
Shaped Hierarchical Architectural Design 2

Dan Hirsch Ugo Montanari

Dipartimento di Informatica, Università di Pisa,

Via F. Buonarroti 2, I-56127, Pisa, Italia 1

Abstract

Architectural design of software systems deals with high level configuration structuring. Checking
that a system belongs to a software architecture style (or shape) implies that the architecture is an
instance of a structurally defined class. On the other side, hierarchies allow modeling at different
levels of detail: subsystems may be represented as single components to abstract structure and
behavior. This paper proposes a type-based approach for representing hierarchical SA shapes
using types. Typing proofs define a general framework based on inference rules where shape rules
and graphs representing systems are type judgements. Hierarchy constructors are defined in the
type system to construct proof terms capturing hierarchical structure. We claim that proof terms
provide more information than just graphs about the process of constructing systems, and allow the
specification of reconfigurations as proof term rewritings. Reconfiguration consistency is obtained
as subject reduction: as long as cutting and pasting typing proofs still yields typing proofs, subject
reduction is guaranteed. As a possible instantiation of the approach, we present the type system
for shapes (and hierarchies) with global references.

Keywords: Software Architecture Styles, Hierarchies, Shapes, Type Systems, System
Reconfiguration

1 Introduction

The architectural design of software systems is the activity dealing with high
level structuring of configurations and rule definition for the construction of
a software product [7]. As an answer to the need of formal notations and
tools for architecture-based development, Architecture Description Languages
(ADLs), where proposed [12]. Two relevant aspects for the description of

1 Email: dhirsch@di.unipi.it , ugo@di.unipi.it
2 Research partially supported by the EU FET – GC Project IST-2001-32747 agile and the EC RTN

2-2001-00346 SegraVis (Syntactic and Semantic Integration of Visual Modelling Techniques).

Electronic Notes in Theoretical Computer Science 109 (2004) 97–109

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.059
Open access under CC BY-NC-ND license.

mailto:dhirsch@di.unipi.it
mailto:ugo@di.unipi.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

software architectures are style checking and hierarchical composition [12].
The formal approach presented in this paper is centered around these aspects
and it is being developed in the context of the EU-project AGILE [1].

Style (or shape) checking implies that an architecture is an instance of
some Software Architecture (SA) Style that characterizes a class of structures
exhibiting a common pattern. A style can be seen as a type for a given archi-
tecture. Generalizing the idea of style as a type, from now on we use the name
shape for the rules used to type systems. This term is taken from work on
graph grammars for typing programming language pointer-based data struc-
tures, where declarations of types are not enough to describe (and validate)
more complex structures, like doubly-linked lists or leaf-connected trees.

This paper proposes an approach for representing hierarchical software
architecture shapes using types. Typing proofs define a general framework
based on inference rules where shape rules and graphs representing system
configurations are represented as type judgements. Therefore, if there is a
typing proof for a judgment, then the system is correctly shaped (i.e. typed),
where the axioms of the type system are the shaping rules of a style.

An aspect strongly related to shape, and where we can contribute, is SA re-
configuration. Reconfiguration has to respect shape, i.e. type. But for design,
just observing the actual configuration may not be enough. Instead, observing
the steps taken to obtain the final system may provide important information
about the process of construction. In this line, we claim that proof terms (i.e.,
terms of rule names encoding typing proofs) provide more information than
just graphs about the process of constructing systems and allow to specify
reconfigurations as proof term rewritings. Then, reconfiguration consistency
is obtained as subject reduction: as long as cutting and pasting typing proofs
still yields typing proofs, subject reduction is guaranteed.

Also, our approach allows the integration of shapes and hierarchies. Hierar-
chical composition allows to describe systems at different levels of detail. From
a general point of view, hierarchical structures are present in many aspects
related with system configuration. Large scale system development, global
computing, wide area networking, etc., introduce requirements for which it
may be useful to represent systems with hierarchical structures. Hierarchical
levels can represent nested localities: sites, agents, administrative domains
that are located at different places, etc. Hierarchies are present in several
areas like process calculi (Ambient Calculus [4]), concurrent system modeling
(Bigraphs [13]), UML (e.g. state charts with decomposition and refinement).
In our case, hierarchical structure is captured via hierarchy constructors which
are similar to basic constants, i.e. only type and name is specified. Then for
each hierarchical constructor a standard ”symbolic” body is defined as a type

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–10998

judgment. Hierarchical graphs can be derived in the resulting type system.

In summary, our goal is to cope with modeling problems for SA. The
use of type systems and linear representation of structures allow the hope of
taking advantage of existing work on programming languages and static type
checking. In addition, there is a corresponding graphical view for all elements
in the approach. As a possible instantiation of the approach we present a type
inference system for shapes with hierarchies and global references. Taking
some initial ideas from [8,9], judgments describe graphs and shape rules (graph
rewriting rules), hierarchy constructors are typed as rules and architectures
are derived by typing proofs.

Related Work: We already mentioned shapes for pointer structures. Paper
[2] proposes graph-reduction (GR) specifications to specify classes of pointer
data structures (shapes). GR rules are just reversed graph grammar produc-
tions. In [6] context-free graph grammars are proposed to model shape types.
Both propose algorithms for testing membership and analyze their complex-
ity problems. These papers deal with shapes in the context of programming
languages and some results could be relevant to our approach as well. Related
with [6] we mention the work of [11] which was the first to propose context-
free graph grammars for SA styles. Work on graph transformation for SA
reconfiguration is reported in [15]. They present a two-level approach where
a program design language is used to represent states and computations, and
an algebraic framework based on categories to represent architectures and re-
configurations. These works are related with the general goal of our approach.

Related with hierarchies, we mention the work of [5] on hierarchical graph
transformation. In [5] special hyperedges, called frames, are introduced con-
taining hierarchical graphs or variables allowing to define rules that can copy
and remove subgraphs in a single step. Each hierarchy level is treated inde-
pendently and relation between levels is defined as new morphisms. For this,
the double-pushout [14] approach for graph transformation is extended to hi-
erarchical graphs by recursively constructing pushouts and morphisms. Also,
they present a flattening operation where frames in each level are replaced by
their contents. Hierarchy is strict and it does not allow border-crossing. In
this line, the work of [10] integrates hierarchy and shapes, where edges and
nodes are hierarchical, and shapes (context-free rules) are used to type hierar-
chical levels. Types are defined for variables that must correspond to a shape.
In these works the theory of double-pushout is redefined to handle hierarchy.

These papers integrate hierarchy as new kinds of edges and nodes typed
by shapes. In our case we use hierarchy constructors in proof terms instead
of requiring additional structure in underlying graphs. The approach is more
abstract in the sense that hierarchy and shape are directly recoverable from

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109 99

typing proofs and indirectly from graphs. Style-preserving graph transforma-
tions (i.e., reconfigurations) are achieved in our approach by well typed proof
term rewriting rules, while in the other approaches (particularly [11]) recon-
figuration must be explicitly proved correct. Also we try to reinvent as little
as possible about hierarchical graph transformations and their typing tech-
niques by relying on the large body of concepts developed for ordinary graph
rewriting and for the type theory of programming languages. Moreover, our
goal is to propose a framework that can be instantiated according to problems
of interest for SA while the above papers focus on programming languages.

2 Running Example

As running example we use the Airport Case Study [1]. The basic scenario is
as follows. In airports there are passengers and planes. Planes run flights, and
land and take off, transporting passengers and their luggage between airports.
Here we take a simplified view of the example for a clear presentation. We con-
centrate on classes concerning locations, which define a hierarchy. Countries
may contain airports, which can contain planes and passengers.

3 Shaped Hierarchical Systems

This section introduces the approach for representing styles using types. Gen-
eralizing the idea of style as a type, we use the name shape ([2,6]) as a char-
acterization for a class of graphs (representing instances of a style) which are
generated from a set of rewriting rules over graphs called shape rules (i.e.,
rules specifying systems typing). Then, typing proofs define a general frame-
work based on inference rules, which can be instantiated producing different
type systems allowing to choose the most convenient solution for some spe-
cific design problem. A type system is defined via inference rules over type
judgments representing shapes and graphs. Therefore, if there is a typing
proof for a judgment representing a system instance, then the system is cor-
rectly shaped (i.e. typed), where the axioms of the type system correspond
to the shaping rules of the style. Also, we obtain a uniform linear represen-
tation as type judgments (including hierarchies), that we considered suitable
for analysis, together with a graphical representation suitable for modeling.

3.1 Hypergraphs and Syntactic Judgments

System configurations are represented as hypergraphs [14]. Hyperedges corre-
spond to components or modules and their attachment nodes are their commu-
nication ports or connections with other components or modules. A hyperedge,

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109100

or simply an edge, is an atomic item with a label (from a ranked alphabet
LE = {LEn}n=0,1,...) and with as many (ordered) tentacles as the rank of its
label. A set of nodes together with a set of such edges form a hypergraph (or
simply a graph) if each edge is connected, by its tentacles, to its attachment
nodes. A graph is equipped with a sequence of external nodes identified by
distinct names. External nodes can be seen as the connecting points of a
graph with its environment (i.e. the context). Graphs are considered in this
paper up to isomorphism. For example in our case study, Figure 2a. shows
a graph for an instance with a country, two airports, a plane inside each air-
port and one passenger in the second airport with his luggage and ticket. It

has edges with labels ̂country, ̂airport, ̂plane (they represent locations), pass,
luggage and ticket. All locations have a tentacle to a node identifying them
(going up) and other tentacles for identifying their contents. ̂country has a

tentacle to a node to connect its airports and ̂airport has one for planes and

one for passengers. ̂plane has one tentacle connected to its location and one to
passengers onboard (in the case of Figure 2 planes have no passengers). The
passenger has a tentacle that identifies him and is connected to his location,
one referencing his departure country and two for luggage and ticket. Note
that a passenger with luggage and ticket form a graph and are not hierarchical
(graphs are leaves in hierarchy). As you can see, the reference to the country
is global with respect to location hierarchy. Also, in Figure 2b. you can see
the equivalent ”boxed” representation of locations for the derived graph.

We represent hypergraphs as well formed syntactic judgments generated
from a set of axioms and inference rules. Correspondence proof can be found
in [8]. Then, a graph is described as a judgment Γ � G where nodes correspond
to names, with external nodes representing names in Γ (free names). Term G
contains edge basic terms of the form L(x1, . . . , xn), where xi are names and
L ∈ LE and operator | puts together two graphs sharing their nodes. The ν
operator is added to allow restriction of names. Formally defined:

Definition 3.1 [Graphs as Syntactic Judgments] Let N be a fixed infinite
set of names and LE a ranked alphabet of labels. A syntactic judgment (or
simply a judgment) is of the form Γ � G where Γ ∈ N ∗ is a sequence of names
(the interface of the graph) and G is a term generated by the grammar:

G ::= L(x̃)
∣
∣ G|G

∣
∣ νy.G

∣
∣ nil, where x̃ is a vector of names, L is

an edge label with rank(L) = |x̃| and y is a name. Let fn(G) denote the
set of all free names of G, i.e. all names in G not bound by an operator
for scope restriction, ν. We demand that fn(G) ⊆ Γ. Structural axioms for
associativity, commutativity and identity for operation | over nil are defined,
together with axioms for alpha conversion with respect to restricted names and
the usual interplay between ν, nil and |: νx.νy.G ≡ νy.νx.G, νx.G ≡ G if x /∈ fn(G),

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109 101

νx.G ≡ νy.G[y/x] if y /∈ fn(G), νx.(G1|G2) ≡ (νx.G1)|G2 if x /∈ fn(G2).

Fig. 1. Graph and Syntactic Judgment.

For example, Figure 1 shows a graph and a corresponding judgment with

two edges and labels ̂airport and pass. Node x is visible and the rest (wi) are
restricted by ν. We write νX, with X =

⋃
xi, to abbreviate νx1.νx2 . . . νxn.

Using the axioms for alpha conversion and ν, for any judgment we always
have an equivalent normal form Γ � νX.G, with G a subterm containing only
parallel composition of edges. Γ and X are disjoint. Γ � nil corresponds to
a graph with no edges. We use notation Γ, x to denote concatenating x to Γ,
assuming x �∈ Γ, and Γ1, Γ2 as the concatenation of Γ1 and Γ2.

(a) Derived Graph. (b) Hierarchical Graph (c)Constructors

(d) Shape Rules.

Fig. 2. Airport Case Study.

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109102

3.2 Global Reference Type System

Our intention is to propose a general structure of inference rules but for space
limitations, in this paper we directly present one possible instantiation that
allows handling global references. This case also shows how the approach
is more general than hyperedge replacement and specially relevant with re-
spect to the integration of shapes and hierarchies. Hierarchy can be treated
as a strict structure where nesting implies that elements cannot know other
elements outside their same level, i.e. there are no global references. Neverthe-
less, many programming languages allow global references, and architectural
or design languages like UML make use of global references.

First, we define shape rules and graphs as judgments. For this, we extend
the notion of judgment to type judgment (Section 3.2.1) by adding second order
variables and defining a ranked signature of basic types that type variables

and judgments. Inference rules are of the form
J R

RJ
, where J , R and RJ

are type judgments with RJ the result of replacing J in R. Then, given a set
of judgments as axioms for a shape, the derived judgments and their typing
proofs define the instances of the shape. Each type system instantiation in
the framework contains one inference rule and a set of axioms (Section 3.2.2).
In general, we define a type system as follows:

Definition 3.2 [Type System] A type system TS =< A, I > is defined as a
set of type judgments for axioms A and an inference rule I over judgments. A
proof term is a composition of judgment names. A proof term is well typed if a
typing proof exists that generates it. Here, we consider standard proof terms
without parenthesis corresponding to a unique standard proof for a produced
judgment. Then, when we say proof term we mean standard proof term 3 .

3.2.1 Type Judgments

Graph terms contain edges (as in Definition 3.1) and variables that work as
placeholders (for other graphs) connecting some nodes (as for edges). Graphs
and shape rules are type judgments. Basic types identify nonterminal symbols
and variables represent nonterminal instances appearing in rules and derived
graphs using them. Types and variables are ranked according to the number
of nonterminal tentacles.

Definition 3.3 [Basic Types and Variables] We define a fixed set of ranked
types NT where for T ∈ NTn, rank(T) = n; and a set V ar of ranked variables
where X : T ∈ V ar indicates that X has type T ∈ NT and rank(X) =

3 Each proof term with parenthesis corresponds to a unique typing proof.

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109 103

rank(T). Variables are written in uppercase letter. For simplicity, we overload
function rank. We define a special type ε used for typing graphs. Variables in
V ar cannot be of type ε.

In our example we need to define for the shape rules (described below) in
Figure 2d. the following set of basic types: NT = {C, A, P l, Pa, Ma, Mpl, Mpa}.
Definition 3.4 [Type Judgments] Let N be a fixed infinite set of names, NT
a fixed set of ranked types and V ar a set of ranked variables. A type judgment
is of the form S = Γ, ∆ � G : Ts where,

(i) S is a name for the judgment and Γ ∈ N ∗ is a sequence of distinct names.

(ii) ∆ is a sequence of variables of the form X1 : T1, . . . , Xn : Tn, for all
variables appearing in term G. Variables in ∆ are all distinct.

(iii) G is a term generated by the grammar defined in Definition 3.1 plus
variables: G ::= X(ỹ)

∣
∣ L(z̃)

∣
∣ G|G ∣

∣ νx.G
∣
∣ nil, with rank(X) = rank(TX) = |ỹ|.

(iv) Ts ∈ NT ∪ ε is the resulting type of the complete judgment.

For judgments of the form Γ, ∆ � G : Ts, nonterminal graphs correspond
to ∆ �= ∅ and Ts = ε, and terminal graphs to ∆ = ∅ and Ts = ε. For a
shape rule (s = L → R) (i.e., a graph rewriting rule) the interpretation is as
follows: Type Ts ∈ NT corresponds to the nonterminal in L, and Γ, ∆ � G is
the syntactic judgment for graph R. Here ∆ is the sequence of variables for
the new nonterminals generated by the rule (the correspondence of rules and
judgments is up to variable renaming and ordering). Sequence Γ contains the
external nodes with |Γ| ≥ rank(Ts) where the greater than is needed for shape
rules with global references (see Section 3.5 and rule passenger below). A rule
with only terminals in R corresponds to ∆ = ∅. In this presentation variable
occurrences in G are all distinct. Two edges may have the same (nonterminal)
label (i.e. same type) but they are considered different instances (i.e. different
variables). We use sequences for node names and variables because we need
to match nodes and to identify the order of variables for the construction of
proof terms. ∆, X : TX denotes that X is the last variable of the sequence.
∆1, ∆2 is the concatenation of ∆1 and ∆2.

For example, Figure 2d. shows the shape rules and initial graph from which
graphs in the shape are produced. These rules generate a flat tree structure
of locations. For example, judgments for some rules and the initial graph are:

Init
def
= x, X : C � X(x) : ε Country

def
= x, X : Ma � νw. ̂country(x, w) | X(w) : C

Airport
def
= x, X : Mpl, Y : Mpa � νw1, w2. ̂airport(x, w1, w2) | X(w2) | Y (w1) : A

Passenger
def
= y, x � νw1, w2.pass(x, y, w1, w2) | luggage(w1) | ticket(w2) : Pa

The inclusion relation between locations defines a nested structure. Rules

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109104

Country, Airport and Plane create the hierarchical structure. Passenger cre-
ates a passenger instance with its luggage (for simplicity we just put one)
and its ticket. The rest of the rules create a number of airports, planes and
passengers 4 . Figure 2a. shows a derived graph from these rules. We do not
show the derivation for space limitations. For simplicity and following the ap-
proaches in literature for shapes [6,11], wherever possible, we have presented
rules in a context-free style (i.e., one nonterminal in the left hand side) with
little extension to deal with global references.

3.2.2 Inference Rule

The following inference rule shows the composition of two judgments by re-
placing variable X in R using J obtaining as a result a new judgment RJ .

Definition 3.5 [Global References Inference Rule] Let R and J be two type
judgments; then we define an inference rule of the form,

J = ỹ, x̃, ∆1 � H : A R = ỹ, Γ, ∆2, X :A � νw̃.G|X(z̃) : C

RJ = ỹ, Γ, ∆2, ∆1 � νw̃.G|H [
z̃/̃x

]
: C

|x̃| = rank(A)

x̃ ∩ (Γ ∪ w̃) = ∅

Judgment J represents a shape rule and it replaces in R the last variable
X, which must have the same type as J (i.e., A). Judgment J is a rule with
label A as left hand side producing graph ỹ, x̃, ∆1 � H , where x̃ is the sequence
of attachment nodes for the rule (i.e. rank(A) = rank(X) = |x̃|). Judgment
R corresponds to a graph or a rule (depending if C is ε or not), containing
a nonterminal edge with symbol A. The resulting judgment RJ (with name
concatenation RJ as proof term) is obtained by replacing in R variable X
with graph H . This is done by concatenating variables ∆2, ∆1 from R and J
(except X) and by replacing in the graph term for R the instance of X with
H substituting x̃ with z̃ ([z̃/̃x]). You can see x̃ as the formal parameters and z̃
as the actual ones. Clearly, |x̃| = |z̃| as z̃ represents the attachment nodes to
the context where H is embedded. Nodes in z̃ can be both in Γ or w̃.

As an example we can construct a proof (without global references) corre-
sponding to a rule for a country with an airport (Country UniA Airport).

UniA = x, X : A � X(x) : Ma Country = z, Z : Ma � νw. ̂country(z, w) | Z(w) : C

Country UniA = z, X : A � νw. ̂country(z, w) | X(w) : C

Airport = r, W : Mpl, Y : Mpa � νw1, w2. ̂airport(r, w1, w2) | W (w1) | Y (w2) : A

Country UniA = z, X : A � νw3. ̂country(z, w3) | X(w3) : C

Country UniA Airport =

z, W :Mpl, Y :Mpa � νw1, w2, w3. ̂country(z, w3)| ̂airport(w3, w1, w2)|W (w1)|Y (w2) : C

4 We assume at least an airport and a plane per airport.

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109 105

When we deal with judgments representing a hierarchical structure, the
inference rule takes into account global references by adding a sequence of
distinguished node names ỹ that are known by both rules R and J . Names in
ỹ are not part of rank of A and are used in H as references to nodes in the
external context of R, separately from the embedding of x̃ where in the case
of a hierarchy z̃ ⊆ w̃ corresponding to internal references of R. For example,
if we take term (Airport MultiPa) and apply rule Passenger we have a rule
for a passenger in an airport with a reference to the external node (r in the
proof) identifying the airport country (see Figure 2).

Passenger = r, x � νw3, w4.pass(x, r, w3, w4) | luggage(w3) | ticket(w4) : Pa

Airport MultiPa = r, W : Mpl, X : Mpa, Y : Pa � νw1, w2. ̂airport(r, w1, w2) | W (w1) | X(w2) | Y (w2) : A

Airport MultiPa Passenger = r, W : Mpl,X : Mpa � νw1, w2, w3, w4.

̂airport(r, w1, w2) | W (w1) | X(w2) | pass(w2, r, w3, w4) | luggage(w3) | ticket(w4) : A

The resulting type C of RJ is the same as of R. If R is a graph with type
ε, then RJ corresponds to the application of rule J over nonterminal A in R
producing a new graph with type ε. If R is a rule with C as left hand side,
then RJ is a composite new rule whose application is equivalent to the result
of replacing R (which requires C) followed by replacing J over A (produced
by R). For example, the above proofs are rules but if we join them and apply
the result to the initial graph (we show only the proof term) then we produce
a judgment for a nonterminal graph: InitCountryUniAAirportMultiPaPassenger

As we mentioned, our intention is to propose different instantiations of the
framework. We have presented one for global references but also it is worth
mentioning that if we remove the global references from the above rule, we
obtain a rule corresponding to context-free hyperedge replacement (HR) [14].

J = x̃, ∆1 � H : A R = Γ, ∆2, X :A � νw̃.G | X(z̃) : C

RJ = Γ, ∆2, ∆1 � νw̃.G | H [
z̃/̃x

]
: C

|x̃| = rank(A)

x̃ ∩ (Γ ∪ w̃) = ∅

Theorem 3.6 (Correspondence for HR Systems) Given a HR system
with a set of productions P , and a type system TS =< A, I > with the
above inference rule and as A the judgments for P , then there is a one-to-one
correspondence of proof terms in TS and syntactic trees in HR.

3.2.3 Hierarchical Constructors

Usually hierarchical structure is modeled by a containment relation depicted
as boxes containing elements that can be boxes again. Examples of this at the
level of design or architecture are subsystems or locations for mobile systems.
We propose to use hierarchy constructors which are typed in the same way as
shape rules, but initially their bodies are not defined. Namely, a hierarchical

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109106

graph is specified as a proof term containing some constructors for which only
the type is given. We can define the type of a judgment as follows.

Definition 3.7 [Judgment Types] Given a type judgment of the form J =
x̃, ∆ � H : A we can say that the type of J is given by tuple TJ = 〈x̃, ∆, A〉,
consisting of the sequence x̃ of connecting points to the context, the shapes
∆ of its arguments, and its final type A.

For example, Figure 2c. shows location constructor Country with type
TCountry = 〈(x), X :Ma, C〉 where 5 rank(Ma) = rank(C) = 1. Note that we
do not give a term for the right hand side of Country because for hierarchy
constructors we are interested in the containment relation only. What the
constructor type says is that content 6 of Country is X of type Ma and that
its resulting type for the context is of type C with one external connection.

Anyhow, if we want to be able to check the correct typing of a term using
Country, then we need a judgment for it to build typing proofs. A standard
choice is to obtain from the proof term a flattened version of the hierarchical
graph where a symbolic definition of the constructors is given. For example, we
can define the constructor with an equivalent flattening rule Countryf that has
the same type as Country. In this case, the flattening rule corresponds to the
one in Figure 2d. Edge label ̂country is a terminal symbol that identifies the
root of each subtree occurrence for the constructor in a syntactic tree. Again,
Figure 2c. shows the graphical representation of the location constructors
for the case study and Figure 2c. the flattening rules. Then, Figure 2b.
corresponds to the hierarchical graph for Figure 2a. using the constructors.

Definition 3.8 [Hierarchical Type System] Given the type system TS with
axioms A = R∪C, where R is a set of judgments and C is a set of constructors,
then we define the hierarchical type system TSf where, TSf is the same as
TS but with axioms A = R ∪ Cf where Cf is the set of flattening rules for
constructors in C. Then, a proof term represents a hierarchical graph in TS
if it uses constructors from C, and a proof in TSf can be obtained using the
flattening versions from Cf .

In this way any proof term with hierarchical constructors can be reduced
to a judgment in TSf . The judgment for the flat version of the hierarchy is
in one-to-one correspondence to the ”boxed” view of the graph.

5 We use context free examples for a simpler explanation
6 A constructor type may contain more than one variable. This means that a box can have
several contents which must be totally ordered.

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109 107

3.3 Reconfiguration

After system reconfiguration it is necessary to check shape consistency. The
decisions taken to obtain the final system may provide important information
about the process of construction. In our framework, this corresponds to
examining proof terms. To reconfigure a systems in a consistent way we
propose proof term rewriting. A reconfiguration is defined as a transformation
rule R = (I ⇒ O) : T that takes a proof term I and returns O (both of the
same type T), where O may be constructed with different rules than I. Given
the modular way typing proofs are obtained, we can apply transformations
over proof terms (containing the input pattern) and obtain a new proof. Note
that transformations can be applied with any context and instantiation in
sequence and in parallel. Reconfiguration consistency is achieved by checking
that I and O have the same type: as long as cutting and pasting well typed
proofs still yields well typed proofs, subject reduction is guaranteed.

A simple transformation for the example can be MinDistance that changes
production MultiA with hierarchical constructor MultiA50 (to be redefined
later) specifying the constraint that the minimum distance between airports
should be fifty kilometers. MinDistance = MultiA ⇒ MultiA50:〈x, X:Ma, Y:A, Ma〉

4 Conclusions and Future Work

We propose a framework for representing hierarchical SA shapes using types.
Our goal is to give a formal basis to model and analyze systems where hierarchy
is a relevant aspect and evolution of their architectures is a common event.
We have a linear representation of graphs and hierarchies suitable for analysis
and a graphical representation suitable for modeling. The approach can be
instantiated to obtain more expressive power allowing to choose which is the
most convenient solution for some specific design problem.

For hierarchies, as future work we have to study in more detail related
areas that we already mentioned, like process calculi [4] and concurrent sys-
tems [13]. Also, in the context of AGILE, we will continue our work on
supporting extensions of UML for mobility [3].

We have seen in detail a type system for shapes with global references, but
the study has to continue on other possible instantiations. With respect to
shape analysis, we consider that some of the results in the related work for
pointer data structures can be relevant to our approach as well, specially given
the correspondence with Hyperedge Replacement stated in Theorem 3.6.

Finally, it is worth mentioning that we believe possible to give a translation
of our type systems into λ-calculus: Type judgments are mapped to type
judgments in the λ-calculus with very similar term structure. The application

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109108

of the inference rule corresponds to abstraction of the variable over which the
rule is applied together with application and β-reduction. Thus it should be
possible to obtain a convenient implementation in a functional language of
suitable tools for supporting our approach.

References

[1] Andrade, L. and et al. AGILE: Software architecture for mobility. In Recent
Trends in Algebraic Develeopment Techniques—16th International Workshop, WADT 2002,
Frauenchiemsee, volume 2755 of LNCS. Springer-Verlag, 2003.

[2] Bakewell, A., Plump, D., and Runciman, C. Specifying pointer structures by graph reduction.
Tech. Rep. YCS-2003-367, Dep. of CS, Univ. of York, 2003.

[3] Baumeister, H., Koch, N., Kosiuczenko, P., and Wirsing, M. Extending activity diagrams to
model mobile systems. In Intl. Conf. NetObjectDays, 2002. Revised Papers, volume 2591 of
LNCS, pages 278–293. SV, 2003.

[4] Cardelli, L. and Gordon, A. Mobile ambients. In Maurice Nivat, editor, FoSSaCS’98, volume
1378 of LNCS, pages 140–155. Springer-Verlag, 1998.

[5] Drewes, F., Hoffmann, B., and Plump, D. Hierarchical graph transformation. Journal of
Computer and System Sciences, 64(2):249–283, March 2002.

[6] Fradet, P. and Le Métayer, D. Shape types. In Principles of Programming Languages
(POPL’97), pages 27–39. ACM Press, 1997.

[7] Garlan, D. and Shaw, M. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[8] Hirsch, D. Graph Transformation Models for Software Architecture Styles. PhD thesis, Dept.
of Computer Science, Universidad de Buenos Aires, May 2003.

[9] Hirsch, D. and Montanari, U. Higher-order hyperedge replacement systems and their
transformations: Specifying software architecture reconfigurations. In GRATRA 2000, Tech.
Rep., TU Berlin, 2000-02, pages 215–223, 2000.

[10] Hoffmann, B. Abstraction and control for shapely nested graph transformation. Fundamenta
Informaticae, No. to appear, 2003.

[11] Le Métayer, D. Describing software architecture styles using graph grammars. IEEE
Transactions on Software Engineering, 24(7), July 1998.

[12] Medvidovic, N. and Taylor, R. A classification and comparison framework for software
architecture description languages. IEEE TSE, 26(1):70–93, 2000.

[13] Milner, R. Bigraphical reactive systems. In Concur ’01, volume 2154 of Lecture Notes in
Computer Science, pages 16–35. Springer-Verlag, 2001.

[14] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations, volume 1. World Scientific, 1997.

[15] Wermelinger, M. and Fiadeiro, J. A graph transformation approach to software architecture
reconfiguration. Science of Computer Programming, 44:133–155, 2002.

D. Hirsch, U. Montanari / Electronic Notes in Theoretical Computer Science 109 (2004) 97–109 109

	Introduction
	Running Example
	Shaped Hierarchical Systems
	Hypergraphs and Syntactic Judgments
	Global Reference Type System
	Reconfiguration

	Conclusions and Future Work
	References

