
p ()
URL: http://www.elsevier.nl/locate/entcs/volume52.html 11 pages

Privacy in Real-Time Systems

Ruggero Lanotte 1;2

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa,

Italy

Andrea Maggiolo-Schettini 1;3

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa,

Italy

Simone Tini 1;4

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa,

Italy

Abstract

We study the problem of privacy in the framework of Timed Automata. By dis-

tinguishing between secret and observable actions we formulate a property of no-

privacy in terms of a property of the language accepted by a Timed Automaton,

and we give an algorithm checking such property.

1 Introduction

One of the main requirements of mobile code is that it must guarantee some

kind of security to clients executing it. One of the security requirements is the

client's privacy, namely that executing mobile code does not imply leaking of

private information.

Several papers (see, among the others, [3],[4],[5], [6],[7]) dealing with pri-

vacy, consider two-level systems, where the high level (or secret) behavior is

distinguished from the low level (or observable) one. In the mentioned papers,

systems respect the property of privacy if there is no information ow from

1 Research partially supported by MURST Progetto Co�nanziato TOSCA.
2 Email: lanotte@di.unipi.it
3 Email: maggiolo@di.unipi.it
4 Email: tini@di.unipi.it

c2002 Published by Elsevier Science B. V.

Lanotte, Maggiolo-Schettini and Tini

the high level to the low level. This means that the secret behavior cannot in-

uence the observable one, or, equivalently, no information on the observable

behavior permits to infer information on the secret one.

Our aim is to study the problem of privacy in real-time systems in the

framework of Timed Automata [1]. When using this formalism, the possible

behaviors of a system are described by a set of in�nite timed words, namely

in�nite sequences of pairs (action performed, time of �ring). In describing

two-level systems, we distinguish between high-level and low-level actions.

We formulate a no-privacy property as follows: if, whenever one can observe

a given timed sequence of observable actions, one is sure that the system

performs a certain secret action, then the system is insecure. The reason is

that one can infer information on the secret behavior from the observation of

the observable one.

We give an algorithm that exploits the region graph obtained from a Timed

Automaton and checks the no-privacy property for a given sequence of observ-

able actions and a given secret action.

2 HL Timed Automata

In this section we introduce the formalism of HL Timed Automata, as an

extension of Alur and Dill's Timed Automata.

2.1 Security alphabet and timed words

A security alphabet is a pair consisting of two disjoint �nite sets of actions

(L;H). The set L contains the low actions, which can be performed by the

system and can be observed by the external environment, and the set H

contains the high actions, which can be performed by the system and are

visible only inside the system.

Given any time domain T (non-negative rational numbers, or non-negative

real numbers, as examples), a timed word ! on (L;H) and T is a pair of func-

tions (!1; !2) such that !1 : N ! (L [H) and !2 : N ! T . Intuitively, ! de-

scribes the behavior of a system that performs action !1(i) at time
Pi

h=0 !2(h).

A timed word must satisfy the time progress property, namely for each time

value t 2 T , there is some index i such that
Pi

h=0 !2(h) > t.

Given a timed word ! = (!1; !2), let us denote with !L the projection of !

on L, namely the (possibly �nite) sequence (!1(i1); !2(i1)); (!1(i2); !2(i2)); : : :

such that, for each index ij, !1(ij) 2 L and, for each ij < k < ij+1, !1(k) 2 H.

The sequence !L describes the part of ! that can be observed by the external

environment.

Let us denote with F! the function that gives the index in ! of the low action

in position j in !L, namely F!(j) = ij.

2

Lanotte, Maggiolo-Schettini and Tini

2.2 Clock valuations and clock constraints

We assume a set X of variables measuring time, called clocks. Intuitively,

clocks increase uniformly with time when an automaton is in whatsoever state.

A clock valuation over a set of clocks X is a mapping v : X ! T assigning

time values to clocks. For a clock valuation v and a time value t, let v + t

denote the clock valuation such that (v+t)(x) = v(x)+t. For a clock valuation

v and a subset of clocks Y � X, let v[Y] denote the clock valuation such that

v[Y](x) = 0, if x 2 Y , and v[Y](x) = v(x), otherwise.

Given a set of clocks X, we consider the set of clock constraints over X,

denoted �(X), which is de�ned by the following grammar, where � ranges

over �(X), x 2 X, c 2 T and # 2 f<;�;=; 6=; >;�g:

� ::= x# c j� ^ � j :� j� _ � j true :

We write v j= � when the clock valuation v satis�es the clock constraint �.

More precisely, v j= x# c i� v(x)# c, v j= �1 ^�2 i� both v j= �1 and v j= �2,

v j= �1 _ �2 i� either v j= �1 or v j= �2, v j= :� i� v 6j= �, and v j= true.

2.3 The formalism

De�nition 2.1 Given a security alphabet (H;L), a HL Timed Automaton

(TAHL) is a tuple A = ((L;H); A1; : : : ; Am), where, for each 1 � i � m,

Ai = (Qi; q
0
i ; Æi; Xi) is a sequential automaton, with:

� a �nite set of states Qi

� an initial state q0i 2 Qi

� a set of clocks Xi

� a set of transitions Æi � Qi � �(Xi)� (L [H)� 2Xi �Qi.

The sets of clocks X1; : : : ; Xm are pairwise disjoint.

Intuitively, a transition (q; �; a; Y; q0) of an automaton Ai �res in corre-

spondence with the performance of action a when state q is active and the

clock valuation of Ai satis�es the clock constraint �. In such a case, state q0

is entered and the clocks in Y are reset.

Let us describe now the behavior of a TAHL A = ((L;H); A1; : : : ; Am).

A con�guration of A is a tuple s = ((q1; v1); : : : ; (qm; vm)) such that, for

each 1 � i � m, qi is a state in Qi and vi is a clock valuation over the set of

clocks Xi.

The initial con�guration s0 is the tuple ((q01; v
0
1); : : : ; (q

0
m; v

0
m)), with q0i the

initial state of Ai and with v0i the clock valuation such that vi(x)
0 = 0 for

each clock x 2 Xi.

There is a step from con�guration s = ((q1; v1); : : : ; (qm; vm)) to con�gura-

tion s0 = ((q01; v
0

1); : : : ; (q
0

m; v
0

m)) through action a at time t, written s!a
t s

0, if

and only if, for each 1 � i � m, there is a transition (qi; �i; a; Yi; q
0

i) 2 Æi such

3

Lanotte, Maggiolo-Schettini and Tini

��
��
u1 ��

��
u2

��
��
u3

��
��
u4

��
��
u5

��
��
u6 ��

��
u7

-

�
��	

@@R��	

?

HHHHHHj�

�
ae; fzg

re

ac; fzg

rc

z 2 T1

aw; fzg

rw; z 2 T1

re; z 2 T1

ae

��
��
c2

��
��
c1

6
?

ac

rc; fxgx 2 T2

��
��
s2

��
��
s1
6
?

aw

rw; fygy 2 T3

Au

Ac Aw

T1 = [1; 2], T2 = [2; 5], T3 = [100; 250]

Fig. 1. The web system.

that (vi + t) j= �i and v0

i = (vi + t)[Yi]. Intuitively, each clock constraint �i is

satis�ed by the clock valuation vi + t and all clocks in Yi are reset.

A timed word (!1; !2) is accepted by A if there exists a in�nite sequence

of steps s0 !
!1(0)

!2(0)
s1 !

!1(1)

!2(1)
: : : from the initial con�guration s0.

The language accepted by A (denoted by L(A)) is the set of timed words

accepted by A.

By application of a cartesian product construction, any TAHL can be trans-

formed into an equivalent (namely, accepting the same language) TAHL con-

sisting of only one sequential component, namely into an Alur and Dill's Timed

Automaton.

Proposition 2.2 For any TAHL A there exists a TAHL A
0

composed by one

only sequential automaton such that L(A) = L(A0).

3 The No-privacy Property

Given sequences d and d0, let d �P d0 denote the fact that d is a pre�x of d0.

Let a 2 H, d be a �nite sequence (a1; t1); : : : ; (ah; th) with a1; : : : ; ah 2 L

and t1; : : : ; th 2 T , and i be an index 1 � i < h. We de�ne the no� privacy

property NPr(d; i; a) for a TAHL A as follows:

for each ! 2 L(A); d �P !L implies a 2 f!1(F!(i)+1); : : : ; !1(F!(i+1)�1)g:

Intuitively,NPr(d; i; a) expresses that, whenever the sequence d of low symbols

is read, the high symbol a is read between the low level actions ai and ai+1,

and, therefore, there is an information ow from high level to low level, namely

information on the secret behavior can be inferred from information on the

observable behavior.

Example 3.1 We model the time attack on web privacy described in [2]. The

attack compromises the privacy of user's web-browsing histories by allowing

4

Lanotte, Maggiolo-Schettini and Tini

a malicious web site to determine whether or not the user has recently visited

some other, unrelated, web page w. A Java applet is embedded in the mali-

cious web site and is run by the user's browser. The applet �rst performs a

request to a �le of w, and then performs a new request to the malicious site.

So, the malicious site can measure the time elapsed between the two requests

which it receives from the user, and, if such a time is under a certain bound,

it infers that w was in the cache of the browser of the user, thus implying that

w has been recently visited by the user.

In Fig. 1 we model this problem. Automaton Ac represents the cache. The

time elapsed between a request rc and an answer ac is in the interval [2; 5].

Automaton Aw represents the site w. The time elapsed between a request rw
and an answer aw is in the interval [100; 250]. The automaton Au represents

the requests by the user that downloads the page of the malicious site. First

of all, it performs a request re to the malicious site. Then, when it receives

the answer ae, it performs a communication either with the cache or with the

site w in a time belonging to the interval [1; 2]. Finally, it performs another

request re and it waits for an answer from the malicious site. We assume that

there are transitions from state c1 to state c1 labeled with symbols re, ae, rw
and aw. Analogously there are transitions from state s1 to state s1 labeled

with symbols re, ae, rc and ac.

The only visible actions for the malicious site are re and ae, so the alphabet

(L;H) is (fre; aeg; frc; ac; rw; awg).

Now, if we consider d = (re; 10)(ae; 20)(re; 200), then we have the no pri-

vacy property NPr(d; 2; aw).

3.1 Region graph

Our aim is to show that the property NPr(d; i; a) is decidable.

To this purpose, let us recall �rst the notion of region graph of a timed

automaton, as given in [1]. By proposition 2.2 it suÆces to consider automata

with only one sequential component.

As in [1], without loss of generality we assume clock constraints permitting

only comparison with integer constants. In fact, given any automatonA, there

is a constant t such that, for each constant c appearing in a clock constraint

in A, c � t is an integer. Let A � t be the automaton obtained by replacing

each c appearing in a clock constraint in A by c � t. In [1] it is proved that

a word (a1; t1) : : : (an; tn) : : : is in the language L(A) if and only if the word

(a1; t1 � t) : : : (an; tn � t) : : : is in the language L(A � t). As a consequence,

NPr(d; i; a) holds for A if and only if NPr(d � t; i; a) holds for A � t.

Let us consider the equivalence relation � over clock valuations that con-

tains each pair of clock valuations v and v0 such that:

� for each clock x, either bv(x)c = bv0(x)c, or both v(x) and v0(x) are greater

than cx, with cx the largest integer appearing in clock constraints over x.

� for each pair of clocks x and y with v(x) � cx and v(y) � cy, fract(v(x)) �

5

Lanotte, Maggiolo-Schettini and Tini

fract(v(y)) if and only if fract(v0(x)) � fract(v0(y)) (fract(z) indicates

the fractional part of z).

� for each clock x with v(x) � cx, fract(v(x)) = 0 if and only if fract(v0(x)) =

0.

Note that for each pair of valuations v and v0, and for each clock constraint

� in A, it holds that:

if v � v0 then v j= � i� v0

j= �:

A clock region is an equivalence class of clock valuations induced by �.

We denote by [v] the equivalence class of � containing v. Note that the set of

clock regions is �nite.

Clock regions can be expressed with conditions of the form x = c, c < x <

c+ 1 and x > cx.

A region is a pair (q; [v]), with q a state and [v] a clock region. The initial

region is the pair (q0; [v0]) with q0 the initial state and v0 the valuation such

that v0(x) = 0, for each clock x.

The region graph R(A) is a graph having the regions of A as set of

nodes and having an edge h(q; �); a; I; (q0; �0)i, with I an interval of the form

(c; c0),[c; c] or (cm;1) (where c < cm, c 2 N and cm is the largest constant

that appears in the constraints of A) if and only if, for each pair of valuations

v 2 � and v0 2 �0, (q; v)!a
t (q

0; v0) for some time t 2 I.

Note that, di�erently from [1], we label edges of the region graph also with

an interval.

Without loss of generality, we can consider only the nodes that can be

reached from the initial region without cycles of edges labeled with interval

[0; 0] which would violate the assumption of progress of time.

3.2 Checking no-privacy

Our algorithm checking no-privacy constructs a set of intervals by applying

operations, which are de�ned below, to intervals of the region graph.

Given two intervals I and I 0, let us denote with I � I 0 the interval

I � I 0 = ft� t0 j t 2 I and t0 2 I 0

g :

Given a step leading to a region (q; �) in a time in the interval I, and a step

from (q; �) to another region (q0; �0) in the interval I 0, a time in I+I 0 is needed

to reach (q0; �0) through (q; �), provided that the waiting time in q does not

depend on the time consumed to reach q.

Given two intervals I and I 0, let us denote with I � I 0 the interval such

that inf(I � I 0) = inf(I) + inf(I 0) + 1, sup(I � I 0) = sup(I) + sup(I 0) � 1.

Moreover, if inf(I�I 0) = sup(I�I 0) then we assume that (I�I 0) is left-closed

and right-closed. Otherwise, I � I 0 is left-closed if and only if both I and I 0

are, and I � I 0 is right-closed if and only if both I and I 0 are.

6

Lanotte, Maggiolo-Schettini and Tini

Given a step leading to a region (q; �) in a time in the interval I, and a

step from (q; �) to another region (q0; �0) in the interval I 0, a time in I � I 0

is needed to reach (q0; �0) through (q; �), provided that the waiting time in q

depends on the time consumed to reach q, in the sense that the longer is the

time consumed before entering q, the shorter is the waiting time in q. This

happens if there is a constraint c < x < c+ 1 in �, for some clock x.

Finally, let us denote with (I)t the interval:

(I)t =

8
>>><
>>>:

I if sup(I) � t

I [[sup(I);1) if inf(I) � t < sup(I)

(t;1) otherwise.

Note that t 2 I if and only if t 2 (I)t. We have introduced notation (I)t since

the set of the intervals (I)t, such that I is a sum (obtained by means of either

+ or �) of intervals of a region graph, is �nite.

Let us de�ne now the algorithm Ch-path-symb. Given regions p and q, a

high symbol a, a constant t and a low symbol a0, Ch-path-symb checks whether

there exists a sequence of steps labeled with symbols in H n fag followed by a

step labeled with a0 and taking from p to q at time t.

Algorithm 1

Ch-path-symb(p,q:region, a:high-symbol, t:T , a0

: low symbol): boolean

(i) tovisit:=f(p; [0; 0]; false)g;

(ii) visited:=;;

(iii) while true do

(iv) if empty(tovisit) then return false

(v) else

(vi) (r; I; tt):=extract(tovisit);

(vii) add((r; I; tt),visited);

(viii) if (tt=true and (r = q) and t 2 I) then return true;

(ix) if tt=false then

(x) for each edge hr; a00; I 0; r0i 2 R(A) with a00 2 H n fag [fa0g

(xi) if x = t0 is a constraint in r then c:=(r0; (I + I 0)t; (a
00 = a0))

(xii) else if I 0 = [0; 0] then c:=(r0; I; (a00 = a0))

(xiii) else c:=(r0; (I � I 0)t; (a
00 = a0))

(xiv) if c 62 visited ^ ((I + I 0)t 6= (t;1)) then Add(c,tovisit).

A tuple (r; I; false) means that the region r can be reached from p in a

time in the interval I by reading symbols in Hnfag. A tuple (r; I; true) means

that the region r can be reached from p in a time in the interval I by reading

7

Lanotte, Maggiolo-Schettini and Tini

symbols in H n fag and, subsequently, symbol a0.

So the algorithm considers �rstly the pair (p; [0; 0]; false). Given a pair

(r; I; false) and an edge hr; a00; I 0; r0i in R(A) for some symbol a00 2 H n fag[

fa0g, if the clock region in r satis�es x = t0 for some clock x and constant t0,

then the algorithm considers either the pair (r0; (I + I 0)t; false), if a
00 6= a0, or

the pair (r0; (I+ I 0)t; true), if a
00 = a0. The condition x = t0 in r ensures that a

time in I 0 must be elapsed after r is entered. We use interval (I + I 0)t instead

of (I + I 0) to guarantee that Ch-path-symb generates �nite intervals.

If, on the contrary, the clock region in r does not satisfy x = t0 for any

clock x and constant t0, then there are two cases. If hr; a00; I 0; r0i is such

that I 0 = [0; 0], then the clock regions of r and r0 coincide, and, therefore, we

consider the tuple (r0; I; (a00 = a0)). Otherwise, the tuple (r; (I�I 0)t; (a
00 = a0))

is considered. The interval (I�I 0)t takes into account that the minimal (resp.

maximal) waiting time in r follows the maximal (resp. minimal) waiting time

needed to reach r. Also in this case we use interval (I� I 0)t instead of (I� I 0)

to guarantee that Ch-path-symb generates �nite intervals.

Finally, if a tuple (r; I; tt) with r = q, t 2 I and tt = true is generated,

then Ch-path-symb terminates successfully.

The following lemmata state the correctness of the algorithm.

Lemma 3.2 For any pair of regions p and q, high symbol a, time t and low

symbol a0

, Ch-path-symb(p,q,a,t,a0) terminates.

Proof. Both the regions of the graph and the intervals that can been gener-

ated by the algorithm are �nite and, as a consequence, also the tuples (r; I; tt)

that are generated are �nite. 2

Lemma 3.3 If (!1; !2) 2 L(A) with f!1(i); !1(i+1); : : : ; !1(j� 1); !1(j)g �

H n fag and !1(j + 1) the low symbol a0

, then there exists an in�nite se-

quence of steps (q0; v0) !
!1(0)

!2(0)
(q1; v1) !

!1(1)

!2(1)
: : : if and only if Ch-path-

symb((qi; [vi]),(qj+2; [vj+2]),a,
Pj+1

h=i !2(h),a
0).

Lemma 3.3 is a direct consequence of the properties of the region graph

proved in [1].

We de�ne also the algorithm Ch-path that checks whether there exists a

sequence of steps labeled with high symbols and followed by a step labeled

with the low symbol a0 taking from a given region p to a given region q in

a given time t. We obtain it from Ch-path-symb by replacing the condition

a00 2 H n fag [fa0g in line (x) with the condition a00 2 H [fa0g.

The following results are the analogous of Lemma 3.2 and Lemma 3.3.

Lemma 3.4 For any pair of regions p and q, time t and low symbol a0

, Ch-

path(p,q,t,a0

) terminates.

Lemma 3.5 Let (!1; !2) 2 L(A) with f!1(i); !1(i+1); : : : ; !1(�1j); !1(j)g �

8

Lanotte, Maggiolo-Schettini and Tini

H and !1(j+1) the low symbol a0

, then there exists an in�nite sequence of steps

(q0; v0) !
!1(0)

!2(0)
(q1; v1)!

!1(1)

!2(1)
: : : if and only if Ch-path ((qi; [vi]),(qj+2; [vj+2]),Pj+1

h=i !2(h), a
0).

The following algorithm Ch-NPriv checks whether there exists a sequence

of steps from the initial region (q0; [v0]) due to a low sequence d that does not

perform the high symbol a between the low symbols in d(i) and d(i + 1). At

iteration k, the set A contains the regions that can be reached from (q0; [v0])

by reading d(0); : : : ; d(k), by reading symbols in H n fag between d(i) and

d(i + 1), and by reading symbols in H between d(j) and d(j + 1), for each

j 6= i. So, if A is empty then the sequence of steps we were looking for does

not exist, and NPr(d; i; a) holds.

Algorithm 2

Ch-NPriv(d:L� sequence, i:N, a:high� symbol): boolean

(i) k:=0;

(ii) A:=f(q0; [v0])g;

(iii) while k � length(d) do

(iv) (a0; t):=d(k);

(v) B:=;;

(vi) while A6= ; do

(vii) (q; [v]):=extract(A);

(viii) for each region (q0; [v0]) 2 R(A)

(ix) if (k = i and Ch-path-symb((q; [v]),(q0; [v0]),a,t,a0

)) OR

(x) (k 6= i and Ch-path((q; [v]), (q0; [v0]),t,a0

))

(xi) then Add((q0; [v0]),B);

(xii) A:=B;

(xiii) k:=k+1;

(xiv) return A = ;.

The following results state the correctness of the algorithm Ch-NPriv.

Lemma 3.6 For any �nite sequence d, index i and high symbol a, the algo-

rithm Ch-NPriv(d,i,a) terminates.

Theorem 3.7 For any �nite sequence d, index i and high symbol a, it holds

that NPr(d; i; a) if and only if Ch-NPriv(d,i,a).

Note that Ch-NPriv(d,i,a) performs at most k times the body of the ex-

ternal cycle. The internal cycle calls either the algorithm Ch-path-symb or

the algorithm Ch-path at most jR(A)j times, with jR(A)j the number of re-

gions of R(A). Finally, both Ch-path-symb and Ch-path construct at most

O(jR(A)j � t2) tuples.

9

Lanotte, Maggiolo-Schettini and Tini

Corollary 3.8 It is decidable in polynomial time whether NPr(d; i; a).

4 Further Work

In this paper we have introduced the \no-privacy" property, which corresponds

to the ability, by an attacker, to infer information on the private behavior of

a system from the observable behavior.

To model a real time system that respects privacy, we can consider prop-

erties derived from the property NPr(d; i; a) considered in the paper.

The �rst step is to consider properties such as 9a 2 H:NPr(d; i; a), mean-

ing that the performance of some secret action follows a sequence of observable

actions, and 9i 2 [1; length(d)�1]:NPr(d; i; a), meaning that the performance

of some secret action is implied by a sequence of observable actions. Both

properties are decidable, since NPr(d; i; a) is decidable and it is suÆcient to

enumerate the cases.

An interesting property is 9d:NPr(d; i; a). This property holds if there is a

sequence of observable actions implying a secret action. In this case we cannot

enumerate the cases. Moreover, even if such a property would be decidable, we

cannot enumerate to prove the property 9d:9i 2 [1; length(d)�1]:NPr(d; i; a).

So, one may consider weaker properties. As an example, the property

9d. length(d) � n and NPr(d; i; a) considers only �nite-length sequences

of observable actions. (It is usually suÆcient to observe a �nite number of

observable actions to describe time attacks on protocols). Note that the se-

quences d such that length(d) � n are not �nite because times are in�nitely

many.

We might also consider sequences d in (� � Interval)� instead of (� �

T ime)�. This kind of sequences permit to consider more general behaviors.

As an example, a possible sequence is (a; [0;1))(b; [3; 3])(c; [2; 5)), meaning

that a is performed in the interval [0;1), b is performed 3 units of time after

a, and c is performed when a time in [2; 5) after b is elapsed.

Our aim is to study the decidability of such properties.

References

[1] Alur, R., and D.L. Dill: A theory of timed automata. Theoretical Computer

Science 126 (1994), 183{235.

[2] Felten, E.W., and M.A. Schneider: Timing attacks on Web privacy. Proc. 7th

ACM Conference on Computer and Communications Security, 25{32, 2000.

[3] Focardi, R., and R. Gorrieri: Automatic compositional veri�cation of some

security properties. Proc. Second International Workshop on Tools and

Algorithms for the Construction and Analysis of Systems, Lecture Notes in

Computer Science 1055, Springer, Berlin, 1996, 167-186.

10

Lanotte, Maggiolo-Schettini and Tini

[4] Focardi, R., and R. Gorrieri: A classi�cation of security properties for process

algebras. Journal of Computer Security 3 (1995), 5{33.

[5] Focardi, R., R. Gorrieri, and F. Martinelli: Information ow analysis in

a discrete-time process algebra. Proc. 13th Computer Security Foundation

Workshop, IEEE Computer Society Press, 2000.

[6] Volpano, D., and G. Smith: Con�nement properties for programming languages.

SIGACT News 29 (1998), 33{42.

[7] Smith, G., and D. Volpano: Secure information ow in a multi-threaded

imperative language. Proc. ACM Symposium on Principles of Programming

Languages, 1998, 355{364.

11

