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a b s t r a c t

In this paper, we present the results of time-lapse electrical resistivity tomography (ERT) monitoring of
rainfall-triggered shallow landslides reproduced on a laboratory-scale physical model. The main objec-
tive of our experiments was to monitor rainwater infiltration through landslide body in order to improve
our understanding of the precursors of failure. Time-domain reflectometry (TDR) data were also acquired
to obtain the volumetric water content. Knowing the porosity, water saturation was calculated from the
volumetric water content and we could calibrate Archie's equation to calculate water saturation maps
from inverted resistivity values. Time-lapse ERT images proved to be effective in monitoring the
hydrogeological conditions of the slope as well as in detecting the development of fracture zones before
collapse. We performed eight laboratory tests and the results show that the landslide body becomes
unstable at zones where the water saturation exceeds 45%. It was also observed that instability could
occur at the boundaries between areas with different water saturations. Our study shows that time-lapse
ERT technique can be employed to monitor the hydrogeological conditions of landslide bodies and the
monitoring strategy could be extended to field-scale applications in areas prone to the development of
shallow landslides.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Landslides are one of the most challenging geohazards world-
wide and especially in Europe. They can cause fatalities and serious
injuries to people as well as damage to the property. Landslides can
also damage transport infrastructures (roads and railways) located
downstream of the sliding area. Aside from the costs required for
repair/diversion of the damaged parts, long delays occur in trans-
portation to and from the affected areas interrupting marketing
activities, educational and health opportunities, employment and
social activities (Winter et al., 2016). The high socio-economic im-
pacts of landslides have increased interest in the development of
techniques for landslide monitoring and early warning before
catastrophic events.

Long-term landslide monitoring systems are helpful to mini-
mize the adverse impacts of landslides. Examples of such real-time
monitoring systems are: high-precision global positioning system
ngineering, Shahid Bahonar

olimi.it (A. Hojat).
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(GPS) units capable of detecting small movements of the slope
(Reid et al., 2012); radar systems which can continuously monitor
small/large areas from short/long distances (Ross, 2017);
geophysical monitoring techniques such as microseismic networks,
which can detect the seismic energy released by unstable slopes
(Arosio et al., 2018b), and geoelectrical methods capable of moni-
toring the hydrogeological conditions of the landslide body (Baro�n
and Supper, 2013). With repeated measurements, the monitoring
systems can assess time variations of the parameters responsible
for landslide activation, such as soil moisture (Crawford et al., 2019)
or accelerated displacements (Michlmayr et al., 2013).

In the last decades, geophysical techniques have been increas-
ingly used to investigate the subsurface characteristics of landslide
bodies. Different geophysical techniques such as geoelectrical
(Dahlin et al. 2005, 2013; Lapenna et al., 2005; Godio et al., 2006;
Supper et al. 2008, 2014; Chambers et al., 2009; Lundstr€om et al.,
2009; Heincke et al., 2010; Grandjean et al., 2011; Carpentier et al.,
2012; Merritt et al., 2014; Gance et al., 2016; Crawford and Bryson,
2017;Whiteley et al., 2017; Arosio et al., 2018a; Crawford et al., 2018),
active and/or passive seismics (Godio et al., 2006; Heincke et al.,
2010; Grandjean et al., 2011; Apuani et al., 2012; Arosio et al., 2013,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2015a, b, 2017a, b, 2018b; Longoni et al., 2014; Lundberg et al., 2014;
Wang et al., 2016), ground penetrating radar (GPR) (Carpentier et al.,
2012; Longoni et al., 2012; Hu and Shan, 2016), and electromagnetic
(Supper et al., 2008; Grandjean et al., 2011; Wang et al., 2016)
methods can be used to characterize landslide bodies. According to a
review of the methods for landslide investigation and monitoring
based on the information collected from 86 monitored landslides in
14 European and Asian countries, ground-based geophysical in-
vestigations most often include electrical resistivity tomography
(ERT), seismic refraction and seismic reflection, self-potential, and
GPR methods (Baro�n and Supper, 2013). Among these methods, ERT
is the most suitable to monitor soil water content variations induced
by rainfalls.

Rainfall is one of the most common landslide triggers (Wiec-
zorek, 1996; Polemio and Petrucci, 2000; Crawford and Bryson,
2018). An evaluation of a publicly available global catalog of land-
slides with Multi-satellite Precipitation Analysis showed that the
majority of landslides were related to extreme rainfall events
(Kirschbaum et al., 2015). Rainfall-triggered shallow landslides may
involve large volumes of soil and are highly mobile. In rainfall-
triggered landslides, the slope becomes saturated due to the rapid
infiltration of rainwater and failure may develop as a result of
temporary rise in pore-water pressure. This is generally believed to
be the mechanism for activating most shallow landslides during
storms (Wieczorek, 1996). Therefore, methods capable of detecting
the hydrogeological conditions of potentially unstable slopeswould
be helpful in monitoring rainfall-triggered landslides.

Time-lapse ERT measurements have proven to be efficient in
tracking water infiltration conditions andmonitoring subsurface soil
moisture in different structures such as earth embankments and
landslide bodies (Godio et al., 2006; Sj€odahl et al., 2008; Kuras et al.,
2009; Heincke et al., 2010; Chambers et al., 2014; Perrone et al.,
2014; Supper et al., 2014; Arosio et al., 2017; Whiteley et al., 2017;
Crawford et al., 2018; Tresoldi et al., 2018, 2019; Hojat et al., 2019a, b,
c; ). Recent improvements in data acquisition systems and devel-
opment of inversion algorithms have resulted in an increasing in-
terest in using ERT method for subsurface characterization of
landslides (Perrone et al., 2014). However, an enhanced under-
standing of the triggering processes is still required to define
thresholds for slope failure. To develop such a knowledge, laboratory
experiments are very useful in highlighting the critical factors and in
quantifying the stability governing variables. Several authors have
designed and conducted experimental simulations of reduced-scale
shallow landslides triggering in the laboratory (e.g., Olivares, 2009;
Montrasio and Valentino, 2016). While some researchers have
investigated the applicability of analytical models (e.g., Montrasio
and Valentino, 2008), others have tested the application of different
instrumentations such as fiber-optic sensors (Olivares, 2009;
Michlmayr et al., 2017; Schenato et al., 2017) to detect early pre-
cursors such as internal slope deformations or the generation of
acoustic emissions. In our research, we studied small-scale shallow
landslides on a landslide simulator designed at the Applied Geology
and Geophysics Laboratory of Politecnico di Milano, Lecco Campus,
Italy (Scaioni et al. 2017, 2018). The shallow landslide simulation
allows the integration of geology, photogrammetry, image process-
ing and geophysics with the aim of obtaining an exhaustive assess-
ment of failure triggering processes. In this work, we focus on time-
lapse ERT measurements to monitor the infiltration of rainfall water
and to detect development of unstable zones.

2. Methodology

2.1. Equipment

The landslide simulator used in this research is a Plexiglass
flume mounted on a steel frame with base dimensions of
2 m� 0.8 m. To ensure a realistic friction at the interface between
the soil and the base of the frame, a geosynthetic layer was fixed at
the base of the flume. A hydraulic jack attached to the bottom of the
frame makes it possible to increase the inclination of the base up to
45�. Six sprinklers are fixed on the top of the frame and are used to
simulate artificial rainfalls. Fig. 1a illustrates the landslide simulator
and its components.

In all experiments, two GoPro Hero4 Session cameras were
installed on the top frame of the landslide simulator (Fig. 1b) above
the crown and toe of the slope. Images recorded by these cameras
provide a continuous monitoring of the slope surface.

A time-domain reflectometry (TDR) probe (Fig. 1c) was used to
collect volumetric water content data. The TDR sends a pulsed
electromagnetic signal that travels along the wave guide and is
reflected back at the end of the wave guide. TDR measures the
dielectric constant of the soil in contact with the probe and since
water is the major factor which alters the dielectric constant of soil,
TDR is a tool for measuring the soil water content (Topp et al., 1984;
Menziani et al., 1996). TDR datasets were used to relate resistivity
values to soil water content values. In section 3.2, we discuss how
we used TDR data to obtainwater saturation images from resistivity
sections.

To perform time-lapse ERT measurements at the laboratory
scale, we prepared two 24-channel mini cables to be compatible
with the IRIS Syscal Pro instrument. Cables were connected to 48
stainless steel 0.02m-long mini electrodes and were tested in a test
site before landslide simulation experiments (Fig. 1d). A compari-
son of some common arrays was also performed to select a proper
array for laboratory measurements. Due to the space limitations of
the landslide simulator for electrode configurations that use remote
electrodes, only Wenner, Schlumberger and dipole-dipole config-
urations were compared at the test site. After obtaining similar
results, Wenner array was preferred to ensure a good signal-to-
noise ratio (Dahlin and Zhou, 2004; Cubbage et al., 2017). Wenner
array would also be a suitable configuration for real slopes, espe-
cially in remote and inaccessible areas, because minimum current
injection would be an advantage for permanent monitoring sys-
tems that use solar panels as the energy supply.

2.2. Laboratory experiments

We performed eight laboratory experiments to simulate rainfall-
triggered shallow landslides. Each experiment ended with the
collapse of the slope andwe never used again a previousmodel or the
material remaining from a previous test. The slope material used in
all experiments was uniform fine sand with d50¼ 0.35mm. To
construct the landslide body, a 0.15m-thick layer of sand was laid on
the landslide simulator. Such a thickness satisfies the condition h/
l< 0.1, where h and l are the slope thickness and length, respectively.
This condition is usually required to adopt the hypothesis of infinite
slope used in slope stability analysis (Milledge et al., 2012). The
compaction of the soil was controlled by a fixed relationship between
the volume occupied by the landslide body and the mass of the
constituting material. Porosity of the landslide body for various ex-
periments ranged between 52%-54%. We used different initial volu-
metric water contents in order to investigate a variety of cases from
very dry soil to rather wet soil. The initial volumetric water content
wasmeasured with the TDR probe after preparing the landslide body
for each test. Different rainfall patterns were simulated during each
experiment. Some experiments simulated rainfall events consisting
of a constant rainfall followed by a pause and another constant
rainfall. In other cases, a constant or gradually increasing rainfall
eventwas simulated. Rainfall intensitywas estimated considering the
known sprinkler discharge and the area affected by the spray cones,
where a uniform rainfall distribution was assumed. Table 1 summa-
rizes experiment setups for different tests.



Fig. 1. a) Landslide simulator used for simulating rainfall-triggered shallow landslides. b) A closer view of the top frame of the landslide simulator with two GoPro Hero4 Session
cameras installed. c) TDR probe used for measuring the volumetric water content. d) Preparation and testing of two 24-channel mini cables connected to mini electrodes.
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The Wenner array with unit electrode spacing a¼ 0.03m was
used for ERT measurements. In the first experiment, the electrodes
were placed in two parallel lines (24-electrodes each) perpendic-
ular to the slope dip direction (test no. 1 in Table 1) and, after the
failure of the very bottom section of the slope, the landslide body
collapsed along the lower ERT line. Thanks to this experiment, we
realized that a spread perpendicular to the slope dip direction could
disturb the tests by generating a discontinuity that might evolve
into a fracture. Moreover, such a layout would be less effective in
detecting weak zones and in monitoring rapid resistivity changes
and failures generally occurring along the slope dip direction.
Therefore, we decided to deploy the ERT spread parallel to the slope
dip direction in all the other tests to monitor resistivity changes
from the crown to the toe. Using 48 electrodes with the electrode
spacing of a¼ 0.03m, the ERT profile was 1.41m, long enough to
adequately map the landslide body parallel to the slope dip direc-
tion (Fig. 2a). Mini cables and electrodes were buried at 0.01m or
0.02m depth to prevent preferential infiltration pathways at the
locations of electrodes. In the first four experiments, a resistivity
pseudosection was measured every 9.5min. The time interval
between each measurement was later reduced to 3.5min, using the
high-speed option of the IRIS Syscal Pro resistivity-meter. This
helps to obtain amore continuous record of resistivity changeswith
the rainfall and before any failures, and thus, to better monitor the
variations of water saturation and to detect possible thresholds for
slope failure. TDR probe was also used in all experiments, buried at
a known depth and location. Fig. 2b shows an example of resistivity
and TDRmeasurements during a simulated rainfall event. Failure of
the lower section of the slope results in large displacements so that
the electrodes at that location lose the contact with the soil. As a
consequence, resistivity measurements were continued using only
the 24 upslope electrodes still in contact with the soil with a high-
speed rate of one measurement every 1.5min.

2.3. Data processing

2.3.1. Artefacts from laboratory simulator
After preparing the slope and before activating the rain sprin-

klers, an initial measurement of the soil resistivity (hereafter
named T0) was carried out for all the experiments. Considering the



Table 1
Experiment setups for landslide simulation tests. The slope material was homogeneous sand.

Test No. ERT layout Initial volumetric water content (%) Slope angle (degrees) Rainfall intensity (mm/h)

1 Perpendicular to the slope dip direction 12.5 33 48.5: for the first 10min
0: during t¼ 10-20min
81: from t ¼ 20 min until the end of the test

2 Parallel to the slope dip direction 11.5 40 48.5: for the first 10min
0: during t¼ 10-20min
81: from t ¼ 20 min until the end of the test

3 Parallel to the slope dip direction 4.0 40 54: for the first 10min
0: during t¼ 10-20min
94.5: from t ¼ 20 min until the end of the test

4 Parallel to the slope dip direction 10.0 40 48.5: continuous during the test
5 Parallel to the slope dip direction 9.0 35 48.5: for the first 10min

0: during t¼ 10-20min
81: from t ¼ 20 min until the end of the test

6 Parallel to the slope dip direction 13.3 35 Gradual increase from 72.8 to 98
7 Parallel to the slope dip direction 13.7 40 77.2: for the first 10min

0: during t¼ 10-20min
83.6: from t ¼ 20 min until the end of the test

8 Parallel to the slope dip direction 5.0 35 124: continuous during the test
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typical values of low-saturated sands, the initial resistivity was
expected to be in the range of 400-600Um depending on the soil
properties such as porosity, degree of compaction, and initial
volumetric water content.

All measured apparent resistivity pseudosections showed that
apparent resistivity values of deeper layers were anomalously high.
This is because the base of the landslide simulator is covered by
Plexiglass, which is an electrically resistive material. Fig. 3a shows
an apparent resistivity pseudosection measured at T0 for an
experiment in which the average resistivity of the soil was 550Um.
This value is obtained by averaging the measurements with the
shortest electrode spacings in the middle of the profile. The
increasing gradient is clearly seen in the measured pseudosection.
The sharp gradient in the measured pseudosection is not related to
Fig. 2. a) Deployment of the mini electrodes along an ERT profile. b) An example of time-l
yellow circle shows the downslope electrodes exposed after the failure.
resistivity changes within the soil layer, rather it is due to the
resistive base. To validate this hypothesis, a synthetic two-layer
model was constructed in RES2DMOD (Loke, 2016). The resistivity
of the first layer was set 550Um. This homogeneous layer was
defined over a resistive layer at the depth of 0.14m. The calculated
apparent resistivity pseudosection of this synthetic model is shown
in Fig. 3b. The comparison between Fig. 3a and b shows that the
calculated apparent resistivity pseudosection is in good agreement
with the measured one. Since the side walls of the landslide
simulator are also made from plexiglass (see Fig. 1a), we explored
how these resistive walls may affect the measurements. A 3D
synthetic model was constructed in RES3DMODx64 (Loke, 2014)
with a homogeneous layer having the resistivity of 550Um
confined by two resistive side walls 0.8m apart, representing the
apse ERT and TDR measurements. TDR was buried horizontally in the slope body. The



Fig. 3. a) Measured apparent resistivity pseudosection obtained at T0 for a homogeneous slope with resistivity of about 550Um. b) Calculated apparent resistivity pseudosection for
a homogeneous layer of 550Um over a resistive layer, modelled in RES2DMOD (Loke, 2016). c) Calculated apparent resistivity pseudosection for a 550Um homogeneous layer with
resistive side walls; ERT profile mid-way from the side walls modelled in RES3DMODx64 (Loke, 2014).
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Plexiglass side walls of the landslide simulator. The calculated
apparent resistivity pseudosection of this model along the profile
located midway from the side walls is shown in Fig. 3c. It is seen
that most of the calculated values are similar to the defined re-
sistivity for the soil layer. Therefore, a comparison of the images in
Fig. 3 shows that the main anomalous increase of measured re-
sistivity values with depth arises from the effect of the resistive
base of the landslide simulator. To account for sharp changes of
resistivity values across this boundary and to obtain accurate re-
sistivity images of the soil layer after inverting the data, the base of
the landslide simulator was introduced as a resistive sharp
boundary in all inversions of the data performed in RES2DINVx64
(Loke, 2018). This will provide meaningful inverted images to be
reasonably interpreted, as we will see later in Figs. 5e7.
2.3.2. Buried electrodes
In ERT measurements, the electrodes are generally located on

the surface and the current flows in the lower half space. Since the
electrodes are buried in our experiments, the effect of buried
electrodes needs to be corrected because the current also flows in
the soil layer above the electrodes. The effect of buried electrodes
can be quantified by the analogy between the electrical situation
and optics (Telford et al., 1990). Fig. 4a shows the electrical image
for a current electrode (I) buried at the depth h. The potential
measured at any point P is partly due to the current electrode (I)
and partly due to its image in the secondmedium. This well-known
concept was used to calculate the ratio of apparent resistivity
measured by buried electrodes to resistivity of the half space. We
calculated this ratio considering the Wenner array with unit elec-
trode spacing a¼ 0.03m and the electrodes buried at 0.01m depth,
and we observed that, when the electrodes are buried, the
measured apparent resistivity values are smaller than the real re-
sistivity of the soil, especially for the smallest electrode spacings
(Fig. 4b).
2.3.3. Inversion of datasets
All the datasets were further filtered for negative resistance

values, bad quality factors (standard deviation larger than 2%), and
extremely low current. The datasets were then inverted using
RES2DINVx64 with the robust option (Loke, 2018), which is in



Fig. 4. a) Electrical image concept for a current electrode (I) buried at the depth h. b) The ratio of apparent resistivity measured by buried electrodes to resistivity of a homogenous
layer for the Wenner array with unit electrode spacing of a¼ 0.03m and the electrodes buried at 0.01m depth.
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principle superior to the smoothness-constrained least-squares
inversion (Loke et al., 2003; Dahlin and Zhou, 2004).

3. Results and discussion

3.1. Detection of failure zones

Fig. 5 illustrates an example of inverted resistivity sections for an
experiment (test no. 5 in Table 1) where ERT profiles were
measured with the high-speed option to minimize the time
required for data acquisition. Acquisition of each pseudosection
with 48 electrodes took about 3.5min. The sprinklers simulating
rainfall were activated at the beginning of the experiment for
10min. Rainfall was then stopped for 10min and then re-activated
until the end of the experiment. Time-lapse resistivity images show
resistivity variations of the soil layer above the resistive base of the
landslide simulator. The resistivity image at T0, theoretically ex-
pected to be a homogeneous body with uniform distribution of
moisture, shows how non-uniform compaction of the soil in
different areas results in changes in the resistivity values of the soil.
The resistivity image at t¼ 11min is measured after the first rainfall
event and as expected, it shows the decrease of resistivity values
due to infiltration of the rainwater. Distribution of water saturation,
and thus of resistivity values, is not homogenous within the land-
slide body because of the irregular soil compaction and preferential
flow paths for the water. Moreover, the rainfall intensity was not
homogenous over the slope surface due to the limited number of
sprinklers. Measurements of t¼ 19min started 9min after the end
of the initial rainfall event, and just 1min before the sprinklers were
re-activated. Therefore, since each ERT profile was measured in
about 3.5min and the measurement sequence progressively moves
from left to right of the sections, lower resistivity values were
recorded on the right side of this profile, which was measured
when the landslide body was experiencing the second rainfall.
Since the landslide body was stable until t¼ 36min (Fig. 6), we
show just a resistivity image every 10.5min from T0 until t¼ 30min
in Fig. 5 to display the infiltration of rainfall water. Then, to explore
the possibility of detecting weak zones that began to develop after
t¼ 35min, all the threemeasured ERT sections from t¼ 30min until
t¼ 37min are shown. The resistivity image at t¼ 30min illustrates
again that after activating the rain sprinklers and due to the infil-
tration of rainwater, measured apparent resistivities continue to
decrease considerably. The landslide body has higher saturation
values (lower resistivity values) during this second rainfall. The
resistivity image at t¼ 34min shows a highly saturated zone at the
toe of the slope. In the middle part of this section, we can observe a
less saturated surface zone located over a more saturated mass at
depth. The resistivity image at t¼ 37min was the last profile
measured using all 48 electrodes. It shows the increase in resistivity
values at 0.09e0.12m from the toe on the surface, within the highly
saturated part of the landslide body. This abrupt change is due to
the formation of a fracture that resulted in the failure of the
lowermost section of the slope (Fig. 6). This image also shows the
initial time of formation of another fracture that develops at the
distance of 0.73m on the surface. At t¼ 40min, the downslope
electrodes lost their contact with the soil due to the collapse of the
lower part of the landslide body and measurements with only the
24 upslope electrodes could be performed afterwards.

Fig. 6 shows the pictures of the slope taken at times t¼ 35min,
t¼ 36min, t¼ 37min, and t¼ 38min for the test shown in Fig. 5. The
correlation can be recognized between the high resistivity zones at
times t¼ 37min and t¼ 39min in ERT measurements and the cor-
responding F3 and F4 fractures observed on the pictures. Unfortu-
nately, we could not continue to monitor resistivity changes related
to the development of F4 unstable zone because this fracture was
located approximately in the middle of the profile and after the
electrodes in the lower section of the slope were exposed, data
coverage was not sufficient in this area. The pictures taken with
GoPro cameras show that the landslide body started to fail at the
location of F4 at t¼ 46min, therefore, resistivity images could detect
this weak zone well in advance. By correlating the resistivity images
at t¼ 30min, t¼ 34min, and t¼ 37min in Fig. 5 with the positions of
fractures F3 and F4, it can be observed that F3 occurs within a highly
saturated zone while F4 develops in a less saturated zone in corre-
spondence of a resistivity change. More in detail, F4 is developing in
a less saturated surface zone that is located over a more saturated
mass at depth. Thus, this experiment suggests two possible in-
dicators of unstable zones that might evolve into new fractures: 1)
areas where water saturation exceeds a threshold level, and 2) large
gradients of saturation levels within the slope. To quantify these
indicators, we need to transform resistivity measurements into
water saturation images, as will be discussed in section 3.2. At this
stage we can anticipate that this transformation will result in a
saturationwarning level of about 45%. Of course the warning level is



Fig. 5. An example of inverted resistivity sections (test no. 5 in Table 1). The diagonal dashed lines on the resistivity sections show the approximate time of measurements
(increasing from left to right). At t¼ 37min, a fracture began to develop at the distance of 0.09e0.12m from the toe on the surface, which later resulted in the failure of the
lowermost part of the slope at t¼ 40min.
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also dependent on the landslide material (sand for these experi-
ments) and on the slope angle (about 35� for this example).

Fig. 7 illustrates the results of another experiment (test no. 4 in
Table 1) inwhich high resistivity zones consecutively appeared one
after another (Fig. 7a) in correspondence of the development of
different fracture zones (Fig. 7b). This is an example of experiments
where each ERT measurement took 9.5min to be completed. The
pictures in Fig. 7b show a fracture (named F1) starting to develop
28min after the beginning of the experiment at the distance of
x¼ 1.34m from the toe of the slope on the surface. Data acquisition
of the resistivity section at t¼ 21min continued for 9.5min.
Therefore, this resistivity section could record the high resistivity
zone corresponding to fracture F1. The next resistivity section was
measured from t¼ 31min and recorded two other high resistivity
zones which correspond to the development of two new fractures
(F2 and F3) at x¼ 0.9m and x¼ 0.15m from the toe of the slope.
Similarly, the times and locations of F2 and F3 observed on GoPro
pictures are well correlated with the detected high resistivity
zones. As for F4 in Fig. 6, weak zones in this experiment were
mainly located at the borders between areas with different water
saturations. Abrupt high resistivity zones corresponding to the
formation of fractures were observed in most of the experiments



Fig. 6. Correlation between the times and the distances of the high resistivity zones recorded at t¼ 37min (Fig. 5) with fractures F3 and F4 observed on the pictures. Fractures F1
and F2, developed at t¼ 36min, are located on the landslide toe outside the ERT profile.
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and were well correlated with the times and locations of the frac-
tures observed on GoPro pictures.

After the collapse of the lower section of the landslide body,
which resulted in the detachment of the downslope electrodes in
all the experiments (Fig. 2b), resistivity measurements were
continued using only the 24 upslope electrodes that remained in
contact with the soil. In a couple of experiments, the resistivity
values did not change considerably and new failures did not occur
for about 30min, so the experiment was stopped. In other experi-
ments, additional high resistivity zones corresponding to the
development of new fractures were recorded and thus, resistivity
measurements were continued until the upslope section also
collapsed.

Fig. 8 shows an example of new fractures occurring in the top
part of the profile and their detection on resistivity sections. This is
an example of an experiment (test no. 6 in Table 1) with high-speed
acquisitions where each measurement with 24 electrodes took
about 1.5min to be completed. The resistivity section at t¼ 35min
clearly shows that the development of fracture F1 is promptly
detected. A comparison of the three resistivity sections at the dis-
tance of about x¼ 0.9m along the surface (red arrow in Fig. 8a)
reveals the potential of ERT in predicting unstable zones. A high
resistivity zone starts to develop at the surface at the border of a
localized high-saturation part at about t¼ 33min (see section at
t¼ 35 and t¼ 37min in Fig. 8a). This sudden increase of resistivity
corresponds to the fast formation of a new and significant failure
(F2) occurring in a couple of minutes. Air is getting into the fracture
and the resistivity is thus increased. The rapid evolution of F2 is
clearly recorded in the pictures shown in Fig. 8b. It is interesting to
note that F2 is not visible on the picture at t¼ 35min, while the
resistivity values registered at this time are already increasing with
respect to previous measurements.
3.2. Water saturation vs. resistivity

After inversion of all resistivity data, TDR data were used to
establish the petrophysical relationship between water saturation
and resistivity for the material used in our experiments. Archie's
law (Archie, 1942) is valid for clay-free formations with highly
resistive mineral grains and thus, it is applicable to the sand ma-
terial used in our experiments:

r¼ FS�n
w rw (1)

where r is the resistivity of the material, F is the formation re-
sistivity factor, Sw is the water saturation, and rw is the resistivity of
thewater in pores. n is the saturation exponent varying in the range
1.2� n� 2.2 and is determined empirically. The formation re-
sistivity factor is related to porosity (4) by the formula:

F ¼ a4�m (2)

where 0.5� a � 2.5 and 1.3�m� 2.8.
The volumetric water content, q, was monitored using TDR data.

Following the definitions of the water saturation and volumetric
water content, we have:

q¼Vw

Vt
(3)

Sw ¼ Vw

Vpore
¼ q

4
(4)

where Vw, Vpore and Vt are the volumes of water, pores, and the total
material, respectively.



Fig. 7. a) Two successive resistivity sections (test no. 4 in Table 1) showing high resistivity zones recorded at distances x¼ 1.34m (F1), x¼ 0.9m (F2), and x¼ 0.15m (F3) from the
toe of the slope on the surface. The diagonal dashed lines on the resistivity sections show the approximate time of measurements (increasing from left to right). b) Times and
locations of the fractures recorded by GoPro cameras.
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Using the volumetric water content values and inverted values
of resistivity at the location of TDR measurements, we calculated
the coefficients of equation (1) assuming a porosity of the soil equal
to 54%. Porosity of different landslide simulations was actually
slightly varying around this value.

As a first trial, we assumed a¼ 1 and m¼ 2 to obtain F from
equation (2). Knowing the volumetric water content at T0 from TDR,
we calculated Sw from equation (4). We know that the resistivity of
water used in the rain sprinklers was 27Um. Assuming n¼ 2, the
calculated resistivity from equation (1) was higher than the inver-
ted resistivity value at T0. Therefore, the coefficients were reduced
to fit the calculated and inverted resistivity values. Values of a¼ 0.5,
m¼ 1.3 and n¼ 1.7 were found to give the best matching results. To
validate the calibrated coefficients, the resistivity values were
calculated from TDR data at different times. The calculated
resistivity values at each time were compared with the inverted
resistivity values at the location of TDR at the same time. We
compared the calculated resistivity values at each time with the
inverted resistivity values at the location of TDR at the same time
and we found a good agreement. As a result, we developed the
following equation to obtain the water saturation of the landslide
body from inverted resistivity data:

Sw ¼
�
29:7
r

�0:59

(5)

Fig. 9 shows water saturation versus resistivity plotted based on
Eq. (5). Resistivity of the soil always decreases as water saturation
increases, but, as common in soils of resistive grains such as clean
sands, the relation between water saturation and resistivity is not



Fig. 8. An example of new fractures developed after the collapse of the lower part of the slope (test no. 6 in Table 1). a) New fractures (F1 and F2) are detected in ERT images
obtained frommeasurements with the remaining 24 electrodes. The diagonal dashed lines on the resistivity sections show the approximate time of measurements (increasing from
left to right). The red arrow shows the fast development of fracture F2. b) Times and locations of the fractures recorded by GoPro cameras.

Fig. 9. Graph of soil water saturation versus resistivity values based on Eq. (5), which
was developed for the material used in our landslide simulation experiments.
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linear (Mooney, 1980). Moving from an almost dry soil to water
saturations of about 30-40%, the resistivity values decrease
considerably due to the role of water in conduction (the water was
not very resistive in our experiments). Further increases in water
saturation beyond about 40% still reduces the resistivity values, but
more gently.

Having developed the petrophysical relation between resistivity
values and water saturation of the landslide body (Eq. (5)), all
inverted resistivity sections were converted to water saturation
images. Fig. 10 shows time-lapse water saturation images obtained
from the resistivity sections discussed in Fig. 5. In this experiment,
the landslide body experienced a failure at t¼ 37min at the loca-
tion indicated by the black arrow in Fig. 10. The unstable zone
developed at the boundary of a wet area where Sw exceeds 45%.

Time-lapse water saturation images of all the experiments were
compared with the times and locations of failures. In 80% of the
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experiments, the landslide body became unstable at the borders
between zones with different water saturation or where the water
saturation of the soil exceeds 45%. A careful study of the images
showed that the delay from the time a fracture was recognized on
the resistivity sections until the failure of the related area ranged
from 1min up to 10min. Considering the reduced scale of the
experiments as well as the simulation of extreme precipitation, the
time scales observed here could imply much larger time spans if a
real-scale case study is to be monitored. A deeper soil layer would
Fig. 10. Time-lapse water saturation images obtained from the inverted resistivity sections
naturally require more time to be saturated although upscaling is
most likely not directly proportional (Iverson, 2015).

4. Conclusions

Our ERTmonitoring tests of rainfall-triggered shallow landslides
showed that rainfall infiltration paths through the soil were vari-
able resulting in inhomogeneous zones of water accumulation. By
comparing volumetric water content values obtained from time-
shown in Fig. 5. The black arrow shows the location of a failure occurring at t¼ 37min.
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lapse TDRmeasurements with inverted resistivity values measured
nearby the TDR sensor, we were able to calibrate the coefficients of
Archie's law. We observed that time-lapse ERT measurements
could effectively monitor time changes in water saturation within
the landslide body. Fractures were found to develop at the borders
between zones with different water saturation, or where the soil
was highly saturated. In particular, saturations higher than 45%
were found to generate slope instability. This is a threshold related
to the specific material and the specific dip values selected for our
experiments. Nevertheless, our results indicate that laboratory
tests could be successfully used to simulate various scenarios and to
estimate thresholds specifically related to a real landslide.

Time-lapse ERT images could predict development of fractures
where abrupt high resistivity discontinuities were recorded. The
most frequent delay from fracture formation to failure detected on
GoPro images was in the order of a couple of minutes. However, our
example of high-speed ERT measurements showed that develop-
ment of fractures can be detected in ERT sections even before the
fractures are visible on GoPro images. One of the future perspec-
tives is to estimate more accurately the time lag from ERT fracture
detection to formation of visible fractures as well as between
fracture appearance and collapse and convert it from the laboratory
scale to the real scale, in order to use it for implementing an early
warning procedure. Our results show that geoelectrical methods
can be effectively employed as parts of early warning systems for
unstable slopes. However, in order to define landslide triggering
thresholds based on water saturation, more experiments should be
performed to correlate different governing parameters. Further
experiments with different soil materials, such as clay, may help to
better characterize landslide mechanisms in a more complex
context.

One of the limitations of our ERT investigations was the low
frequency of measurements due to the time required for each
acquisition. Measurements should be rapid enough to follow the
fast processes involved in the failure of rainfall-triggered landslides
without any aliasing and to avoid misunderstanding of the pro-
cesses and loss of valuable pieces of information. In order to make
ERT technique as efficient as possible, development of high-speed
ERT monitoring systems capable of operating and being pro-
grammed remotely is encouraged.
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