and the isotopic signature of sub-

strates. Nevertheless, important limitations arise when trying

to use laboratory findings to explain observed isotopic pat-

terns in complex natural systems. For instance, N isotopic

fractionation is expected to be higher under non-limiting than

limiting nutrient availability, higher during assimilation of

organic than inorganic N, and higher in liquid than solid

media (Hobbie and H€ogberg, 2012 and literature cited therein).
The impossibility of clearly separating fungal mycelium

from decaying plant tissues in freshwater systems limits the

direct description of isotopic patterns and fractionation

between fungi and their substrates. This makes it hard to

discriminate between the direct effect of fungal biomass and

the effect of structural changes occurring in litter during

decomposition on the isotopic signature of the mycelium-

plant litter mix. Such information would help to interpret

field observations of isotopic patterns and clarify the crucial

role of fungi in the nutrient cycle and nutrient transfer from

litter to detritivores feeding on colonised detritus in fresh-

waters (Rossi, 1985; Costantini and Rossi, 2010; Potapov et al.,

2013). To our knowledge, this is the first experiment

addressing isotopic changes following fungal colonisation of

natural litter in controlled freshwater environments.

To describe isotopic patterns following fungal colonisation

of decaying leaf litter, we analysed the mycelial biomass,

isotopic signal and relative C andN content of leaf litter during

decomposition in freshwater microcosms. We tested the

hypothesis that fungus-driven leaf decomposition is accom-

panied by increased d15N ratio in the colonised substratum,

seeking to determine whether the observed isotopic changes

associated with fungal biomass accumulation on leaf litter

can be decoupled from those associated with structural

changes occurring in leaves during decomposition. We per-

formed two laboratory microcosm experiments using

allochthonous leaf litter and fungi collected from a lake.

Specifically, to test: (1) the effect of leaf type three different

leaf litter species (alder, beech and reed) were incubated with

a natural microbial inoculum; and (2) fungus-specific effects

samples of alder litter were individually inoculated with four

different fungal strains, seeking to determine potential inter-

strain differences in N isotopic fractionation during litter

decomposition.
Materials and methods

Experiment 1. Aquarium microcosms with natural microbial
inoculum: effect of microbial activity on leaf detritus

Senescent leaves of alder (Alnus glutinosa), reed (Phragmites

australis) and beech (Fagus sylvatica) were collected prior to

abscission in late autumn around lake Vico (Viterbo, central

Italy), as these are the most abundant species among the

natural decaying litter. Leaves were air-dried and stored in a

dry room until the beginning of the experiments. In late Jan.,

lake sediments were sampled at 1 m water depth by grab and

interstitial water was extracted by filtration. Three aquaria

containing 150 l of tap water (sterilised by filtration) and 60

leaves per plant species per aquariumwere inoculated with 2 l

of the lake sediment interstitial water to start the microbial

colonisation of leaves in the aquaria. Water temperature was

maintained at 15 � 0.5 �C, which corresponded to the lake

water temperature at the time of sediment collection. The

aquaria were aerated using a continuous-flow air pump sup-

plying filtered air (1 mm). Twenty leaf disks (9 mm Ø) from 5

leaves of each plant species per aquarium were randomly

sampled at 7, 21, 35 and 56 d to assess leaf mass loss, ergo-

sterol concentrations (reported as mg of ergosterol per gram of
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leaf litter), lignin content (%), C/N values and C and N stable

isotope signatures (d13C and d15N; see Analysis of samples

section). Leaf-disks were sampled from different leaves at

each sampling time. Before incubation, leaves were first

leached for 36 hr in sterile flasks and then sterilised by auto-

claving (at 120 �C for 20 min). Twenty leaf disks were cut from

leaves at the time of collection and after leaching, in order to

determine initial reference values and the effects of leaching

on dry mass, C/N values, lignin content and d13C and d15N for

each plant species. To unambiguously quantify the effect of

fungi on the observed results, bacterial growth was inhibited

with streptomycin sulphate (Bayer) (25 ml l�1) and Oxy-

tetracycline Hydrochloride in liquid form (Pfizer Limited)

(25 ml l�1), which are known to inhibit bacterial growth while

not affecting fungal activity (Anderson and Domsch, 1973;

Beare et al., 1992). Pre-trial tests showed that this mix reli-

ably inhibited bacterial activity in our microcosms. To mon-

itor unintended fungal effects on leaf isotopic signature, three

control aquaria were set up as described above but with no

addition of lake sediment interstitial water, and ergosterol

concentration, d13C and d15N were measured after 21 and 56 d.

Experiment 2. Effect of different fungal strains on alder litter

Four fungal strains were isolated from lake Vico littoral detri-

tus using particle plating and dilution techniques (Rossi et al.,

1983; Calizza et al., 2013a): Cladosporium cucumerinum, Tricho-

derma sp., Gliocladium sp. and Penicillium purpurogenum. Each

strain was grown on liquid agar-malt-extract for 8 d at
d15N fungus ¼ ½ðd15N colonised litter � d15N controlÞ=ðfungal biomass per gram of leaf litterÞ� � ðd15N controlÞ;
15 � 0.5 �C and then individually inoculated into 250 ml

Erlenmeyer flasks containing 140ml of sterile tapwater and 80

leaf disks (9 mmØ) of alder, previously weighed and sterilised

by autoclaving (at 120 �C for 20min). For each of the four fungal

strains, 8 flasks were inoculated by adding 10 ml of a suspen-

sion of pure fungal strain. A further 8 flasks containing water

and leaf disks were not inoculated and used as controls. To

assess mass loss, ergosterol concentrations, lignin content, C/

N and d13C and d15N, leaf disks were analysed at the start, after

36 hr of leaching but before autoclaving, and at 3, 7, 14 and 22 d

after inoculation, at each sampling occasion collecting all leaf

disks from two inoculated flasks per fungal strain and two

control flasks. Suchprocedure limited thenumberof replicates

per sampling time for each fungus treatment, but avoided

pseudoreplication, and was preferred in order to test our

hypotheses bymeans of a linear correlative approach. As with

the first experiment, bacterial growth within flasks was

inhibited by the use of streptomycin sulphate (Bayer) and

Oxytetracycline Hydrochloride in liquid form (Pfizer Limited).

Analysis of samples

Leaf mass loss and ash free dry matter as a percentage (AFDM

%) were assessed after oven-drying (at 60 �C for 72 hr) and

burning (at 550 �C for 6 hr), respectively. Biomass loss was
estimated as:Wt ¼W0 e
ekt (Olson, 1963), whereWt ¼ leaf mass

at time t, W0 ¼ leaf mass at start, and k ¼ decomposition rate.

Lignin content was determined by the NaClO2 method (Rahn

et al., 1999) using 0.2 g of leaf disks. Ergosterol was extracted

using the reflux in methanol method according to Sabetta

et al. (2000) and analysed by HPLC (Waters 996 spectrometer

and column reversed-phase mBondapak C18 at 280.5 nm).

Ergosterol concentration was converted into fungal biomass,

using a conversion factor of 5.5 mg ergosterol g�1 fungal dry

mass in accordance with Gessner and Chauvet (1993).

The stable isotope signatures and relative C and N content

of leaf litter were determined in a Elementar vario-MICRO

CUBE analyser (Elementar, Hanau, Germany) coupled with

an Isoprime 100 mass spectrometer (Isoprime Limited, Chea-

dle Hulme, UK), operating as a continuous flow system.

Samples were dried and powdered (Post, 2002); for each

sample, 0.800 � 0.001 mg of lyophilised powder was intro-

duced into tin capsules for solids (3.5 � 5 mm). The outputs

were standardised with caffeine. All samples were analysed

twice and values were averaged. Isotope values are expressed

as d13C and d15N with units of &, in accordance with the fol-

lowing equation: dX(&) ¼ [(Rsample � Rstandard)/Rstandard] � 103,

where X ¼ 13C or 15N, and R ¼ 13C/12C or 15N/14N (Ponsard and

Arditi, 2000; Vander Zanden and Rasmussen, 2001). Reference

standards were PeeDee Belemnite carbonate for d13C and

atmospheric N2 for d
15N (Peterson and Fry, 1987).

In the second experiment, the d15N of fungal biomass for

each fungal strain was calculated in accordance with the fol-

lowing mixing model:
where the control is the non-inoculated litter.

N isotopic enrichment of each fungal strain at each sam-

pling occasion was then obtained as: d15N fungus � d15N

control.

Data analysis

As the lignin content of decaying litter was always found to be

strongly related to changes in other structural components of

litter, i.e. hemi-cellulose, alpha-cellulose, dry weight and ash

freedrymass (AFDM) (FigS1), andas the lignin fractionhas been

shown to affect the carbon isotopic ratio of decaying leaf

material (Benneretal., 1987),weheremakereferencetochanges

in lignin content, considering this a good indicator of changes in

the structural properties of leaf litter during the experiments.

We considered themodel with the lowest Akaike’s Information

Criterion (AIC) (Akaike, 1976, 1981) as the best model of fit for

changes in lignin and the other parameters under study. The

extensive description of model selection is included in the on-

line supplementary material (Tables S1 and S2).

The three null hypotheses of no relationship between (a)

ergosterol concentration (as a proxy for fungal biomass) and

d15N, (b) C/N and d15N, and (c) lignin content (as a proxy for leaf

structural changes) and d13C, were tested by means of linear

regression with n ¼ 18 for single leaf species (3 aquaria � 6
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sampling times) and n ¼ 54 for entire dataset (18

observations� 3 leaf litter species) in experiment 1, and n¼ 12

for single fungal strains (2 flasks � 6 sampling times) and

n ¼ 60 for entire dataset (12 observations � 5 treatments) in

experiment 2. The paired t-test was applied to test for a sig-

nificant effect of fungi (i.e. the mean effect observed between

the four fungal strains with respect to the control) on lignin

and isotopic signatures of decaying litter. Two-way ANOVA

was applied to test the effect of time and aquaria and their

interaction on the % of lignin, d13C, d15N and C/N for each leaf

litter species. As time had a significant effect in most cases,

two-way ANCOVA, with time as covariate factor, was applied

to test the effect of leaf species and aquaria and their inter-

action. In the cases where time had no significant effect, two-

way ANOVA was applied to test these effects. Values in the

text and in figures are shown as mean � standard error.
Results

Experiment 1: effect of leaf type

Alder, beech and reed leaves had different initial biochemical

characteristics, which changed differently during decom-

position (Table 1). Leaf litter ergosterol concentration in all

three leaf species followedaparabolic trend,peakingafter 21d,

though fungal growth was very slow during the first week in

reed (Fig S2 and Table S1). Leaf mass decreased exponentially

in all leaf types during the experiment, litter half-life being

38.5 d in reed, 31.5 d in beech and 28.8 d in alder, corresponding

to significantly different decomposition rates (ANCOVA and

Homogeneity of Slopes Test, F ¼ 13.6 p < 0.0001) (Table 1).

All parameters under study differed significantly between

leaf litter species and among sampling times, with the only

exception of the d15N in reed and d13C in alder. Neither sig-

nificant differences between aquaria, nor significant inter-

action effects (i) between aquaria and time, and (ii) between
Table 1 e Biochemical characteristics of leaf species

P. australis F. sylvatica A. glutinosa

% AFDM at start 83.0 � 2.3a 92.0 � 1.2b 94.8 � 0.9b

% Soluble

substance

at start

14.2 � 1.1a 19.3 � 5.5b 25.4 � 1.7b

% Lignin at start 18.2 � 0.8a 24.7 � 1.7b 32.6 � 2.5c

% Hemi-cellulose

at start

42.6 � 2.8a 34.6 � 7.9b 22.7 � 2.1b

% Alpha-cellulose

at start

19.8 � 2.3 12.5 � 0.9 13.0 � 2.9

Olson’s K (day�1) 0.018 0.022 0.024

C/N at start 18.0 � 1.0 21.0 � 0.6 18.6 � 0.2

C/N at end 14.9 � 0.1a 11.9 � 0.7b 11.5 � 1.1b

d15N at start (&) 3.7 � 0.6a �2.7 � 0.1b �1.1 � 0.1c

d15N at end (&) 4.7 � 0.6a �1.2 � 0.5b �0.5 � 0.2b

d13C at start (&) �25.1 � 0.2a �31.3 � 0.3b �29.7 � 0.4c

d13C at end (&) �27.2 � 0.1a �32.5 � 0.1b �29.4 � 0.3c

Different superscript letters (a, b, c) indicate significant differences

between leaf species (One-way ANOVA and post-hoc comparison

p < 0.05).
aquaria and leaf litter species were observed (Table S3 and

Table S4). In particular, the starting isotopic signals of leaf

species differed (Table 1) and showed species-specific varia-

tions during decomposition (Fig 1 and Table S1). Initial d13C

was highest in reed, followed by alder and beech (Table 1). d13C

decreased linearly during the course of the experiment in reed

and beech, but followed a parabolic trend in alder (Fig 1 and

Table S1). Overall, d13C was negatively correlated with leaf

tissue lignin content ( y ¼ �0.07x � 26.7, adjusted r2 ¼ 0.19,

n¼ 54, p¼ 0.004), which increased during decomposition in all

leaf species (Fig S3 and Table S1).

d15N values were higher in reed than in the other two leaf

species (Table 1), but the difference between initial and final

values was not significant and no clear temporal trend was

observed (Fig 1 and Table S1). In contrast, d15N increased
Fig 1 e Changes in d13C and d15N during litter

decomposition by a mixed fungal community colonising

three different leaf litter species. Open symbols: Phragmites

australis; black symbols: Alnus glutinosa; grey symbols:

Fagus sylvatica. d15N values of P. australis are shown on the

right vertical axis. Each circle represents the mean value

(±s.e.) between three inoculated aquaria. Rectangles

indicate mean values (±s.e.) of non-inoculated leaf litter at

start (0 d) and after leaching (set on 1.5 d), and at 21 d and

56 d in control aquaria. Best model of fit is shown for each

parameter and each leaf species (see Table S1 for model

details). Models do not refer to control aquaria.
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during decomposition in beech and alder (Fig 1 and Table S1),

the fastest increase being between 7 and 21 d. d15N was pos-

itively correlated with ergosterol concentration in both beech

and alder, but not in reed (Table 2). In the same way, d15N was

negatively correlated with C/N in alder and beech, but not in

reed (Fig 2). In turn, C/N values were negatively correlated

with ergosterol concentration for all leaf species (Table 2). C/N

variation patterns are shown in Fig S3 and Table S1.

Ergosterol in the leaves was not detected at 21 d and was

negligible at 56 d in control aquaria. d13C and d15N of leaf litter

after 21 and 56 d were not significantly different from the

values observed after the leaching (Fig 1; one-way ANOVA,

p > 0.05 in all cases).

Experiment 2: effect of single fungal strains on alder leaf
disks

Ergosterol concentration in alder leaf disks increased during

decomposition following a parabolic pattern with all fungus

strains except C. cucumerium, with which it increased linearly

(Fig S2 and Table S2). Ergosterol was detected later and at lower

values with Trichoderma and Penicillium than with Gliocladium

andCladosporium (FigS2), andwas absent in control treatments.

The decomposition rate (k) ranged from 0.006 d�1 in the pres-

ence of P. purpurogenum to 0.013 d�1 in the presence of C. cucu-

merinum (Table 3), and was positively correlated with mean

ergosterol concentration in leaf disks during decomposition

( y ¼ 0.4*10�4x � 1.4*10�3 adjusted r2 ¼ 0.89, n ¼ 5, p ¼ 0.01).

On average, the d13C of leaf disks in the presence of fungi

was significantly lower than the control (Fig 3; paired t-test

t ¼ 3.5, n ¼ 4, p ¼ 0.04) and did not vary significantly with time

after leaching. By contrast, the d13C of leaf disks was neg-

atively correlated with lignin content ( y ¼ �0.08x � 26.79,

adjusted r2 ¼ 0.35, n ¼ 60, p < 0.0001), which varied in the

presence of Cladosporium and Gliocladium but not with Pen-

icillium and Trichoderma (Table S2 and Fig S3). Overall, lignin

content in leaf disks was positively correlated with ergosterol

concentration ( y ¼ 0.01x þ 32.95, adjusted r2 ¼ 0.28, n ¼ 60,

p < 0.001). On average, lignin content across sampling times

was higher than the control (paired t-test t ¼ 3.7, n ¼ 4,

p ¼ 0.035).

d15N varied during decomposition following a parabolic

trendwith all fungus strains except C. cucumerium, with which

it increased linearly during the experiment (Fig 3 and
Table 2e Relationships between ergosterol concentration
(mg gL1) and (i) d15N (&) and (ii) C/N of leaf litter during
decomposition

Model d.f. Adjusted r2 p value

(i)[Ergosterol](x) vs d15N ( y)

P. australis y ¼ �0.0003x þ 4.40 16 0.06 n.s.

F. sylvatica y ¼ 0.0011x � 1.05 16 0.38 **

A. glutinosa y ¼ 0.0035x � 2.36 16 0.41 **

(ii)[Ergosterol](x) vs C/N ( y)

P. australis y ¼ �0.0043x þ 18.04 16 0.27 *

F. sylvatica y ¼ �0.0155x þ 19.51 16 0.39 **

A. glutinosa y ¼ �0.0141x þ 16.41 16 0.47 **

n.s.: p > 0.05,*: p < 0.05,**: p < 0.01.
Table S2). d15N increased during the first week even in the

absence of fungi, butmean values across sampling timeswere

higher with than without fungi (paired t-test t ¼ 4.8, n ¼ 4,

p ¼ 0.016).

Specifically, the d15N values of leaf disks were positively

correlated with ergosterol concentrations with all fungus

strains except P. purpurogenum (Table 3). In addition, the

magnitude of change in the d15N of leaf disks during decom-

position (i.e. final d15N � initial d15N) was directly correlated

with mean ergosterol concentration over the 22 d of the

experiment ( y ¼ 1668.1x � 1319.2, adjusted r2 ¼ 0.83, n ¼ 5,

p ¼ 0.02) (Table 3). As observed in experiment 1, the d15N of

colonised leaf disks was negatively correlated with C/N values

for all fungus strains (Fig 2). In turn, C/N during decomposition

was negatively correlated with ergosterol concentration

( y¼�0.0025xþ 14.74, adjusted r2¼ 0.18, n¼ 60, p¼ 0.002). C/N

variation patterns are shown in Fig S3 and Table S2.

The application of mixing model equations to the d15N

values of colonised leaf disks compared with control disks

allowed the computation of the d15N of fungal biomass for

each fungal strain (Fig 3). d15N varied from a minimum of

2.3 � 0.5& with Gliocadium sp. to a maximum of 4.6 � 0.1&
with Trichoderma sp., implying an isotopic 15N enrichment in

fungi with respect to non-colonised decaying leaf litter of

3.6 � 0.5& and 6.0 � 0.1&, respectively.
Discussion

During colonisation and decomposition, the d15N varied in

both alder and beech leaves colonised by a mixed fungal

community (experiment 1) and in alder leaf disks colonised by

single fungal strains (experiment 2). The pattern of change

was consistent with that of fungal biomass accrual on

decaying litter and, given the observed patterns, could not be

explained by structural changes occurring in litter during

decomposition. In the first experiment, the steepest increase

in d15N was reported between 7 and 21 d, accompanied by a

peak in fungal biomass. Leaf ergosterol concentration was

significantly correlatedwith d15N in alder and beech, but not in

reed, where d15N did not vary significantly during decom-

position. We reported higher d15N values at intermediate

decomposition times, while structural changes in leaves pro-

gressed continuously, as indicated by the pattern of lignin

content in the remaining leaf material.

The initially delayed but ultimately greater fungal accrual

on reed with lake microbial inoculum, which was not coupled

with a high decomposition rate or an increase in d15N, could be

explained by preferential nutrient uptake from water, which

can represent a complementary nutrient source for fungal

growth on decomposing leaves (Suberkropp, 1998; Tank and

Webster, 1998; Gulis et al., 2008). Indeed, dissolved inorganic

N compounds potentially accumulating in water following

leaching, leaf decomposition and fungal metabolic turnover

are expected to be characterized by lower isotopic values

compared to organic N; moreover, the assimilation of simple

N sources can lead to lower or null isotopic fractionation

compared to more complex organic N forms (Henn and

Chapela, 2004; Takebayashi et al., 2010; Hobbie and H€ogberg,

2012).



Fig 2 e Correlation between C/N and d15N in decomposing litter. Left panel refers to Experiment 1: a mixed fungal

community colonising three different leaf litter species. d15N of Phragmites australis shown on right vertical axis and linear

regressions shown under the graph (n.s. [ not significant correlation, p > 0.05). Right panels refer to Experiment 2: four

different fungal strains colonising alder leaf disks; linear regressions, n [ 12 and p < 0.01 for all fungal strains.
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As for the whole leaves colonised by a mixed fungal com-

munity, the d15N of alder leaf disks increased with ergosterol

concentration during decomposition, and differences

between leaf disks across sampling times were explained by

fungal biomass accrual. Specifically, with Trichoderma sp. and

Gliocladium sp., maximum d15N occurred after 14 and 22 d,

respectively, corresponding to peak fungal colonisation of leaf

disks. Consistent with these results, in both experiments the

relative increase in %N during fungal colonisation of litter was

explained by fungal biomass accrual and was associated with

an increase in d15N, with the sole exception of reed.
Table 3 e (i) Decomposition and biochemical parameters of lea
colonised leaf disks. K: leaf litter decay constant; mean (±s.e.) e
3 d and 22 d; Dd15N: final (22 d) L initial (0 d) d15N; DC/N: final (
concentration (mg gL1) and d15N (&) of inoculated leaf disks du

(i) Treatment K (day�1) [Erg

Cladosporium cucumerinum 0.0135

Trichoderma sp. 0.0126

Gliocladium sp. 0.0324

Penicillium purpurogenum 0.0006

Control 0.0009

(ii) [Ergosterol](x) vs d15N (y) Model

Cladosporium cucumerinum y ¼ 0.0005x � 1.70

Trichoderma sp. y ¼ 0.0011x � 1.60

Gliocladium sp. y ¼ 0.0004x � 1.75

Penicillium purpurogenum y ¼ 0.0004x � 1.63

n.s.: p > 0.05,*: p < 0.05,**: p < 0.01.
Considering these results, the relative increase in %N during

decomposition may be ascribed to the accumulation of 15N-

enriched fungal proteins on the decomposing substratum

(Gebauer and Taylor, 1999; Lindahl et al., 2007; Semenina and

Tiunov, 2010; Hobbie et al., 2012).

Relative 15N enrichment during leaf material processing

has been hypothesised to depend on heterotrophic microbial

metabolism and activity, as well as leaching of labile N from

leaves (Nadelhoffer and Fry, 1994; Adams and Grierson, 2001;

Kramer et al., 2003; Bragazza et al., 2010). In the first experi-

ment, leaching produced no appreciable changes in the d15N
f disks colonised by different fungal strains. Control: non-
rgosterol concentration as recorded on leaf disks between

22 d) L initial (0 d) C/N. (ii) Relationship between ergosterol
ring decomposition

osterol] (mg g�1) Dd15N (&) DC/N

739.8 � 137.6 1.03 �8.56

374.1 � 102.3 1.06 �7.95

1 254.4 � 222.7 1.24 �9.24

465.6 � 193.5 0.92 �6.47

0.0 � 0.0 0.76 �5.74

d.f. Adjusted r2 p value

10 0.58 *

10 0.62 *

10 0.66 **

10 0.38 n.s.



Fig 3 e (A, B) Effect of four different fungal strains on d13C

and d15N values of decomposing alder leaf disks. For the

model and statistical significance of the variation for each

fungal strain see Table S2. (C) d15N of each fungal strain as

calculated by linear mixing models, based on d15N of

colonised leaf disks, fungal biomass per gram of leaf disk

(obtained from ergosterol concentration) and d15N of non-

inoculated (control) leaf disks.
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of whole leaves. Similarly, in the second experiment, d15N

increased by only 0.5& in leaf disks during leaching, but

increased in parallel with ergosterol accumulation after

leaching in all treatments except the control. Thus, further

potential leaching occurring after the 36 hr of the initial con-

trolled leaching step should not be considered relevant to the

observed d15N variations in decomposing litter.

Interestingly, the calculated N isotopic signature of fungal

biomass (d15N) varied from 2.3& for Gliocadium sp. to 4.6& for

Trichoderma sp. Given the lower d15N value of sterile litter, this

implies a preferential 15N accumulation in fungal biomass. This
canbedue to (i) preferential assimilationby fungi of certain leaf

compounds that are relatively rich in 15N, and/or (ii) prefer-

ential loss from fungi of 15N-depleted N during metabolic

turnover. Hypothesis (i) matches the significant relationship

between d15Nandboth fungal biomasson leaf litter and the rate

of leaf mass loss, implying higher isotopic fractionation was

coupled with higher N uptake by fungi from litter. On the other

hand, 15N-depleted N loss (point ii) during transamination

reactions carried out by fungi can also represent a preferential

pathway for relative 15N enrichment (Hobbie et al., 1998, 1999),

leading to greater d15N for fungal biomass than bulk litter N.

Togetherwith strain-specificdifferences inNuptakeby fungi, it

can help to explain the differences in d15N and isotopic frac-

tionation between the fungal strains. Furthermore, the

increase in d15N of the fungus-colonised detritus in both

experiments implies that fungi lost 14N during metabolic

turnover to varyingdegrees, dependingonbiomassaccrual rate

and strain-specific physiological differences.

The relative enrichment in 15N in fungal biomass calculated

with mixing model equations is consistent with irreversible

reactions dominated by a kinetic isotopic effect (i.e. isotopic

fractionation due to a difference in reaction speed between

lighter and heavier isotopes) occurring in open, non-nutrient

limited systems (Hobbie et al., 2004; Hobbie and H€ogberg,

2012). The fractionation values fall within the range reported

for fungi growing on complex organic substrata (Hobbie et al.,

2012; Hobbie and H€ogberg, 2012), but contrast with other stud-

ies performed in terrestrial ecosystems reporting limited N

fractionation by fungi (Lindahl et al., 2007; Potapov et al., 2013).

Since all fungiwere growing on the same leaf substratumunder

controlled conditions, our results suggest that taxon-specific

physiological traits can influence natural N isotopic patterns

in freshwater detritus systems, as already observed for terres-

trial ecosystems (Hobbie et al., 2004; Semenina and Tiunov,

2010; Potapov et al., 2013). Thus, the quantification of strain-

specific conversion factors between ergosterol concentration

and fungal biomass will help to improve our ability to quantify

reliably the isotopic fractionation by individual fungal species.

In both experiments, lignin content explained the changes

in the decaying litter d13C, which, considering the different

pattern in change of lignin content and ergosterol concen-

tration, was driven by structural changes rather than micro-

bial biomass accrual per se (Benner et al., 1987; Wedin et al.,

1995; Ngao and Cotrufo, 2011). Lignin is generally depleted

(between 2 and 6 &) in 13C with respect to other leaf com-

pounds with higher decomposability, such as cellulose

(Benner et al., 1987; Ngao and Cotrufo, 2011), influencing the

d13C value of decomposing leaf litter. A study by Semenina and

Tiunov (2010), based on different species growing on simple

culture media, including Cladosporium and Trichoderma spp.,

reported no or small carbon isotopic fractionation by fungi. On

the other hand, a recent laboratory study by Potapov et al.,

(2013) reported substantial isotopic 13C enrichment in a

three-trophic level terrestrial detritus system (i.e. natural lit-

ter e decomposer microfungi e fungivorous collembola), and

the observed isotopic enrichment was ascribed to decomposer

fungi. However, the impossibility to completely separate

fungal mycelium from the plant litter substratum limits the

direct analysis of isotopic patterns and fractionation between

fungi and their substrates, and thus to disentangle effects of
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lignin depletion and fungal enrichment on the C isotopic sig-

nature of decaying litter.
Conclusions

In our experiments bacterial growth was inhibited, but con-

sidering that (i) fungal biomass represents up to 95e99 % of

microbial biomass on decomposing leaf material (Hieber and

Gessner, 2002), and (ii) changes in both N content and iso-

topic ratios of colonised litter primarily depended on fungal

biomass, our results probably parallel changes in naturally

colonised decomposing litter in freshwaters. Inoculation with

a mixed fungal community and the concomitant use of a

mixture of leaf species in our first experiment enhance the

similarity to field conditions, where both fungal and leaf litter

diversity can significantly influence the activity of decomposer

fungi and litter breakdown (Costantini and Rossi, 2010).

Knowledge of variation in isotopic fractionation among

decomposer microfungi improves our comprehension of both

stable isotope patterns in natural systems and the role of

specific taxa in nutrient circulation in freshwaters. Quantifi-

cation of differences in isotopic fractionation by different

fungal taxa can also improve the description of trophic path-

ways in detritus-based systems, as recently suggested for

fungivorous microarthropods in terrestrial environments

(Potapov et al., 2013). Indeed, differences in d15N between Tri-

choderma sp. and Gliocladium sp. calculated in our second

experiment averaged 2.4&, which is close to themean isotopic

fractionation value expected for invertebrates feeding on

decomposing leafmaterial (McCutchanetal., 2003). Thus, if the

potential fungus-mediated effect on the isotopic baseline in

freshwater detritus systems is neglected, specialist fungivo-

rous invertebrates could be assigned to the wrong trophic

position. On the other hand, for those detritivores unable to

discriminatebetween leaf tissueandmicrobial biomassduring

ingestion, consideration of the effects of fungal isotopic frac-

tionationcanhelp to determine littermixture compositionand

the detritivores’ actual assimilation of one food source rather

than another (i.e. detritus vs fungi), starting from appropriate

isotope signature-based assumptions (Scheu, 2002; Rossi et al.,

2010; France, 2011; Calizza et al., 2013b).
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